A New Material for Balance Springs

Total Page:16

File Type:pdf, Size:1020Kb

A New Material for Balance Springs A New Material for Balance Springs Gideon Levingston looks at the thermal and magnetic properties of the conventional balance assembly, wheel and spring and suggests a new way of producing long term stability THE ACCURACY of a mechanical watch is These characteristics help to compensate dependent upon the specific frequency of each another. Whereas an increase in the oscillator composed of the balance length is considered normal an increase in wheel and balance spring. When the E is rare in materials, and is thus temperature varies, the thermal expansion considered abnormal. of the balance wheel and balance spring, In summary, when the Fe-Ni balance as well as the variation of the elasticity spring gets hotter, instead of getting less (Young’s Modulus) of the balance spring, elastic it gets more elastic (a positive or change the specific frequency of the abnormal variation in E). This compen- oscillating system, disturbing the accuracy sates for both its dimensional change and of the watch. Approximately three the increasing diameter of the metal quarters of the variation can be attributed balance as it gets hotter and expands. to thermal or magnetically induced Hence the term ‘auto-compensating changes in the balance spring. balance spring’. However this is true only Methods for compensating these 1. A current high-grade COSC-rated balance up to a certain temperature, the Curie variations are based on the consideration and spring in the presence of a child’s toy threshold (named after Pierre Curie) and that the specific frequency depends magnet. concerns the increased dipole activity exclusively upon the relationship between between the elements within the alloy as the torque of the balance spring acting These two terms are not in a linear the threshold is approached. upon the balance wheel and the moment relationship. The work of Charles Edouard of inertia of the balance wheel as is It is necessary that this relationship Guillaume in the development of INVAR indicated in the following relationship should remain as constant as possible (so and other Fe-Ni low expansion alloys was as to keep T constant, i.e. the oscillations a further development of Curie’s investi- are isochronous). gations of magnetism in these alloys that (1) This article describes a way of over- are pivotal to the use of Fe-Ni alloys in coming magnetic and thermal variation in balance springs and balance wheels. T is the period of oscillation, I the moment watches. First the current problem is De-magnetising has long been accepted of inertia of the balance wheel and, G the analysed by re-examining the present state as the solution to this problem, and as torque of the balance spring. of the art. Following this a proposed such is an imperative taught in watch The moment of inertia of the balance solution and a material choice, will be schools. Unfortunately this is neither wheel is a function of its mass M and its examined and demonstrated. practical for every watch owner nor is it radius of gyration r. wholly effective. The torque of the balance spring is a The Current State of the Art What is not widely understood however function of its dimensions: length l, height Ferro nickel (Fe-Ni) metal spring alloys is the relationship between temperature, h, thickness e, and of its Young’s Modulus provide an approximate solution to the magnetism and the useful positive E. The length l of the balance spring problem when the alloy is perfectly de- variation of E in Fe-Ni alloys. It must be (which may be helical or spiral) is the magnetised. However, when the alloy is remembered that the external influences entire length, end to end. The relationship not perfectly demagnetised, the relation- considered here are magnetism and (1) is rewritten: ship is no longer constant: E changes. temperature and their respective effects Balance wheels currently employed in upon the spring and the balance. high grade chronometers are of a gold- If the spring behaves normally, i.e. E is (2) copper or copper-beryllium (GLUCYDUR) negative as in a steel spring, then as the alloys which have similar α (linear temperature increases the system will Temperature variations influence T as a expansion) coefficients lying between +14 require that the workload of the spring is result of expansion and contraction of the and +17 x 10-6/°K. decreased. This is achieved by an inward- balance spring and wheel. Dimensions l, h These balance wheels expand isotrop- bending cut bi-metallic balance wheel and e of the spring and r of the wheel, vary, ically with a rise in temperature as do all where the value of the M multiplied by r2 but M remains constant. metal balance wheels except bi-metallic (equation 2) is decreased. Unfortunately, We know how to compensate for the and ovalising balances which expand aniso- in this Guillaume system both balance and effects of expansion on l, h and e. However tropically. The change in the E value of spring are susceptible to magnetism. the period of oscillation is still subject to the balance spring must therefore With a monometallic balance, when the variations of r and E in keeping with the accommodate this, as is evident from the temperature rises the work load on the relationship expressed by: relationship (3). spring gets greater. The balance wheel The Fe-Ni alloys currently used for radius increases, its gyratory mass shifts balance springs show an increase in both E further from its centre of rotation, and it (3) and l for an increase in temperature across requires greater effort on the part of the the normal ambient temperature range. spring to keep it oscillating at the same Levingston G. Horological Journal July 2004 243 Any watch employing a Fe-Ni balance spring can be stopped by a sufficiently powerful magnet and any exposure to a magnetic field results in the absorption of magnetism in a cumulative manner. After a time the elasticity of the spring changes and isochronism is adversely affected. Magnetic pollution from electric and electro-magnetic sources of all descrip- tions: computers, portable telephones, televisions, electric motors, toys etc, may all cause the alloy to absorb magnetism. In 2. The thickness dimension view ‘e’ (35 a magnetised Fe-Ni alloy the temperature 4. Best chronometer and standard balance microns) of a new high quality chronometer limit for the usefully anomalous behaviour springs under the influence of a magnet. balance spring, at 4000x magnification, showing inclusions from the rolling process of E drops from 40°C to below 30°C, well and indications of the direction rolling. below normal body temperature, and the to retain their reputation in an spring loses its elasticity. environment increasingly subject to When a non compensating mono- magnetic fields from computers, tele- frequency. If the Fe-Ni spring has an metallic balance wheel of GLUCYDUR,or phones and electric circuits as well as the abnormal (+ve) E tendency then it can even gold and copper, expands, its greater earth’s natural varying field forces. compensate for this and all is well. If on gyratory mass cannot be compensated for The solutions must take into account the other hand its elasticity is subject to by the spring. Where the alloy’s physical the external influences of heat, cold and internal dipole changes triggered by a properties require a balance wheel to have magnetism and their inter-relationship. A combination of temperature and magnetic a linear expansion coefficient, α, around non-magnetically sensitive balance spring effects, T will not remain constant and +15×10-6/°K, once beyond the magnetic is one step in the right direction, it must isochronism will be lost. and temperature limits the α coefficient of however be thermally stable or it must be Examination of an Fe-Ni alloy at the the balance intrinsically causes a change compensated by a balance wheel that can microscopic level illustrates just how non- of rate, the balance wheel and balance adjust for the intrinsic thermal character- uniform this material actually is, 2. The spring do not conform to the relationship istics of the spring. difficulties of producing finely alloyed in (2) and the system is no longer metals to the very high specifications isochronous. The watch, depending on the A Solution required in this field should not be balance amplitude, will either gain or lose The non magnetic solution which I have underestimated. My examination and significantly. In fact a wristwatch been developing allows for the effect of analysis of a high-grade balance spring chronometer subject to this effect may magnetism to be ruled out completely at shows how foreign matter can become have as much as ± 10 seconds per day the same time that the material’s impregnated in the processing of such variation. The COSC certificate requires a remarkable thermal properties, very materials to the detriment of the perform- tolerance of +5 to –7 seconds/day. stable and slight modulation of E and very ance. The batch quality of the material is Furthermore, if a low positive α low creep, are exploited. dependant upon its purity. Each batch is coefficient balance is coupled with the Fe- The internal friction of the material as tested empirically and graded into a Ni spring this will neither compensate for known to Watch Timers (Regleurs) is statistical spread of qualities. the magnetised or non-magnetised another physical property very worthy of Analysis using a scanning electron condition of the spring nor for the thermal consideration as it has a consequence microscope, 3, has shown that similar changes intrinsic to metal alloy springs in regarding balance amplitude in particular.
Recommended publications
  • Floating and Platform Balances an Introduction
    Floating and Platform Balances An introduction ©Darrah Artzner 3/2018 Floating and Platform Balances • Introduce main types • Discuss each in some detail including part identification and function • Testing and Inspecting • Cleaning tips • Lubrication • Performing repairs Balance Assembly Type Floating Platform Floating Balance Frame Spring stud Helicoid spring Hollow Tube Mounting Post Regulator Balance wheel Floating Balance cont. Jewel Roller Pin Paired weight Hollow Tube Safety Roller Pivot Wire Floating Balance cont. Example Retaining Hermle screws Safety Roller Note: moving fork Jewel cover Floating Balance cont. Inspecting and Testing (Balance assembly is removed from movement) • Inspect pivot (suspension) wire for distortion, corrosion, breakage. • Balance should appear to float between frame. Top and bottom distance. • Balance spring should be proportional and not distorted in any way. • Inspect jewels for cracks and or breakage. • Roller pin should be centered when viewed from front. (beat) • Rotate balance wheel three quarters of a turn (270°) and release. It should rotate smoothly with no distortion and should oscillate for several (3) minutes. Otherwise it needs attention. Floating Balance cont. Cleaning • Make sure the main spring has been let down before working on movement. • Use non-aqueous watch cleaner and/or rinse. • Agitate in cleaner/rinse by hand or briefly in ultrasonic. • Rinse twice and final in naphtha, Coleman fuel (or similar) or alcohol. • Allow to dry. (heat can be used with caution – ask me how I would do it.) Lubrication • There are two opinions. To lube or not to lube. • Place a vary small amount of watch oil on to the upper and lower jewel where the pivot wire passed through the jewel holes.
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • Collectable POCKET Watches 1750-1920
    cOLLECTABLE POCKET watches 1750-1920 Ian Beilby Clocks Magazine Beginner’s Guide Series No 5 cOLLECTABLE POCKET watches 1750-1920 Ian Beilby Clocks Magazine Beginner’s Guide Series No 5 Published by Splat Publishing Ltd. 141b Lower Granton Road Edinburgh EH5 1EX United Kingdom www.clocksmagazine.com © 2017 Ian Beilby World copyright reserved ISBN: 978-0-9562732-4-6 The right of Ian Beilby to be identified as author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. 2 4 6 8 10 9 7 5 3 1 Printed by CBF Cheltenham Business Forms Ltd, 67 Hatherley Road, Cheltenham GL51 6EG CONTENTS Introduction 7 Chapter 1. The eighteenth century verge watch 13 Chapter 2. The nineteenth century verge watch 22 Chapter 3. The English cylinder and rack lever watch 36 Chapter 4. The English lever watch 42 Chapter 5. The Swiss lever watch 54 Chapter 6. The American lever watch 62 Chapter 7. The Swiss cylinder ladies’ fob watch 72 Chapter 8. Advice on collecting and maintenance 77 Appendix 1. Glossary 82 Appendix 2. Further reading 86 CLOCKS MAGAZINE BEGINNER’S GUIDE SERIES No. 1. Clock Repair, A Beginner’s Guide No. 2. Beginner’s Guide to Pocket Watches No. 3. American Clocks, An Introduction No. 4. What’s it Worth, Price Guide to Clocks 2014 No.
    [Show full text]
  • Physics 2305 Lab 11: Torsion Pendulum
    Name___________________ ID number_________________________ Date____________________ Lab partner_________________________ Lab CRN________________ Lab instructor_______________________ Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation (3) 2. To show that the period (or angular frequency) of the simple harmonic motion of the torsion pendulum is independent of the amplitude of the motion 3. To make measurements to demonstrate the validity of equation (6), which relates the angular frequency of motion to the torsion constant and the moment of inertia of the torsion pendulum Useful background reading Young and Freedman, section 13.1, 13.2, 13.4 (the “angular SHM” section, specifically) Introduction A torsion pendulum is shown schematically to the right. A disk with moment of inertia I0 is fastened near the center of a long straight wire stretched between two fixed mounts. If the disk is rotated through an angle θ and released, the twist in the wire rotates the disk back toward equilibrium. It overshoots and I 0 oscillates back and forth like a pendulum, hence the name. Torsion pendulums are used for the timing element in some θ clocks. The most common variety is a decorative polished brass mechanism under a glass dome. You may have seen one. The balance wheel in an old fashioned mechanical watch is a kind of torsion pendulum, though the restoring force is provided by a flat coiled spring rather than a long twisted wire. Torsion pendulums can be made very accurate and have been used in numerous precision experiments in 1 physics.
    [Show full text]
  • Computer-Aided Design and Kinematic Simulation of Huygens's
    applied sciences Article Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock Gloria Del Río-Cidoncha 1, José Ignacio Rojas-Sola 2,* and Francisco Javier González-Cabanes 3 1 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 2 Department of Engineering Graphics, Design, and Projects, University of Jaen, 23071 Jaen, Spain 3 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-953-212452 Received: 25 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: This article presents both the three-dimensional modelling of the isochronous pendulum clock and the simulation of its movement, as designed by the Dutch physicist, mathematician, and astronomer Christiaan Huygens, and published in 1673. This invention was chosen for this research not only due to the major technological advance that it represented as the first reliable meter of time, but also for its historical interest, since this timepiece embodied the theory of pendular movement enunciated by Huygens, which remains in force today. This 3D modelling is based on the information provided in the only plan of assembly found as an illustration in the book Horologium Oscillatorium, whereby each of its pieces has been sized and modelled, its final assembly has been carried out, and its operation has been correctly verified by means of CATIA V5 software. Likewise, the kinematic simulation of the pendulum has been carried out, following the approximation of the string by a simple chain of seven links as a composite pendulum. The results have demonstrated the exactitude of the clock.
    [Show full text]
  • A Royal 'Haagseklok'
    THE SPLIT (Going and Strike) BARREL (top) p.16 Overview Pendulum Applications. The Going-wheel The Strike-wheel Ratchet-work Stop-work German Origins Hidden Stop Work English Variants WIND-ME MECHANISM? p.19 An "Up-Down" Indicator (Hypothetical Project) OOSTERWIJCK'S UNIQUE BOX CASE p.20 Overview Show Wood Carcass Construction Damage Control Mortised Hinges A Royal 'Haagse Klok' Reviewed by Keith Piggott FIRST ASSESSMENTS p.22 APPENDIX ONE - Technical, Dimensions, Tables with Comparable Coster Trains - (Dr Plomp's 'Chronology' D3 and D8) 25/7/1 0 Contents (Horological Foundation) APPENDIX TWO - Conservation of Unique Case General Conservation Issues - Oosterwijck‟s Kingwood and Ebony Box INTRODUCTION First Impressions. APPENDIX SIX - RH Provenance, Sir John Shaw Bt. Genealogy HUYGENS AUTHORITIES p.1 Collections and Exhibitions Didactic Scholarship PART II. „OSCILLATORIUM‟ p.24 Who was Severijn Oosterwijck? Perspectives, Hypotheses, Open Research GENERAL OBSERVATIONS p.2 The Inspection Author's Foreword - Catalyst and Conundrums Originality 1. Coster‟s Other Contracts? p.24 Unique Features 2. Coster‟s Clockmakers? p.24 Plomp‟s Characteristic Properties 3. Fromanteel Connections? p.25 Comparables 4. „Secreet‟ Constructions? p.25 Unknown Originator : German Antecedents : Application to Galilei's Pendulum : Foreknowledge of Burgi : The Secret Outed? : Derivatives : Whose Secret? PART I. „HOROLOGIUM‟ p.3 5. Personal Associations? p.29 6. The Seconds‟ Hiatus? p.29 The Clock Treffler's Copy : Later Seconds‟ Clocks : Oosterwijck‟s Options. 7. Claims to Priority? p.33 THE VELVET DIALPLATE p.3 8. Valuation? p.34 Overview Signature Plate APPENDIX THREE - Open Research Projects, Significant Makers Chapter Ring User-Access Data Comparable Pendulum Trains, Dimensions.
    [Show full text]
  • Dynamics of Periodic Impulsive Collision in Escapement Mechanism
    Shock and Vibration 20 (2013) 1001–1010 1001 DOI 10.3233/SAV-130800 IOS Press Dynamics of periodic impulsive collision in escapement mechanism Jian Maoa,∗,YuFub and Peichao Lia aShanghai University of Engineering Science, Shanghai, China bTianjin Seagull Watch Co. Ltd, Tianjin, China Received 10 May 2012 Revised 25 January 2013 Accepted 13 April 2013 Abstract. Among various non-smooth dynamic systems, the periodically forced oscillation system with impact is perhaps the most common in engineering applications. The dynamical study becomes complicated due to the impact. This paper presents a systematic study on the periodically forced oscillation system with impact. A simplified model of the escapement mechanism is introduced. Impulsive differential equation and Poincare map are applied to describe the model and study the stability of the system. Numerical examples are given and the results show that the model is highly accurate in describing/predicting their dynamics. Keywords: Periodic collision, dynamics, escapement mechanism 1. Introduction Dynamics is an important branch of mechanical engineering. In the last century, the linear dynamics was well studied and understood. However, nonlinear dynamics is far from being fully understood because of its complexity and diversity [1]. Non-smooth dynamical system is a special category of nonlinear system. In practice, it is not difficult to find non-smooth dynamical systems, such as a hammer hitting a nail, a signal triggering an electrical circuit, and a disaster affecting the stock market. It is known that a typical smooth dynamical system can be described by an autonomous set of Ordinary Differen- tial Equations (ODEs) [2–6]. Newton method and Lagrange’s equation are two basic tools to model such dynamical systems.
    [Show full text]
  • Technical Data Sheet RM
    TECHNICAL SPECIFICATIONS OF THE TOURBILLON RICHARD MILLE RM 053 PABLO MAC DONOUGH Limited edition of 15 pieces. CALIBER RM053: manual winding tourbillion movement tilted 30° with hours, minutes and seconds. Dimensions: 50 mm x 42.70 mm x 20.00 mm. MAIN FEATURES POWER RESERVE Circa 48 hours. BASEPLATE AND BRIDGES IN GRADE 5 TITANIUM The manufacturing of these components in grade 5 titanium gives the whole assembly a high degree of rigidity and achieves excellent surface flatness which is essential for ensuring that the gear train functions perfectly. The skeletonized baseplate and the bridges have been subjected to intensive and complete validation tests to optimize their resistance capacities. It is tilted 30° providing optimal conditions for users to check the time on their wrist. Both compact and lightweight, the RM053 movement is ultra-resistant to the centrifugal and centripetal forces generated during a match. FREE SPRUNG BALANCE WHEEL WITH VARIABLE INERTIA The free-sprung balance provides better reliability in the event of shocks, movement assembly and disassembly. It also guarantees better chronometric results over an extended period of time. There is no need for an index plate, allowing more precise and frequent adjustment using 4 setting screws. FAST ROTATING BARREL (6 hours per revolution instead of 7.5 hours) This type of barrel provides the following advantages: - The phenomenon of periodic internal mainspring adhesion is significantly diminished, thereby increasing performance, - Provision of an excellent mainspring delta curve with an ideal power reserve/performance/regularity ratio. BARREL PAWL WITH PROGRESSIVE RECOIL This device permits a profitable winding gain (circa 20 %), especially during the winding start.
    [Show full text]
  • Operating Principles, Common Questions, and Performance Data for an Atmospheric Driven Atmos Clock David Moline Clemson University
    Clemson University TigerPrints Publications Mechanical Engineering 1-2015 Operating Principles, Common Questions, and Performance Data for an Atmospheric Driven Atmos Clock David Moline Clemson University John Wagner Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/mecheng_pubs Part of the Mechanical Engineering Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Mechanical Engineering at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Atmos Article for NAWCC Bulletin Operating Principles, Common Questions, and Performance Data for an Atmospheric Driven Atmos Clock David Moline and John Wagner (Chapter 126 - Western Carolinas members) Abstract: The elegance of the Atmos clock and the curiosity of mankind in self-operational mechanical systems have propelled this time device into our collective desire for more knowledge. The search for a self-winding time piece, based on normal atmospheric fluctuations, was pursued for centuries by horologists with the well-known clock proposed by J. L. Reutter and commercialized by Jaeger LeCoultre. This clock has generated numerous discussions throughout the years as noted in past Bulletin articles and other correspondences within the time keeping community. In this paper, the operating principles of the Atmos clock will be reviewed using fundamental science and engineering principles. Next, key questions and experimental observations will be discussed in light of the operating concepts to clarify the clock’s performance. Finally, an extensive database will be introduced which was gathered through physical measurements and data recording of an Atmos 540 clock.
    [Show full text]
  • Gruen Watchmaking Lessons
    '.' .,~ THE GRUEN WATCH COMPANY ,.., ._. ' Tim§ Hill / . Cincinnati 6 Ohio .. _) 1 LESSON III Balance - Page 9 ( Part l - What is the Balance Wheel? The balance is the governing part or regulator of a watch. It was first used about 1600 and was merely a crude wheel of any kind of material. The complete · balance wheel assembly ,is composed of the balance wheel, balance staff, roller table and hairspring. The timekeeping possibilities of a watch depend upon the·balance. If its size and weight are not in the correct proportions to the motive force and the rest of the movement, no a_djustment can be made that can make it a good time­ piece. Therefore, the hairspring and all other parts are always secondary in importance to the balance wheel, There are two types of balance wheels, the cut bi-metallic and the solid rim or mono-metallic wheels. A brief description of each ldnd follows: The cut-rim bi-metallic balance is made of a steel center bar or arm, carry­ ing a circular rim cut into two sections, each of tho sections having one free end. and the other end attached to the center bar. Tho circular rim is constructed of ,j(i_'~--- brass·and steel fused together, The former metal, which is affected most by tempera­ tures, is placed on tho outer side of tho rim, Holes are drilled and tapped radial­ . ly through the rim to cal'ry tho balance screws, The purpose of the balance screws . is to provide a weight that may be shifted to make temperature adjustments, Tho number of holes exceeds the number of screws in the balance, as allowance must be 1.
    [Show full text]
  • Readingsample
    History of Mechanism and Machine Science 21 The Mechanics of Mechanical Watches and Clocks Bearbeitet von Ruxu Du, Longhan Xie 1. Auflage 2012. Buch. xi, 179 S. Hardcover ISBN 978 3 642 29307 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 456 g Weitere Fachgebiete > Technik > Technologien diverser Werkstoffe > Fertigungsverfahren der Präzisionsgeräte, Uhren Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 A Brief Review of the Mechanics of Watch and Clock According to literature, the first mechanical clock appeared in the middle of the fourteenth century. For more than 600 years, it had been worked on by many people, including Galileo, Hooke and Huygens. Needless to say, there have been many ingenious inventions that transcend time. Even with the dominance of the quartz watch today, the mechanical watch and clock still fascinates millions of people around the, world and its production continues to grow. It is estimated that the world annual production of the mechanical watch and clock is at least 10 billion USD per year and growing. Therefore, studying the mechanical watch and clock is not only of scientific value but also has an economic incentive. Never- theless, this book is not about the design and manufacturing of the mechanical watch and clock. Instead, it concerns only the mechanics of the mechanical watch and clock.
    [Show full text]
  • Huygens and the Advancement of Time Measurements
    Huygens and the Advancement of Time Measurements Kees Grimbergen1,2 1 Medical Physics, Academic Medical Centre, University of Amsterdam 2 Museum van het Nederlandse Uurwerk (MNU), Museum of the Dutch Clock, Zaandam, The Netherlands Academic Medical Center Titan: From Discovery to Encounter, Noordwijk 16 April, 2004 MNU Zaans Uurwerkenmuseum 1976 2001 Museum van het Nederlandse Uurwerk Museum van het Nederlandse Uurwerk • Collection of Dutch Clocks; Period 1500 - 1850 * Hague clocks * Longcase clocks * Wall clocks * Table clocks * Regional clocks (Zaan region, Brabant, Friesland) * Precision clocks Salomon Coster with ‘privilege’ Christiaan Huygens; Collection Museum van het Nederlandse Uurwerk, ca 1658 Christiaan Huygens 14 april 1629 - 8 juli 1695 P. Bourguignon ca 1688; coll KNAW Museum of the Dutch Clock Medical Physics Laboratory Henk van der Tweel 1915 - 1997 Mechanical Clocks (> 1300) 1200 . 1300 . 1400 . 1500 . 1600 . 1700 . 1800 . 1900 . 2000 . 2100 Foliot/Balance Wheel Pendulum/Balance spring Huygens 1656, 1675 Early Turret Clocks Maastricht 1400?; Winkel (N-H) ~1460 Early Mechanical Clocks Nürnberg ca 1450 Nederland ca 1520 (MNU) Museum of the Dutch Clock Exhibition Willem Barents and his Clock; 1596-1996 • Model from ca 1450 • Not touched since 1596 • Collection Rijksmuseum Mechanical Clocks; 1300 - 1656 Foliot/Vertical Verge-Escapement M = I ¶w/¶t = I ¶2f/¶t2 M I w M j Mechanical Clocks; 1300 - 1656 Foliot/Vertical Verge-Escapement T = 2 Ö2 fmax(I/M) M T I w M j Mechanical Clocks; 1300 - 1656 Foliot/Vertical Verge-Escapement
    [Show full text]