Invasive Shot‐Hole Borers (.Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Shot‐Hole Borers (.Pdf) Emerging Tree Pests Polyphagous and Kuroshio Shot‐Hole Borers/Fusarium Dieback Gold Spotted Oak Borer (GSOB) John Kabashima, UCCE Pshb.org Eskalenlab.ucr.edu GSOB.ORG or ucanr.edu/sites/gsobinfo Polyphagous Shot-Hole Borer (PSHB) Fusarium Dieback (FDB) 2003 localized infestation Nursery Avocado •Potential to transport Beetle misidentified •Economic Impact • PSHB/KSHB and Fusarium • Shipment Protocols A major threat Wait and See to Short Urban Landscape •Incubator Regulatory •Threat to Urban Forest •Pathways •Survey/Detection •Rapid Response •Pesticide Use •Water Runoff Natural/Riparian • Major threat to native trees •Important Alternate Host •Ecological Impact PSHB/FDB 2003 localized infestation to 2012 regional infestation 2012-PSHB Found On Avocado in La Habra Avocado Nursery •Potential to transport • PSHB/KSHB and Fusarium Lag Phenomena •Economic Impact A major threat • Shipment Protocols Urban Landscape •Incubator Regulatory •Threat to Urban Forest •Pathways •Survey/Detection •Rapid Response •Pesticide Use •Water Runoff Natural/Riparian • Major threat to native trees •Important Alternate Host •Ecological Impact PSHB/KSHB/FDB/ 2016 Widespread Epidemic Avocado • PSHB/KSHB & Fusarium Urban Landscape Nursery and Human A major threat •Incubator/Amplifier •Potential to transport •Threat to Urban Forest •Economic Impact • Shipment Protocols Natural/Riparian Regulatory • Major threat to native trees •Pathways • Tijuana River Wetlands •Survey/Detection •Important Alternate Host •Rapid Response •Ecological Impact •Pesticide Use •Endangered Species •Water Runoff •Fire Cal Fire, Fish and Wildlife, Board of Forestry, USDA Forest Service, Ca State Parks Public Agencies, NGOs, Land Managers, CDPR, Assembly Ag/Natural Resources, Audubon, University of California ANR, NRCS, RCDs, and… Kuroshio Shot‐Hole Borer/Fusarium Dieback Impact on Riparian Habitat in the The Tijuana River Valley 140,000 willow trees severely damaged Loss of ecological services such as endangered species habitat Fire and Flood Hazard The forest at Dairy Mart Bridge before the beetle attack (May 2015). The forest at Dairy Mart Bridge after the beetle attack (February 2016). Photos by John Bolund 1. Box elder (Acer negundo) * 2.Big leaf maple (Acer macrophyllium)* 3. Evergreen Maple (Acer paxii) Host Range FD/PSHB 4. Trident maple (Acer buergerianum) 5. Japanese maple (Acer palmatum) 6. Castor bean (Ricinus communis) 7. California sycamore (Platanus racemosa) * 8. Red willow (Salix laevigata) * 9. Avocado (Persea americana) 2012 2016 10. Mimosa (Albizia julibrissin) 11. English Oak (Quercus robur) 12. Coast live oak (Quercus agrifolia)* Tree Species Attacked by Beetle 286 303 13. London plane (Platanus x acerfolia) 14.Cottonwood (Populus fremontii)* 15. White Alder (Alnus rhambifolia)* Tree Species Infected by Fungus 117 138 16.Titoki (Alectryon excelsus) 17. Engelmann oak (Quercus engelmannii))* 18. Cork Oak (Quecus suber) 19. Valley oak (Quercus lobata) * Agricultural Crops 13 13 20. Coral tree (Erythrina corallodendon) 21. Blue palo verde (Cercidium aculeata) * 22. Palo verde (Parkinsonia aculeata) California Native Tree Species 11 18 23. Moreton Bay Chestnut (Castanospermum 24. Brea (Cercidium sonorae) 25. Mesquite (Prosopis articulata)* Number of Tree Families 62 64 26. Weeping willow (Salix babylonica) 27. Chinese holly (Ilex cornuta) 28. Camelia (Camellia semiserrata) Number of Reproductive Hosts 19 41 29. Acacia (Acacia spp.) 30. Liquidambar (Liquidambar styraciflua) 31. Red Flowering Gum (Eucalyptus ficifolia) 32. Japanese wisteria (Wisteria floribunda) 33.Black Cottonwood (Populus trichocarpa)* 34. Goodding’s black willow (Salix gooddingii) 35. Goodding's black willow (Salix gooddingii) Eskalen, A., Stouthamer, R., Lynch, S.C., Rugman‐Jones, P., Twizeyimana, M., 36. Tree of heaven (Alianthus altissima) Gonzalez, A., Thibault, T. 2013. Host Range of Fusarium Dieback and its 37. Kurrajong (Brachychiton populneus) Ambrosia Beetle (Coleoptera: Scolytinae) Vector in Southern California. Plant 38. Black mission fig (Ficus carica) Disease.In 97:7, 938‐951 39. Japanese beech (Fagus crenata) 40. Shiny Xylosma (Xylosma congestum) 41. Mule Fat (Baccharis salicifolia) Source: PSHB.ORG PSHB/KSHB/FDB 2016 We will need a strong coalition of local, state and federal public agencies, NGOs, land managers and the public to move forward Urban Landscape Nursery and Human •Incubator •Potential to transport •Threat to Urban and •Economic Impact Riparian Forest • Shipment Protocols Avocado • PSHB and Fusarium Regulatory A major threat •Pathways Natural/Riparian • Major threat to native trees •Survey/Detection •Important Alternate Host •Rapid Response •Ecological Impact •Pesticide Use •Endangered Species •Water Runoff •Fire Cal Fire, Fish and Wildlife, Board of Forestry, USDA Forest Service, Ca State Parks Public Agencies, NGOs, Land Managers, CDPR, Assembly Ag/Natural Resources, Audubon, University of California ANR, NRCS, RCDs, and… Past and Current Funding • California Avocado Commission (2010-2016) • USDA Forest Service, Forest Health Protection • Farm Bill • USDA APHIS Specialty Crops Grants • OC Parks • Ca. Assoc. of Nurseries and Garden Cntrs • Nursery Growers Assoc. • In Kind – Huntington Library, L. A. Arboretum, UCI West Coast Arborists, RPW Services, FMC,Syngenta, Mauget, Arbor Jet, Bayer, Target Specialty Products Funding is Needed For – Basic and Applied Research – Survey and Detection – DNA identification – Mitigation and Rapid Response – Integrated Pest Management Strategies – Outreach and Education – Reforestation Strategies – Coordinating Statewide, Regional and Local Groups Survey,Detection & Identification Group Applied Research & Outreach & Education Management Strategies Group Group Mitigation & Regional or Statewide Rapid Response Regulatory Group Coordinating Committee Group Reforestation Group Finance Group 13 Governor’s Emergency Proclamation Need to include trees that have been killed by GSOB and PSHB/KSHB/FDB Rome is Burning • We need to make a decision – Are trees important and if so, are we going to allocate funding to protect and maintain them. – To fund and improve current plant protection structure or create a new paradigm. • There needs to be – Greater communication and collaboration between agencies, land trusts, and NGOs that deal with trees at the national, state and local level. – Continued investment in training and educating the public, funding agencies, regulators and scientists about invasive pests..
Recommended publications
  • Xylosma Venosa N. E. Br. (Salicaceae), Espécie Nativa No Rio Grande Do Suv
    BALDUINIA. n. 29, p. 09-12, 15-VIl-2011 XYLOSMA VENOSA N. E. BR. (SALICACEAE), ESPÉCIE NATIVA NO RIO GRANDE DO SUV JOSÉ NEWTON CARDOSO MARCHIORF FABIANO DA SILVAALVES3 LEONARDO PAZ DEBLE4 RESUMO São fornecidas uma descrição e ilustração botânica de Xylosma venosa N. E. Br. (Salicaceae), com base em material coletado na orla da mata ciliar do rio Ibicuí, município de Alegrete, Rio Grande do Sul. Palavras-chave: Alegrete, Rio Grande do Sul, Salicaceae, Xylosma venosa. SUMMARY [Xylosma venosa N. E. Br. (Salicaceae): a native species in Rio Grande do Sul state, Brazil]. A botanical description and illustration of Xylosma venosa N. E. Br. (Salicaceae) are furnished, based on material collected at the border of Ibicui river's riparian forest, in the municipality of Alegrete, Rio Grande do Sul state, Brazil. Key words: Alegrete, Brazil, Rio Grande do Sul, Salicaceae, Xylosma venosa. INTRODUÇÃO Treinta y Tres e nos dois departamentos anteri- Nativa em quase todo o Paraguai, Xylosma ormente assinalados por Lombardo. venosa N. E. Br. distribui-se, ainda, pela Argen- No Brasil, Lorenzi (2009) refere sua ocor- tina, Uruguai, Bolívia e Brasil (Bernardi, 1984). rência de Mato Grosso do Sul, Goiás, Minas Na Argentina, a espécie habita a orla de ma- Gerais e São Paulo, até o Rio Grande do Sul. tas e costas de rios, tanto na Mesopotâmia5 como Para o estado do Paraná, consta na literatura pelo nas províncias de Santa Fé, Chaco e Formosa menos uma coleta6, de acordo com Sleumer (Diehl, 2005). (1980). A espécie não é citada na Flora de San- Para o Uruguai, Lombardo (1964) indica sua ta Catarina (Klein & Sleumer, 1984) e ela tam- ocorrência nos departamentos de Cerro Largo e bém não foi incluída, por Sobral et aI.
    [Show full text]
  • Xylosma Crenatum
    Plants Xylosma crenatum SPECIES STATUS: Federally Listed as Endangered IUCN Red List Ranking – CR C2a, D J. Price © Smithsonian Inst., 2005 Genetic Safety Net Species Hawai‘i Natural Heritage Ranking ‐ Critically Endangered (G1) Endemism – Kaua‘i Critical Habitat ‐ Designated SPECIES INFORMATION: Xylosma crenatum is a dioecious tree which grows up to 50 feet tall. It was first collected in 1917 but remained undiscovered for decades due to a misidentification. Over 50 years later, a second collection was made in 1968 along the banks of Mohihi Stream at the edge of Alaka‘i Swamp, Kaua‘i. It was later recognized as a distinct species in 1972. DISTRIBUTION: Northwest Kaua‘i. ABUNDANCE: Currently, it is known only from the island of Kaua‘i in four different populations consisting of a total of 13 individuals. Two of these populations have only a single plant. LOCATION AND CONDITION OF KEY HABITAT: Diverse koa‐‘ōhi‘a montane mesic forest at an elevation of 975‐1,065 meters. This species is found on State land, sometimes along stream banks. The habitat is threatened by invasion of alien plants and damage from feral pigs. THREATS: Habitat degradation by feral pigs; Fruit predation by rats; Competition from alien plant species; Stochastic extinction; Reduced reproductive vigor due to the small number of remaining individuals. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish new populations to reduce the risk of extinction. In addition to common statewide and island conservation actions, specific actions include: Survey historical range for surviving populations; Establish secure ex‐situ stocks with complete representation of remaining individuals; Augment wild population and establish new populations in safe harbors.
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • 118–121. 2007. 4. FLACOURTIA Commerson Ex L'h閞itier, Stirp. Nov
    Flora of China 13: 118–121. 2007. 4. FLACOURTIA Commerson ex L’Héritier, Stirp. Nov. 3: 59. 1786. 刺篱木属 ci li mu shu Stigmarota Loureiro. Trees or shrubs, dioecious or hermaphroditic, rarely polygamous, usually spiny. Leaves alternate, petiolate; stipules small, early caducous; leaf blade pinnate-veined, sometimes 3–5-veined from base, margin glandular-toothed, rarely entire. Inflorescences axil- lary, or terminal on abbreviated lateral twigs, usually short, lax, racemose, or in form of small paniculate or umbel-like clusters. Flowers hypogynous, unisexual or bisexual, small; pedicels articulate. Sepals 4–7, imbricate, slightly connate at base, green, small. Petals absent. Disk fleshy, entire or comprised of distinct glands. Staminate flowers: stamens many, exserted, filaments free, filiform; anthers ellipsoid, small, versatile, longitudinally dehiscent, connective not projected beyond thecae; disk extrastaminal; abortive ovary much reduced or absent. Pistillate flowers: disk surrounding base of ovary; ovary superior, globose, ovoid, or bottle-shaped, incompletely 2–8-loculed by false septa; placentas 2-ovuled; styles isomerous with placentas, free or united, columnar; stigmas slightly dilated, flattened, reniform, recurved; staminodes usually absent. Fruit a berrylike indehiscent drupe with pyrenes 2 × as many as styles, globose, in dried material characteristically longitudinally angled, squarish or rectangular in longitudinal cross- section, with flattish apex and base, contracted or not at equator, disk persistent at base, style or stigma remnants persistent at apex. Seeds ellipsoid, compressed. Between 15 and 17 species: tropical Africa and Asia; five species (one endemic) in China. In Chinese species: plants usually dioecious; stamens (10–)15–30(–50), number apparently variable within each species. Flacourtia species are often cultivated and harvested for fruit, medicinal use, or wood.
    [Show full text]
  • The Chaparral Vegetation in Mexico Under Nonmediterranean Climate: the Convergence and Madrean-Tethyan Hypotheses Reconsidered1
    American Journal of Botany 85(10): 1398±1408. 1998. THE CHAPARRAL VEGETATION IN MEXICO UNDER NONMEDITERRANEAN CLIMATE: THE CONVERGENCE AND MADREAN-TETHYAN HYPOTHESES RECONSIDERED1 ALFONSO VALIENTE-BANUET,2,4 NOEÂ FLORES-HERNAÂ NDEZ,2 MIGUEL VERDUÂ ,3 AND PATRICIA DAÂ VILA3 2Instituto de EcologõÂa, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 70±275, UNAM, 04510 MeÂxico, D.F.; and 3UBIPRO, ENEP-Iztacala, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 314, MeÂxico, 54090, Tlalnepantla, MeÂxico A comparative study between an unburned evergreen sclerophyllous vegetation located in south-central Mexico under a wet-summer climate, with mediterranean regions was conducted in order to re-analyze vegetation and plant characters claimed to converge under mediterranean climates. The comparison considered ¯oristic composition, plant-community struc- ture, and plant characters as adaptations to mediterranean climates and analyzed them by means of a correspondence analysis, considering a tropical spiny shrubland as the external group. We made a species register of the number of species that resprouted after a ®re occurred in 1995 and a distribution map of the evergreen sclerophyllous vegetation in Mexico (mexical) under nonmediterranean climates. The TehuacaÂn mexical does not differ from the evergreen sclerophyllous areas of Chile, California, Australia, and the Mediterranean Basin, according to a correspondence analysis, which ordinated the TehuacaÂn mexical closer to the mediter- ranean areas than to the external group. All the vegetation and ¯oristic characteristics of the mexical, as well as its distribution along the rain-shadowed mountain parts of Mexico, support its origin in the Madrean-Tethyan hypothesis of Axelrod. Therefore, these results allow to expand the convergence paradigm of the chaparral under an integrative view, in which a general trend to aridity might explain ¯oristic and adaptive patterns detected in these environments.
    [Show full text]
  • Elemental Levels and Relationships in the Flacourtiaceae of New Caledonia and Their Significance for the Evaluation of the Serpe
    Plant and Soil 87,281-291 (1985). Ms. 6152 O 1985 Martinus Nglioff Publishers, Dordrecht. Printed in tlie Netherlands. Elemental levels and relationships in the Flacourtiaceae of New Caledonia and their significance for the evaluation of the ‘serpentine problem’ X. H. YANG, Lanzhou Institute of Geology, Lanzhou, China R. R. BROOKS*, Dep$tnzent of Chemistry, Biochemistry and Biophysics, Massey University, Palmerston North, New Zealand T.JAFFRE Centre ORSTOM, B.P. A5, Noumia, New Caledonia P and J. LEE . Applied Biochemistry Division DSIR, Palmerston North, New Zealand Received 31 October 1984. Revised February 1985 Key words Casearia Flacourtiaceae Homalium Lasiochlamys Reduced nutrient uptake Serpentine plants Xylosma Summq Sixteen elements were determined in 156 specimens of 47 species of New Caledonian Flacourtiaceae including the genera Casearia, Homalium, Lasiochlamys and Xylosma. The data were used to study interelemental relationships, particularly those involving nutrient elements, magnesium and phytotoxic elements such as chromium, cobalt and nickel. Phytotoxic chro- mium was not accumulated to any marked degree by any taxon. Cobalt was inversely corre- lated with boron and sodium, and nickel with both nutrients as well as manganese’. The data seemed to indicate the overriding controlling factor of reduced nutrient uptake caused by elements present in high concentrations in serpentinic substrates. It would seem that this reduced uptake is a major factor in the ‘serpentine problem’, at least as far as the Flacourtiaceae and the New Caledonian environment is concerned. By contrast, the toxic effects of elements such as nickel, cobalt and chromium seems less important, Introduction The ‘serpentine problem’ has attracted a great deal of scientific attention during the past 50 years.
    [Show full text]
  • A New Miocene Malpighialean Tree from Panama
    Rodriguez-ReyesIAWA Journal et al. – New38 (4), Miocene 2017: malpighialean437–455 wood 437 Panascleroticoxylon crystallosa gen. et sp. nov.: a new Miocene malpighialean tree from Panama Oris Rodriguez-Reyes1, 2, Peter Gasson3, Carolyn Thornton4, Howard J. Falcon-Lang5, and Nathan A. Jud6 1Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón Republic of Panamá 2Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 000 17, Panamá 0824, Panamá 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom 4Florissant Fossil Beds National Monument, P.O. Box 185, 15807 Teller County Road 1, Florissant, CO 80816, U.S.A. 5Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 6L.H. Bailey Hortorium, Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, U.S.A. *Corresponding author; e-mail: [email protected] ABSTRACT We report fossil wood specimens from two Miocene sites in Panama, Central America: Hodges Hill (Cucaracha Formation; Burdigalian, c.19 Ma) and Lago Alajuela (Alajuela Formation; Tortonian, c.10 Ma), where material is preserved as calcic and silicic permineralizations, respectively. The fossils show an unusual combination of features: diffuse porous vessel arrangement, simple perforation plates, alternate intervessel pitting, vessel–ray parenchyma pits either with much reduced borders or similar to the intervessel pits, abundant sclerotic tyloses, rays markedly heterocellular with long uniseriate tails, and rare to absent axial parenchyma. This combination of features allows assignment of the fossils to Malpighiales, and we note similarities with four predominantly tropical families: Salicaceae, Achariaceae, and especially, Phyllanthaceae, and Euphorbiaceae.
    [Show full text]
  • Flowering Plants of Samoa
    FLOWERING PLANTS OF SAMOA BY ERLING CHRISTOPHERSEN HONOLULU, HAWAII PUBLISHEDBY THE MUSEUM February 21, 1935 KRAUS REPRINT CO. New York 1971 CONTENTS PAGS Introduction ...................................................................................................................................... 3 Mono~otyledon~ae.......................................................................................................................... 6 Family 1. Pandanaceae ........................................................................................................ 6 Family 2. Hydrocharitaceae 6 Family 3. Gramineae ............................................................................................................ 6 Family 4. Cyperageae .......................................................................................................... 15 Family 5. Palmae .................................................................................................................. 25 Family 6- Araceae ................................................................................................................ 39 Family 7. Lemnaceae ............................................................................................................ 44 Family 8. Flagellariaceae 44 Family g. Bromeliaceae ...................................................................................................... 47 Family lo. Commelinaceae .................................................................................................. 48 . Family
    [Show full text]
  • Flora of Kwangtung and Hongkong (China) Being an Account of The
    ASIA Oldtnell Htttneraity ffitbrarg CHARLES WILLIAM WASON COLLECTION CHINA AND THE CHINESE THE GIFT OF CHARLES WILLIAM WASON CLASS OF 1876 1918 CORNELL UNIVERSITY LIBRARY 3 1924 073 202 933 The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924073202933 P.EW Bulletin, Add. Series X 762, 1-30 bSI^11/ 73. SOD-IOJI- To -filce. page- 1 . J [All Bights Reserved.] EOYAL BOTMIC GARDENS, KEW. BULLETIN OF MISCELLANEOUS INEOEIATIOK ADDITIONAL SERIES X. ELORA OE KWAiaTUia AO H0I&K0I6- (OHIIA) BEING AN ACCOUNT OP THE FLOWERING PLA.NTS, FERNS AND FERN ALLIES TOGETHER WITH KEYS FOR THEIR DETERMINATION PRECEDED BY A MAP AND INTRODTJCTrON, BY STEPHEN TROYTE DUNN, B.A., F.L.S., sometime Superintendent of the Botanical and Forestry Department, Hongkong ; AND WILLIAM JAMES TUTCHER, F.L.S., Superintendent of the Botanical and Forestry Department, Hongkong. LONDON: PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE. To be purchased, either directly or through any Bookseller, from WjifMAN AND SONS, Ltd., Feitbr Lane, E.G.; or OLIVER AND BOYD, Tweeddale Court, Edinburgh; or E. PONSONBY, Ltd., 116, Graeton Street, Dublin. printed by DARLING AND SON, Ltd., Bacon Street, E. 1912. Price is. 6d. G: PREFACE. The first and, up till now, the only work by which plants from any part of the Celestial Empire could be identified was Bentham's Flora Hongkongensis published in 1861. This Flora dealt only with the small island of Hongkong on the S.E.
    [Show full text]
  • Multilayered Structure of Tension Wood Cell Walls in Salicaceae Sensu Lato
    Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance Barbara Ghislain, Eric-André Nicolini, Raïssa Romain, Julien Ruelle, Arata Yoshinaga, Mac H. Alford, Bruno Clair To cite this version: Barbara Ghislain, Eric-André Nicolini, Raïssa Romain, Julien Ruelle, Arata Yoshinaga, et al.. Mul- tilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance. Botanical Journal of the Linnean Society, Linnean Society of London, 2016, 182 (4), pp.744-756. 10.1111/boj.12471. hal-01392845 HAL Id: hal-01392845 https://hal.archives-ouvertes.fr/hal-01392845 Submitted on 4 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance Barbara Ghislain1*, Eric-André Nicolini2, Raïssa Romain1, Julien Ruelle3, Arata Yoshinaga4, Mac H. Alford5, Bruno Clair1 1 CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97310 Kourou, France 2 CIRAD, AMAP, botAnique et bioinforMatique de l’Architecture des Plantes, Campus Agronomique BP 701, 97387 Kourou, French Guiana, France 3 INRA, Laboratoire d’Etude des Ressources Forêt-Bois (LERFoB), 54280 Champenoux, Nancy, France 4 Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Sakyo- ku, Kyoto 606-8502, Japan 5 Department of Biological Sciences, University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, Mississippi 39406, U.S.A.
    [Show full text]
  • Small Trees for Miami-Dade Landscapes
    Small Trees for Miami-Dade Landscapes John McLaughlin, Carlos Balerdi and Marguerite Beckford1 The current trend toward smaller yards (e.g., zero lot lines) signifies the need for adjustments in the way we use and landscape our yards. For nonpermanent items such as flowering annuals and vegetables this could mean greater use of raised beds (e.g., French intensive or square foot for vegetables), containers and decorative stone planters. The latter are especially useful for many perennial plants. W hen it comes to choosing shrubs and especially trees, greater care needs to be exercised in the items selected and where they are placed. W hat seemed to be an ideal choice in the nursery may quickly grow and become out of scale for a small yard, if not an expensive liability. One solution is to choose those shrubs and small trees (including fruit trees) that can be grown in large tubs, and this is an option especially suited to houses with large patios. Indeed given the alkaline nature of much of Miami-Dade’s soil, this is a useful alternative for plants such as camellias and dwarf magnolias (e.g., ‘Little Gem’) irrespective of yard size. It is possible however, to include trees as part of your permanent in-ground landscaping even where there is limited space for planting. There are many different types of trees that can be safely planted in a small yard and provide shade and/or ornamental appeal. In addition a number of shrubs, such as hibiscus and oleander, are available as standards (usually grafted and grown with a single approximately 5’ bare trunk), and these can substitute for a small tree.
    [Show full text]
  • The Flora of the Pitcairn Islands: a Review I J
    BiologicalJoumal of the Linnean Society (1995), 56: 79-1 19. With I figure ïP & b@@'fie Pitcairn Islands: biogeography, ecology and prehistory /Edited by T. G. Benton and T. Spencer The flora of the Pitcairn Islands: a review I J. FLORENCE I Centre ORSTOM de Tahiti, BP 529, Papeete, Tahiti, Polynhsie Française S. WALDREN Trinity College Botanic Garden, Palmerston Park, Dartry, Dublin 6, Ireland A. J. CHEPSTOW-LUSTY Defiartment of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA The vascular plant flora of the Pitcairn Islands, south-central Pacific Ocean, is described based on extensive new collections made in 1991 and previously published records. Two vascular plants occur on Ducie Atoll; one (Pemphb acidula) is a new record. Sixty-three native vascular plants occur on Henderson, of which nine are endemic; Canavalia rosea, Operculina turpethum, Psilotum nudum and Solanum americanum are new records for the island. Oeno Atoll has 16 native vascular plants; the single endemic (Bidens hendersonensb var. oenoensis) was not found in 1991 despite careful searches. Triumjëtta procumbens was new for Oeno. Sixty-six native vascular plants have now been recofded from Pitcairn Island, there are two endemic fems and seven endemic angiosperms in this number. A number of non-native taxa were new to Pitcairn. Some of the previously described taxa could not be found on Pitcaim, probably because they are very rare and only a small amount of time was spent collecting on Pitcaim. Many of the Pitcairn taxa are threatened by the spread of introduced species, especially Syzygium jumbos. O 1995 The Linnean Society of London ADDITIONAL KEY WORDS:-Pitcaim - Henderson - Oeno - Ducie - flora - island biogeography - South Pacific - South East Polynesia CONTENTS Introduction ..................
    [Show full text]