Fundamentals of the Application of Matrix-Assisted Laser Desorption

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals of the Application of Matrix-Assisted Laser Desorption SHORT COMMUNICATION Fundamentals of the Application of Matrix­ Assisted Laser Desorption-Ionization Mass Spectrometry to Low Mass Polyfmethylmethacrylate) Polymers Barbara S. Larsen, William J. Simonsick, [r., and Charles N. McEwen E. I. du Pont de Nemours & Company, Wilmington, Delaware, USA Matrix-assisted laser desorption-ionization (MALOI) time of flight is shown to give a molar peak area response for isolated methylmethacrylate oligomers .that have 25 and ~O repeat units when run on three different instruments in reflectron or linear mode and usmg three different matrix materials. In addition, fragmentation was not observed in any of the three different matrices or at higher laser power. No spectral differences were observed for syndiotactic and isotactic methylmethacrylate olig.om.ers..These results suggest that the low most probable peak values observed for narrow distribution pol~m7th.yl~ethacrylate)stan­ dards by MALOI mass spectrometry are not the result of mass discrimination or fragmenta­ tion. (J Am Soc Mass Spectrom 1996, 7, 287-292) through mass spectrometric analysis are repeat unit mass, end group mass, cyclic structure determination, ass spectrometry is a viable technique for number average (Mn ) and weight average (Mw) analysis of synthetic polymers and has been molecular weights, polydispersity (D), random versus M used extensively for the analysis of additives, block copolymers, composition of blends, branching, impurities, and pyrolysis products [1-3]. Recent ad­ and tacticity. Accurate determination of some of these vances in ionization methods have made it possible to values requires that molecular ions of each oligomer characterize intact polymers by mass spectrometry. species be produced during ionization without frag­ These methods include field desorption (FO) [4, 5], mentation and that the ionization, instrument trans­ fast-atom bombardment (FAB) [6], secondary-ion mass mission, and detection efficiencies be known as a func­ spectrometry (SIMS)[7, 8], laser desorption (LO) [9-11], tion of mass and preferably not altered as a function of [~2, potassium ionization of desorbed species (KIOS) stereochemistry or reasonable changes in chemical 13], electrospray ionization (ESI) [14, 15], and matrix­ composition. assisted laser desorption-ionization (MALOI) [16]. In The MALDI technique has been shown to produce particular, the introduction of MALDI and ESI ioniza­ ions from several types of synthetic polymers. The tion techniques has dramatically increased the mass accuracy of the molecular weight distributions ob­ range for molecular weight analyses by mass spec­ tained by this technique previously have been assessed trometry. MALDI recently was shown to be applicable by comparison to other polymer characterization meth­ to ionization of starburst dendrimers that have molec­ ods such as SEC, light scattering, and so forth [17-21]. ular weights above 1,000,000 (P. Savickas, private com­ Montaudo et a1. [19] observed that Mp (most probable munication). Electrospray has produced ions from peak) values were consistently low for methyl­ polyethylene glycols that have molecular weights to methacrylate (MMA) polymers as measured by MALDI 5,000,000 [14]. in comparison to SEC Mp values. Burger et al. [18] Mass spectrometry has the potential to characterize used partially isolated oligomers of poly(R)-3-hy­ polymers and oligomers with greater accuracy and droxybutanoate to determine that MALOI discrimi­ precision for molecular weight and end group determi­ nates against low molecular weight 0540-u) oligomers nation than methods such as size exclusion chromatog­ for these polymers, but that for molecular weights raphy (SEC), laser light scattering, vapor phase os­ between 2900 and 8400 the response is molar. They mometry, or nuclear magnetic resonance spectroscopy. were able to calculate an ionization response factor for Polymer characteristics that are potentially available the low mass discrimination. Lehrle and Sarson [20] observed that MALOI gives low molecular weight values relative to SEC for a narrow polydispersity Address reprint requests to Dr. Barbara Larsen, The DuPont Com­ pany, r.o. Box 80228, Wilmington. DE 19880-0228. poly(methylmethacrylate) (PMMA) standard. These © 1996 American Society for Mass Speclrometry Received October 24,1995 1044-0305/96/$15.00 Revised December 11, 1995 SSDI 1044-0305(95)00706-7 Accepted December 14, 1995 288 LARSEN ET AL. JAm Soe Mass Speetrom 1996,7,287-292 authors suggested that laser-induced fragmentation or concentration of 5-mg matrix per milliliter of solvent. preferential desorption of low mass oligomers could The sample and matrix were mixed and .... 0.5 /-LL account for the low MALOI values. were spotted under ambient conditions on the stainless Here we report on the utility of MALOI as a means steel target. to characterize low molecular weight methacrylate polymers. Isolated syndiotactic and isotactic Results and Discussion poly(methylmethacrylate) oligomers that contain 25 and 50 repeat units were used to assess propensity for Figure 1 is the MALOI mass spectrum of a molecular MMA oligomers to fragment under MALDI conditions weight standard PMMA with Mp = 5270 (SEC). Table and to determine if observed ion currents are indepen­ 1 shows the comparison of Mp' M n , Mw, and 0 dent of oligomer mass. We previously reported that if values measured by MALDI and those supplied by the peak area compression is taken into account in peak manufacturer (SEC). With the exception of polydisper­ area calculation, the response by ESI mass spectrome­ sity (D), all molecular weight values measured by try for these PMMA oligomers is molar and fragmen­ MALOI are low in comparison to the SEC values. tation is not observed [15]. It is not apparent that a PMMA standards (MW < 50,000) have been shown to molar response will be obtained for oligomers in result in MALOI spectra that are lower in mass than MALDI because a molar response usually is not ob­ expected in comparison to the manufacturers' values served for peptide or protein mixtures [22]. of Mp [19]. Even after correction for the expected differences in the Mp values measured by SEC and Experimental MALOI, the MALOI values are lower than expected. The number assigned to the most probable peak (Mp) Mass spectra were obtained on the following time-of­ in a polymer distribution is dependent on how the flight (TOF) mass spectrometers: a Fisons TOFSpec data are plotted [25]. Low Mw values by mass spec­ (Manchester, England), a Finnigan VISION-MAT 2000 trometry may be the result of fragmentation, or mass (Brernen, Germany), and a Bruker Reflex (Bremen, discrimination in the ionization, transmission, or detec­ Germany). Data were obtained in both the linear and tion of ions, or possibly a matrix effect. reflectron modes on the Vision 2000 and the Bruker Reflex instruments. The deflector ion impact energy Fragmentation of Methylmethacrylate Oligomers (the combined source acceleration voltage and detector postaccelerating voltage) was either 25 or 30 kV, unless MALDI mass spectra of peptides and small proteins otherwise noted. The Vision 2000 was used for those generally show no significant fragment ions under experiments in which 6-kV ion impact voltage was MALDI-TOF conditions. Therefore, fragmentation of indicated by operating in the reflectron mode with MMA oligomers was not expected and is not observed 1-kV postacceleration. Nitrogen lasers (337 nm) were in the MALDI-TOF spectra of polymer distributions. used with beam attenuation set to be near ion appear­ However, fragmentation in which monomer (repeat) ance threshold. units are lost would not be observed in a spectrum of a PMMA samples were obtained from Polymer Labo­ distribution of oligomers because the fragment ions ratories (Church Stretton, UK). The individual MMA and molecular ions would overlap. oligomers were supplied by Professor K. Hatada (Osaka University, Japan). The samples were isolated from isotactic and syndiotactic MMA oligomers by CH CH using preparative supercritical fluid chromatography II3 3 [23,24]. The amounts of each oligomer collected ranged CH -C-CH-C from 0.1 to 0.7 mg. Equimolar solutions were obtained 2 I 2 I from weighed quantities of each isolated oligomer. C=O C=O Matrix materials, trans-3-indole acrylic acid (IAA; ICN II Biochemicals, Cleveland, OH), 2,5-dihydroxybenzoic OCH 3 OCH3 IJ acid (OHB; Sigma, St. Louis, MO), and [2-(4-hydroxy­ (it) phenylazol-benzoic acid] (HABA; Aldrich, Milwaukee, WI) were used as received from the manufacturer without purification. The PMMA samples were run by OCH 3 using IAA. The individual MMA oligomers were run I CH 3 C=O in IAA, OHB, and HABA. II Samples were prepared by dissolving the PMMA or CH -C-CH-C 2 I 2 I MMA oligomer samples in either chloroform or ace­ C=O CH tone to make a solution concentration of - 20 pm/J.LL. I 3 Two microliters of the polymer solutions were mixed OCH3 with 8 J.LL of the matrix solution. The matrix solution IJ was prepared in either chloroform or acetone at a (st) JAm Soc Mass Spectrom 1996, 7, 287-292 2200,---------------- --. 2150 2100 2050 2000 1950 IMIl J.I Jll. v ......" 3000 4000 5000 6000 Figure 1. MALDI-TOF mass spectrum of PMMA 5270 that used indole acrylic acid OAA) as the matrix and laser irradiation at 337 nm acquired in the reflectron mode. Table 1. A comparison of MALDl and SEC molecular weight values for PMMA 5270 Ion Current Detection as a Function of Oligomer MALO I SEC Mass 4600 5270 Weighed quantities of the isolated isotactic and syn­ 4625 4977 diotactic MMA 25-mers and 50-mers each were dis­ 4890 5256 solved in chloroform to make known molar solutions. 1.06 1.06 Equimolar (±5%) chloroform solutions of the 25-mers and 50-mers were prepared and premixed with three different matrix solutions. MALDI mass spectra of MALOI mass spectra of isolated isotactic and syn­ these solutions were obtained on three different diotactic MMA oligomers with 25 and 50 repeat units MALDI-TOF instruments to determine the molar re­ were obtained with three different matrix materials.
Recommended publications
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • Electrification Ionization: Fundamentals and Applications
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 11-12-2019 Electrification Ionization: undamentalsF and Applications Bijay Kumar Banstola Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Analytical Chemistry Commons Recommended Citation Banstola, Bijay Kumar, "Electrification Ionization: undamentalsF and Applications" (2019). LSU Doctoral Dissertations. 5103. https://digitalcommons.lsu.edu/gradschool_dissertations/5103 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ELECTRIFICATION IONIZATION: FUNDAMENTALS AND APPLICATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Bijay Kumar Banstola B. Sc., Northwestern State University of Louisiana, 2011 December 2019 This dissertation is dedicated to my parents: Tikaram and Shova Banstola my wife: Laxmi Kandel ii ACKNOWLEDGEMENTS I thank my advisor Professor Kermit K. Murray, for his continuous support and guidance throughout my Ph.D. program. Without his unwavering guidance and continuous help and encouragement, I could not have completed this program. I am also thankful to my committee members, Professor Isiah M. Warner, Professor Kenneth Lopata, and Professor Shengli Chen. I thank Dr. Fabrizio Donnarumma for his assistance and valuable insights to overcome the hurdles throughout my program. I appreciate Miss Connie David and Dr.
    [Show full text]
  • Liquid Injection Field Desorption/Ionization-Mass
    Liquid Injection Field Desorption/Ionization- Mass Spectrometry of Ionic Liquids Jürgen H. Gross Institute of Organic Chemistry, University of Heidelberg, Heidelberg, Germany ϩ Ten ionic liquids based on four types of organic cations, C (imidazolium, pyrrolidinium, pyridinium, and phosphonium), combined with various types of anions, AϪ, were analyzed by liquid injection field desorption/ionization- (LIFDI) mass spectrometry. For the purpose of LIFDI analysis the ionic liquids were dissolved in methanol, acetonitrile or tetrahydrofuran at Ϫ concentrationsof0.01–0.1 ␮lmL 1. The measurements were performed on a double-focusing magnetic sector instrument. In all ionic liquid LIFDI spectra, the intact cation of the compound ϩ yielded the base peak accompanied by cluster ions of the general formula [C A] and ϩ 2 occasionally [C3A2] . Tandem mass spectrometry and reconstructed ion chromatograms were employed to reveal the identity of the observed ions. Although limited to positive-ion mode, LIFDI also provided analytical information on the anions due to cluster ion formation. Depending on actual emitter condition and ionic liquid the limit of detection in survey scans was determined to 5–50 pg of ionic liquid. (J Am Soc Mass Spectrom 2007, 18, 2254–2262) © 2007 American Society for Mass Spectrometry onic liquids (ILs)have recently received widespread FD employs strong electric fields in the order of 1010 Ϫ Ϫ interest among many areas of chemical research as Vm 1 (1VÅ 1) to effect the ionization of atoms and Ithey act as highly polar thermally stable solvents in molecules [11, 12, 31]. The necessary field strength is chemical synthesis [1–3]. Consequently, there is a need normally achieved by setting whisker-bearing wires— for the development of methods for their analysis, be it so-called activated emitters [32–34]—to high electric for the sake of checking their purity, to verify their potential of typically 10–12 kV opposed to a counter absence in products from processes where ILs are electrode at ϳ2 mm distance.
    [Show full text]
  • FD) and Liquid Injection Field Desorption Ionization (LIFDI
    Soft ionization by Field Ionization (FI), Field desorption (FD) and Liquid Injection Field Desorption Ionization (LIFDI) H. Bernhard Linden Linden CMS GmbH [email protected] www.LIFDI.com 1 LINDEN CMS GmbH, 2012 Soft ionization by FI, FD and LIFDI Introduction by mouth watering soft ionization spectra 1. General and theoretical overview 2. Various instruments – identical technique 3. Automated LIFDI 4. Improved FI intensity 5. LIFDI on FT-ICR instruments 6. LIFDI of air/moisture sensitive metal complexes 7. Orbitrap with ESI-LIFDI combination 2 LINDEN CMS GmbH, 2012 FI and FD are known for soft ionization of non-polar compounds, LIFDI outperforms other MS techniques for characterization of organometallics due to its softness and convenient handling order of soft ionization References Liquid injection field desorption/ionization of transition decomposition decreases : ESI > LIFDI metal fluoride complexes Trevor A. Dransfield, Ruqia Nazir, Robin N. Perutz and “LIFDI ... gave the molecular ion peaks [M]+ as base peaks (100%) ... Adrian C. Whitwood With ESI, the compounds showed decomposition.” J. Fluorine Chem. 131, 2010, 1213-1217 loss of CO decreases : MALDI > FAB > FD *) Analysis of ruthenium carbonyl–porphyrin complexes: a comparison of matrix-assisted laser desorption/ionisation “ruthenium carbonyl complexes exhibited time-of-flight, fast-atom bombardment and field desorption abundant carbon monoxide (CO) loss in MALDI-TOF-MS and still a mass spectrometry, measurable CO loss in FAB-MS. Only FD-MS yielded the molecular ion M. Frauenkron, A. Berkessel and J. H. Gross as the base peak of the spectra in all cases.” Eur. J. Mass Spectrom. 1997, 3, 427 - 438 “fragmentation decreases Comparison of electrospray mass spectrometry with other soft ionization techniques for the characterization of cationic along the series FAB > ESI > FD “ *) π-hydrocarbon organometallic complexes , L.
    [Show full text]
  • The MALDI Process and Method 1
    1 1 The MALDI Process and Method Franz Hillenkamp , Thorsten W. Jaskolla , and Michael Karas 1.1 Introduction Matrix-assisted laser desorption/ionization ( MALDI ) is one of the two “soft” ioni- zation techniques besides electrospray ionization ( ESI ) which allow for the sensi- tive detection of large, nonvolatile and labile molecules by mass spectrometry. Over the past 27 years, MALDI has developed into an indispensable tool in analyti- cal chemistry, and in analytical biochemistry in particular. In this chapter, the reader will be introduced to the technology as it stands now, and some of the underlying physical and chemical mechanisms as far as they have been investi- gated and clarifi ed to date will be discussed. Attention will also be focused on the central issues of MALDI, that are necessary for the user to understand for the effi cient application of this technique. As an in-depth discussion of these topics is beyond the scope of this chapter, the reader is referred to recent reviews [1–4] . Details of the current state of instrumentation, including lasers and their coupling to mass spectrometers, will be presented in Chapter 2 . As with most new technologies, MALDI came as rather a surprise even to the experts in the fi eld on the one hand, but also evolved from a diversity of prior art and knowledge on the other hand. The original notion had been that (bio)mole- cules with masses in excess of about 500–1000 Da could not be isolated out of their natural (e.g., aqueous) environment, and even less be charged for an analysis in the vacuum of a mass spectrometer without excessive and unspecifi c fragmenta- tion.
    [Show full text]
  • Atmospheric Pressure Chemical Ionization (APCI): Less Polar
    LC-MS Based Metabolomics AnalysingAnalysing thethe METABOLOMEMETABOLOME 1.1. MetaboliteMetabolite ExtractionExtraction 2.2. MetaboliteMetabolite detectiondetection (with(with oror withoutwithout separation)separation) 3.3. DataData analysisanalysis MetaboliteMetabolite DetectionDetection GC-MS: Naturally volatile or made volatile (any organic- flavors, sugars, lipids, acids) NMR – any compound containing hydrogen HP Liquid - Chromatography + detector Comon detectors- - UV-detector (phenolics) - MASS SPECTROMETER (MS) as detector (LC-MS) MetaboliteMetabolite DetectionDetection MASS SPECTROMETER (MS) as detector (LC-MS): Compounds that are not well characterized by other methods: Non volatile High molecular weight Too sensitive to heat to be analyzed by GC Your Result Sample LC/MS Sample Sample Efficient Separation Preparation Introduction Gradient (column) Data (computer) LC- MS Ions Ions Ionization UV Detection Separation MS Interface Spectra Today ComponentsComponents inin LCLC--MSMS Ion Ion Formation Sorting PeptiPeptiddee && ProteinProtein SeqSequuenciencinngg Compound ID APcI Analyzer Software LC Structure Elucidation ESI & Detector Quantitation Interface: Chemical Triple Quadrupole Atmospheric Results Separation Quadrupole -Time Of Flight Pressure Quadrupole - Ion-Trap Ionization FT-MS MassMass SpectrometerSpectrometer 1. Breaks up constituents into molecular ions and other fragments 2. The ions then pass through an electric and/or magnetic field that separates them according to their mass-to-charge ratio (m/z) 3. Measures masses MassMass SpectrometerSpectrometer 4. Universal detection method * compared to UV/VIS (PDA), fluorescence etc. * more specific than NMR 5. More sensitive for most compounds 6. Structural information on metabolite * fragmentation pattern * accurate mass 7. For both LC and GC TechnologyTechnology ofof LCLC--MSMS andand LCLC--MSMS--MSMS –– InterfacesInterfaces-- IonizationIonization (elimination(elimination ofof solventsolvent andand generationgeneration ofof gasgas--phasephase ions)ions) –– e.g.e.g.
    [Show full text]
  • What Is a Mass Spectrum? 1265.6038 100
    Outline EMBnet course 28.1.-1.2.2008 Day 1 Mass spectrometry in proteomics Mass spectrometry, general introduction What is a mass spectrum What are the constituents of a mass spectrometer How the instruments look like Pierre-Alain Binz Swiss Institute of Bioinformatics, proteome informatics group Geneva Bioinformatics SA (GeneBio) EMBnet course Basle, 28 Jan, 2008 What is a mass spectrum? 1265.6038 100 MALDI-DE-RE-TOF MS 80 1394.7169 tryptic digest of BSA 60 1252.6472 1757.8374 870.4042 1299.6103 * % Intensity 40 * 1930.0053 1742.8780 * 1410.7018 * 1787.7116 2062.0077 950.4584 2523.2021 20 * 1083.5082 1778.0565 2848.3 2285.1 2467.1695 848.2 1099.5 1859.9261 2065.0 2266.1 1364.7 1555.7 2501.3228 2016.0 2222.2043 2734.2 0 828.0 1263.2 1698.4 2133.6 2568.8 3004.0 Mass (m/z) Protein Identification using Mass Spectrometry Outline protein from gel/ tryptic digestion & Mass spectrometry, general introduction 1-DE, 2-DE, PVDF/LC fraction peptide extraction LC TYGGAAR EHICLLGK GANK PSTTGVEMFR unmodified and What is a mass spectrum Mass spectrometry, modified peptides peptide mass fingerprints What are the constituents of a mass spectrometer PMF identification How the instruments look like MS Fragmentation Mass spectrometry, MS/MS identification peptide MS fragments 1 What is a mass spectrum? How does a peptide signal looks like? 1265.6038 100 MALDI-DE-RE-TOF MS 80 1394.7169 tryptic digest of BSA Low resolution 60 1252.6472 1757.8374 870.4042 1299.6103 * % Intensity 40 * 1930.0053 1742.8780 * 1410.7018 * 1787.7116 2062.0077 High resolution 950.4584 2523.2021 20 * 1083.5082 1778.0565 2848.3 2285.1 2467.1695 848.2 1099.5 1859.9261 2065.0 2266.1 1364.7 1555.7 2501.3228 2016.0 2222.2043 2734.2 0 828.0 1263.2 1698.4 2133.6 2568.8 3004.0 Mass (m/z) Isotopic distribution Isotopic distribution Mass resolution 0.1% vs.
    [Show full text]
  • Ionization Methods in Organic Mass Spectrometry
    Ionization Methods in Organic Mass Spectrometry Contents: . Introduction . Gas-Phase Ionization . Electron Ionization (EI) . Chemical Ionization (CI) . Desorption Chemical Ionization (DCI) . Negative-ion chemical ionization . Field Desorption and Ionization . Field Desorption (FD) . Field Ionization (FI) . Particle Bombardment . Fast Atom Bombardment (FAB) . Secondary Ion Mass Spectrometry (SIMS) . Atmospheric Pressure Ionization . Electrospray Ionization (ESI) . Atmospheric Pressure Chemical Ionization (APCI) . Laser Desorption . Matrix-Assisted Laser Desorption Ionization (MALDI) . Appendices . CI Reagent Gases . Direct Formation of Negative Ions . FAB matrices Introduction A mass spectrometer works by using magnetic and electric fields to exert forces on charged par- ticles (ions) in a vacuum. Therefore, a compound must be charged or ionized to be analyzed by a mass spectrometer. Furthermore, the ions must be introduced in the gas phase into the vacuum system of the mass spectrometer. This is easily done for gaseous or heat-volatile samples. How- ever, many (thermally labile) analytes decompose upon heating. These kinds of samples require either desorption or desolvation methods if they are to be analyzed by mass spectrometry. Al- though ionization and desorption/desolvation are usually separate processes, the term "ionization method" is commonly used to refer to both ionization and desorption (or desolvation) methods. The choice of ionization method depends on the nature of the sample and the type of information required from the analysis. So-called 'soft ionization' methods such as field desorption and elec- trospray ionization tend to produce mass spectra with little or no fragment-ion content. Gas-Phase Ionization These methods rely upon ionizing gas-phase samples. The samples are usually introduced through a heated batch inlet, heated direct insertion probe, or a gas chromatograph.
    [Show full text]
  • Field Desorption Mass Spectrometry of Oligosaccharides
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 3, pp. 1471-1475, March 1981 Biochemistry Field desorption mass spectrometry of oligosaccharides (methylmannose polysaccharide/glycoprotein core oligosaccharide/molecular weight/sequence determination) MICHAEL LINSCHEID*t, JAY D'ANGONA*t, ALMA L. BURLINGAME*t, ANNE DELLS, AND CLINTON E. BALLOU§ *Space Sciences Laboratorv, University of California, Berkeley, California 94720; tDepartment of Pharmaceutical Chemistry, University of California, San Francisco, California 94143; tDepartment of Biochemistry Imperial College of Science and Technology, London, England; and §Department of Biochemistry, University of California, Berkeley, California 94720 Contributed by Clinton E. Ballou, November 21, 1980 ABSTRACT Field desorption mass spectrometry has been steps, and interfere with the ability to distinguish between used to analyze carbohydrate polymers with 5 to 14 hexose units methylated and unmethylated hexoses. In this report, we de- without prior derivatization. In all examples, the molecular weight of the oligosaccharide could be determined by means of the abun- scribe the application of field desorption mass spectrometry dant %uasimolecular ions of the type MNa+, MH+, MNa22+, and (FDMS) for analysis of underivatized oligosaccharides with up MNa3 +. Fragmentation at glycosidic linkages was observed in to 14 hexose units. We outline the limitations imposed by mass varying extents. The reduced oligosaccharide Man8GlcNAcH2, spectrometers of mass range 1000 and show how these limita- obtained from IgM [Cohen, R. E. & Ballou, C. E. (1980) Bio- tions can be partly overcome by summation of data. Further- chemistry 19, 4345-4358], gave quasimolecular ion signals MNa+ more, we demonstrate the utility of the high-field magnet mass at m/z 1544, MH+ at m/z 1522, MNa22+ at m/z 784, and MNa33+ at m/z 530, all corresponding to its assumed molecular weight of spectrometer (7) in FDMS studies of high mass compounds.
    [Show full text]
  • Mass Spectral Determination of Organo-Metallic Compounds by Very High-Resolution Mass Spectrometry
    Mass Spectral Determination of Organo-Metallic Compounds by Very High-Resolution Mass Spectrometry Robert Swaim1, Kei Murata2, Todd B. Marder2, H. Bernard Linden3, Mathias H. Linden3, Alexander Makarov4, Maciej Bromirski4 1Thermo Fisher Scientific, San Jose, CA, USA, 2Institute for Inorganic Chemistry, Julius-Maximilian-University, Wurzburg, Germany, 3Linden CMS GmbH, Weyhe/Leeste, Germany; 4Thermo Fisher Scientific GmbH, Bremen, Germany Exactive Plus Orbitrap LC-MS C51H59N2O6P2Rh Isotope pattern of Grubbs Hoveyda Catalyst LIFDI of PEG 1500 Overview with two ion sources on axis Liquid injection field desorption ionization (LIFDI) is a soft high vacuum ionization technique based on FI/FD. We present a very high-resolution Thermo Scientific™ Exactive™ Plus Orbitrap mass spectrometer combined with an LIFDI ion source (measured) installed at the back end of the ion path in addition to the ESI source at the front end. This way difficult non-polar compounds such as organo- metallic catalysts can be characterized which are not accessible by ESI. (calculated) LIFDI source at (air sensitive) back end for Introduction non-polar samples Organo-Metallic compounds are often subject to reaction with air or moisture and do not tolerate protonation or attachment of other ions. Convenient changing of ion sources: working source switched-off, This makes them difficult analytical challenges for assay with mass ESI source at front the other source switched-on, spectrometry. end for LC/MS loading respective tuning, and using respective capillary Field Desorption (FD) has proven an effective way to ionization of these Figure 6. Instrument: Exactive Plus Orbitrap LC-MS with materials resulting in M+• species via a soft ionization process.
    [Show full text]
  • Ionization Techniques in Mass Spectrometry
    Pur y & ific tr at e io m n o Mass Spectrometry & Purification T r t e c c h e n p Medhe, Mass Spectrom Purif Tech 2018, 4:1 i S q u s s ISSN: 2469-9861e Techniques DOI: 10.4172/2469-9861.1000126 a s M Review Article Open Access Ionization Techniques in Mass Spectrometry: A Review Sharad Medhe* Department of Chemistry, Educational Institute, Dayalbagh, Agra-282005, India *Corresponding author: Sharad Medhe, Department of Chemistry, Educational Institute, Dayalbagh, Agra-282005, India, Tel: 0562 280 1545; E-mail: [email protected] Received date: May 08, 2018; Accepted date: June 14, 2018; Published date: June 23, 2018 Copyright: © 2018 Medhe S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Mass Spectrometry- It is an analytical technique that generates charged particles in the form of ions from the substance to be analysed to measure its mass to charge ratio. Ion Source plays an important role for generation of charged ions which further travels through analyser and ends at detector. The production of intact molecular ions can be achieved under adequate experimental conditions, with minimal fragmentation known as soft ionization method. Neutral species either loss or gain of charge to generates ions. This paper covers an information about various type of mass ion Source (Electron impact, Chemical ionization and field ionization, Desorption-Field desorption, Electro spray ionization, matrix assisted desorption ionization, Plasma desorption) are in use for mass spectroscopy.
    [Show full text]