Determination of Polymer Structures, Sequences, And

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Polymer Structures, Sequences, And DETERMINATION OF POLYMER STRUCTURES, SEQUENCES, AND ARCHITECTURES BY MULTIDIMENSIONAL MASS SPECTROMETRY A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Aleer Manyuon Yol August, 2013 DETERMINATION OF POLYMER STRUCTURES, SEQUENCES, AND ARCHITECTURES BY MULTIDIMENSIONAL MASS SPECTROMETRY Aleer Manyuon Yol Dissertation Approved: Accepted: ________________________________ _________________________________ Advisor Department Chair Dr. Chrys Wesdemiotis Dr. Michael J. Taschner ________________________________ _________________________________ Committee Member Dean of the College Dr. Leah P. Shriver Dr. Chand K. Midha ________________________________ _________________________________ Committee Member Dean of the Graduate School Dr. Claire A. Tessier Dr. George R. Newkome ________________________________ _________________________________ Committee Member Date Dr. Wiley J. Youngs ________________________________ Committee Member Dr. Yu Zhu ii ABSTRACT The matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-ToF/ToF MS) characteristics of different polystyrenes and polybutadienes are discussed in this dissertation. The compounds examined include linear, cyclic, in-chain substituted, and star-branched polymers as well as copolymers of styrene and either para-dimethylsilyl styrene (p-DMSS) or meta-dimethylsilyl styrene (m-DMSS). Chapter IV describes the differentiation of cyclic and linear polymers by 2D- mass spectrometry. The silverated quasimolecular ions from cyclic and linear polystyrenes and polybutadienes, formed by MALDI, give rise to significantly different fragmentation patterns in tandem mass spectrometry (MS2) experiments. With both architectures, fragmentation starts with homolytic cleavage at the weakest bond, usually a C–C bond, to generate two radicals. From linear structures, the separated radicals depolymerize extensively by monomer losses and backbiting rearrangements, leading to low-mass radical ions and much less abundant medium- and high-mass closed-shell fragments that contain one of the original end groups, along with internal fragments. With cyclic structures, depolymerization is less efficient, as it can readily be terminated by intramolecular H-atom transfer between the still interconnected radical sites (disproportionation). These differences in fragmentation reactivity result in substantially different fragment ion distributions in the MS2 spectra. Simple inspection of the relative iii intensities of low- vs. high-mass fragments permits conclusive determination of the macromolecular architecture, while full spectral interpretation reveals the individual end groups of the linear polymers or the identity of the linker used to form the cyclic polymer. Chapter V presents the first sequence analysis of styrenic copolymers by tandem MS. Copolymers of para-dimethylsilyl styrene (p-DMSS) or m-DMSS with styrene were prepared by living anionic polymerization. The MALDI-MS2 results for p-DMSS indicate that a block copolymer is formed, with the para-substituted styrene incorporated near the initiator. On the other hand, the MS2 results of m-DMSS reveal that a random copolymer is formed, consistent with comparable reactivities for m-DMSS and styrene. These findings suggest that p-DMSS is more reactive than m-DMSS. The single-stage (1D) MALDI-MS results further show that linear and 2-armed architectures are formed with both the m-DMSS and the p-DMSS comonomers. The last Chapter, VI, focuses on the differentiation of linear in-chain substituted, cyclic, and star-branched polystyrene (PS) by tandem mass spectrometry. The in-chain functionalized PS gives a MS2 fragmentation pattern that is different from the one observed for cyclic PS with two linker units and, again, with a simple inspection of the tandem mass spectra, these architectures can easily be distinguished. The four-arm star- branched polymer investigated mainly breaks down by losing arms under MALDI-MS2 conditions. Overall, this dissertation documents the usefulness of combined 1D and 2D mass spectrometry experiments for the identification of polymer substituents and their location, for distinguishing polymer architectures, and for determining copolymer sequences. iv The results presented in this dissertation have been published or are pending for publication in the following journals. 1. Quirk, R. P.; Wang, S-F.; Foster, M. D.; Wesdemiotis, C.; Yol, A. M. “Synthesis of Cyclic Polystyrenes Using Living Anionic Polymerization and Metathesis Ring-Closure” Macromolecules 2011, 44, 7538-7545. 2. Liu, B.; Quirk, R. P.; Wesdemiotis, C.; Yol, A. M.; Foster, M. D. “Precision Synthesis of ω-Branch, End-Functionalized Comb Polystyrenes Using Living Anionic Polymerization and Thiol-Ene “Click” Chemistry” Macromolecules 2012, 45, 9233-9242. 3. Yol, A. M.; Dabney, D. E.; Wang, S-F.; Laurent, B. A.; Foster, M. D.; Quirk, R. P.; Grayson, S. M.; Wesdemiotis, C. “Differentiation of Linear and Cyclic Polymer Architectures by MALDI Tandem Mass Spectrometry (MALDI-MS2)” J. Am. Soc. Mass Spectrom. 2013, 24, 74-82. 4. Quirk, R.P.; Chavan, V.; Janoski, J.; Yol, A.; Wesdemiotis, C. “General Functionalization Method for Synthesis of α-Functionalized Polymers by Combination of Anionic Polymerization and Hydrosilation Chemistry” Macromolecular Symposia 2013, 323, 51-57. 5. Yol, A. M.; Janoski, J.; Quirk, R. P.; Wesdemiotis, C. “Sequence Analysis of Styrenic Copolymers by Tandem Mass Spectrometry” Anal. Chem. (Submitted) v DEDICATION To the memory of my father and mother. To all my brothers, sisters, nephews, nieces, brothers-in-law, and sisters-in-law. vi TABLE OF CONTENTS Page LIST OF TABLES………………………………………………………...........................x LIST OF FIGURES………………………………………………………………………xi LIST OF SCHEMES……………………………………………………………………xvi CHAPTER I. INTRODUCTION………………………………………………………………...1 II. MASS SPECTROMETRY BACKGROUND…………………………………….5 2.1. Ionization techniques…………………………………………………………5 2.2. MALDI……………………………………………………………………….5 2.3. Mass analyzers………………………………………………………………..8 2.3.1 Mass resolution……………………………………………………..9 2.3.2 Time of fight (ToF) mass analyzer………………………………...10 2.3.2.1. Reflectron………………………………………………..12 2.3.2.2. Delayed extraction (DE) or pulsed ion extraction (PIE) or time lag focusing……………………………………………........13 2.4. Detectors…………………………………………………………………….15 2.4.1. Microchannel plate (MCP) detector……………………………….15 III. MATERIALS AND EXPERIMENTAL PROCEDURES………………………17 3.1. Materials…………………………………………………………………….17 3.1.1. Linear and cyclic polymers…..........................................................17 3.1.2. Polystyrene copolymers………………...…………………………20 vii 3.1.3. Linear in-chain functionalized precursor, cyclic with two linker units, and four star polystyrenes………………........................................20 3.2. MALDI experimental procedures………………………………………...…21 3.3. MALDI instrumentation….............................................................................22 IV. DIFFERENTIATION OF LINEAR AND CYCLIC POLYMER ARCHITECTURES BY MALDI TANDEM MASS SPECTROMETRY (MALDI-MS2)…………………………………………………………………...24 4.1. Linear Polystyrene…………………………………………………………..24 4.2. Cyclic Polystyrenes…………………………………………………………30 4.3. Cyclic Polybutadiene……………………………………………………......43 4.4. Conclusions…………………………………………………………….…....48 V. SEQUENCE ANALYSIS OF STYRENIC COPOLYMERS BY TANDEM MASS SPECTROMETRY………………………………………………………49 5.1. Composition and architecture of poly(dimethylsilylstyrene-co-styrene) copolymers ………………………………………………………………………49 5.2. Reference MS2 spectra of polystyrene and poly(p-DMSS-b-styrene)………54 5.3. Sequence analysis of poly(p-DMSS-co-styrene) and poly(m-DMSS-co- styrene)…………………………………………………………………………...61 5.4. Conclusions….................................................................................................68 VI. MALDI-TOF/TOF TANDEM MASS SPECTROMETRY OF LINEAR IN- CHAIN SUBSTITUTED, CYCLIC WITH TWO LINKER UNITS, AND FOUR- ARM STAR-BRANCHED POLYSTYRENES……….………………………...69 6.1. Linear in-chain substituted PS…………………………………………...….69 6.2. Cyclic PS with two linker units……………………………………………..74 6.3. 4-arm star-branched polystyrene…………………………………………….79 6.4. Conclusions………………………………………………………………….87 VII. SUMMARY……………………………………………………………………...88 viii REFERENCES…………………………………………………………………..90 APPENDIX………………………………………………………………………98 ix LIST OF TABLES Table Page 2.1. Common MALDI matrices…………………………………………………………..7 2.2. Common lasers used for MALDI experiment………………………………………..8 5.1. Measured vs. calculated monoisotopic m/z values of the oligomers observed in the low (m/z 1490-1630) and high (m/z 3530-3710) mass regions (Figures 5.2b-c) of the MALDI mass spectrum of poly(p-dimethylsilylstyrene-co-styrene).……………………53 x LIST OF FIGURES Figure Page 2.1. MALDI principle…………………………………………………………………......6 2.2. Resolving power…………………………………………………………………….10 2.3. Linear time of fight principle………………………………………………………..11 2.4. Principle of reflectron ToF instruments (reproduced with permission from ref. 76). The filled circle represents the faster moving ion ……………………………………….13 2.5. Principle of continuous and delayed extraction……………………………………..14 2.6. Microchannel plate (MCP) detector…………………………………………………16 3.1. Bruker utraFlex III mass spectrometer (reproduced with permission from ref. 84). IS1 and IS2 are ion source lenses; PCIS is the precursor ion selector (also called timed ion + + selector, TIS); P1 and P2 are two ion families, each composed of a precursor ion and its fragments
Recommended publications
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • Read the Book of Abstracts
    2o21 ONLINE May 10- 12 2021 International Symposium on SupraBiomolecular Systems 2021 Table of Contents TBD 1 Prof. Andreas Herrmann TBD 2 Prof. Rachel O’Reilly Tackling challenges in nanomedicine with responsive supramolecular polymers and advanced mi- croscopy 3 Dr. Silvia Pujals, Mr. Edgar Fuentes, Dr. Lorenzo Albertazzi Water Soluble Nanotubular Architectures from Amphiphilic Dinucleobases 4 Dr. Fatima Aparicio, Ms. Paula Blue Chamorro, Dr. Raquel Chamorro, Prof. David Gonzalez-Rodriguez Glyconucleolipids as new drug delivery systems for Parkinson’s disease treatment 5 Mr. Anthony Cunha, Dr. Alexandra Gaubert, Prof. Philippe Barthélémy, Dr. Benjamin Dehay, Dr. Laurent Latxague Membraneless compartments based on intrinsically disordered proteins: from biology towards new pro- tein materials 6 Prof. Paolo Arosio Low Molecular Weight Oleogel formation via unique keto-enol-type nucleolipid supramolecular assembly 8 Mr. Arthur KLUFTS-EDEL, Ms. Bérangère Dessane, Dr. Aladin Hamoud, Dr. Geoffrey Prévot, Dr. Antoine Lo- quet, Dr. Brice Kauffmann, Prof. Philippe Barthélémy, Prof. Sylvie Crauste-Manciet, Dr. Valérie Desvergnes Multi-responsive supramolecular fibers from peptide-based amphiphiles 9 Mr. Edgar Fuentes, Dr. Marieke Gerth, Dr. Jose Augusto Berrocal, Dr. Carlo Matera, Prof. Pau Gorostiza, Prof. Ilja Voets, Dr. Silvia Pujals, Dr. Lorenzo Albertazzi Electrostatic Protein Assemblies Towards Biohybrid Photoactive Materials 10 Dr. Eduardo Anaya-Plaza, Prof. Mauri Kostiainen Exploring Polyoxometalates as Non-destructive Staining Agents for Contrast-Enhanced Microfocus Com- puted Tomography of Biological Tissues 11 Ms. Sarah Vangrunderbeeck, Mr. Sébastien De Bournonville, Mrs. Hong Giang T. Ly, Prof. Wim De Borggraeve, Prof. Tatjana Parac-Vogt, Prof. Greet Kerckhofs Hydrogels with Photo-Switchable Stiffness: A Tool to Mimic Extra Cellular Matrix 13 Prof.
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • Synthesis of Organometallic PNA Oligomers by Click Chemistry
    Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 1 Supporting Information: Synthesis of organometallic PNA oligomers by click chemistry Gilles Gasser, Nina Hüsken, S. David Köster and Nils Metzler-Nolte* Department of Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150; 44801 Bochum, Germany Fax: +49 (0)234 – 32 14378; E-Mail: [email protected] Table of contents I. Experimental Section a) Materials 2 b) Instrumentation and methods 2 c) Peptide Nucleic Acid synthesis 2 d) Synthesis, characterisation and NMR spectra of Fmoc-1-OtBu, Fmoc-1-OH, Fmoc-2-OtBu and 3 3 e) Characterisation of PNA1-4 10 f) Synthesis and characterisation of Fc-PNA1-3 and Fc2-PNA4 10 II. MALDI-TOF Spectra a) Figure 5: MALDI-TOF mass spectrum of Fc-PNA1 11 b) Figure 6: MALDI-TOF mass spectrum of Fc-PNA2 12 c) Figure 7: MALDI-TOF mass spectrum of Fc-PNA3 12 d) Figure 8: MALDI-TOF mass spectrum of Fc2-PNA4 13 III. References 13 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 2 I. Experimental Section a) Materials. All chemicals were of reagent grade quality or better, obtained from commercial suppliers and used without further purification. Solvents were used as received or dried over 4 Å molecular sieves. b) Instrumentation and methods. 1H and 13C NMR spectra were recorded in deuterated solvents on a Bruker DRX 400 spectrometer at 30°C. The chemical shifts, δ, are reported in ppm (parts per million).
    [Show full text]
  • Electrification Ionization: Fundamentals and Applications
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 11-12-2019 Electrification Ionization: undamentalsF and Applications Bijay Kumar Banstola Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Analytical Chemistry Commons Recommended Citation Banstola, Bijay Kumar, "Electrification Ionization: undamentalsF and Applications" (2019). LSU Doctoral Dissertations. 5103. https://digitalcommons.lsu.edu/gradschool_dissertations/5103 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ELECTRIFICATION IONIZATION: FUNDAMENTALS AND APPLICATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Bijay Kumar Banstola B. Sc., Northwestern State University of Louisiana, 2011 December 2019 This dissertation is dedicated to my parents: Tikaram and Shova Banstola my wife: Laxmi Kandel ii ACKNOWLEDGEMENTS I thank my advisor Professor Kermit K. Murray, for his continuous support and guidance throughout my Ph.D. program. Without his unwavering guidance and continuous help and encouragement, I could not have completed this program. I am also thankful to my committee members, Professor Isiah M. Warner, Professor Kenneth Lopata, and Professor Shengli Chen. I thank Dr. Fabrizio Donnarumma for his assistance and valuable insights to overcome the hurdles throughout my program. I appreciate Miss Connie David and Dr.
    [Show full text]
  • Professor of Chemistry
    Bruce C. Gibb FRSC Professor of Chemistry Department of Chemistry Tulane University New Orleans, LA 70118, USA Tel: (504) 862 8136 E-mail: [email protected] Website: http://www.gibbgroup.org Twitter: @brucecgibb Research Interests: Aqueous supramolecular chemistry: understanding how molecules interact in water: from specific ion- pairing and the hydrophobic effect, to protein aggregation pertinent to neurodegenerative disorders. Our research has primarily focused on: 1) novel hosts designed to probe the hydrophobic, Hofmeister, and Reverse Hofmeister effects, and; 2) designing supramolecular capsules as yocto-liter reaction vessels and separators. Current efforts to probe the hydrophobic and Hofmeister effects include studies of the supramolecular properties of proteins. Professional Positions: Visiting Professor, Wuhan University of Science and Technology as a Chair Professor of Chutian Scholars Program (2015-2018) Professor of Chemistry, Tulane University, New Orleans, USA (2012-present). University Research Professor, University of New Orleans, USA (2007-2011). Professor of Chemistry, University of New Orleans, USA (2005-2007). Associate Professor of Chemistry, University of New Orleans, USA (2002-2005). Assistant Professor of Chemistry, University of New Orleans, USA, (1996-2002). Education: Postdoctoral Work Department of Chemistry, New York University. Synthesis of Carbonic Anhydrase (CA) mimics with Advisor: Prof. J. W. Canary, (1994-1996). Department of Chemistry, University of British Columbia, Canada De Novo Protein development. Advisor: Prof. J. C. Sherman (1993-1994). Ph.D. Robert Gordon’s University, Aberdeen, UK. Synthesis and Structural Examination of 3a,5-cyclo-5a- Androstane Steroids. Advisors: Dr. Philip J. Cox and Dr. Steven MacManus (1987-92) . B.Sc. with Honors in Physical Sciences Robert Gordon’s University, Aberdeen, UK.
    [Show full text]
  • Comparative Analysis of Click Chemistry Mediated Activity-Based Protein Profiling in Cell Lysates
    Molecules 2013, 18, 12599-12608; doi:10.3390/molecules181012599 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Comparative Analysis of Click Chemistry Mediated Activity-Based Protein Profiling in Cell Lysates Yinliang Yang, Xiaomeng Yang and Steven H. L. Verhelst * Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; E-Mails: [email protected] (Y.Y.); [email protected] (X.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-8161-713505; Fax: +49-8161-714404. Received: 26 June 2013; in revised form: 7 August 2013 / Accepted: 26 September 2013 / Published: 11 October 2013 Abstract: Activity-based protein profiling uses chemical probes that covalently attach to active enzyme targets. Probes with conventional tags have disadvantages, such as limited cell permeability or steric hindrance around the reactive group. A tandem labeling strategy with click chemistry is now widely used to study enzyme targets in situ and in vivo. Herein, the probes are reacted in live cells, whereas the ensuing detection by click chemistry takes place in cell lysates. We here make a comparison of the efficiency of the activity-based tandem labeling strategy by using Cu(I)-catalyzed and strain-promoted click chemistry, different ligands and different lysis conditions. Keywords: activity-based probes; cathepsins; click chemistry; proteases; protein modification 1. Introduction Within chemical biology, site specific protein modification by covalent small molecule probes is a powerful and often used technique to interrogate biomolecular interactions and protein function. The introduction of covalent small molecule probes can be based on different types of chemistries: probes may be incorporated by the use of exogenous or endogenous enzymes [1,2], or they can contain an intrinsic reactivity such as an electrophile or photocrosslinker that by itself forms a covalent bond to the target proteins [3–5].
    [Show full text]
  • Liquid Injection Field Desorption/Ionization-Mass
    Liquid Injection Field Desorption/Ionization- Mass Spectrometry of Ionic Liquids Jürgen H. Gross Institute of Organic Chemistry, University of Heidelberg, Heidelberg, Germany ϩ Ten ionic liquids based on four types of organic cations, C (imidazolium, pyrrolidinium, pyridinium, and phosphonium), combined with various types of anions, AϪ, were analyzed by liquid injection field desorption/ionization- (LIFDI) mass spectrometry. For the purpose of LIFDI analysis the ionic liquids were dissolved in methanol, acetonitrile or tetrahydrofuran at Ϫ concentrationsof0.01–0.1 ␮lmL 1. The measurements were performed on a double-focusing magnetic sector instrument. In all ionic liquid LIFDI spectra, the intact cation of the compound ϩ yielded the base peak accompanied by cluster ions of the general formula [C A] and ϩ 2 occasionally [C3A2] . Tandem mass spectrometry and reconstructed ion chromatograms were employed to reveal the identity of the observed ions. Although limited to positive-ion mode, LIFDI also provided analytical information on the anions due to cluster ion formation. Depending on actual emitter condition and ionic liquid the limit of detection in survey scans was determined to 5–50 pg of ionic liquid. (J Am Soc Mass Spectrom 2007, 18, 2254–2262) © 2007 American Society for Mass Spectrometry onic liquids (ILs)have recently received widespread FD employs strong electric fields in the order of 1010 Ϫ Ϫ interest among many areas of chemical research as Vm 1 (1VÅ 1) to effect the ionization of atoms and Ithey act as highly polar thermally stable solvents in molecules [11, 12, 31]. The necessary field strength is chemical synthesis [1–3]. Consequently, there is a need normally achieved by setting whisker-bearing wires— for the development of methods for their analysis, be it so-called activated emitters [32–34]—to high electric for the sake of checking their purity, to verify their potential of typically 10–12 kV opposed to a counter absence in products from processes where ILs are electrode at ϳ2 mm distance.
    [Show full text]
  • Sufex-Enabled, Agnostic Discovery of Covalent Inhibitors of Human Neutrophil Elastase
    SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase Qinheng Zhenga,1, Jordan L. Woehlb,1, Seiya Kitamurab, Diogo Santos-Martinsc, Christopher J. Smedleyd, Gencheng Lia, Stefano Forlic, John E. Mosesd, Dennis W. Wolanb,2, and K. Barry Sharplessa,2 aDepartment of Chemistry, The Scripps Research Institute, La Jolla, CA 92037; bDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; cDepartment of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; and dLa Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia Contributed by K. Barry Sharpless, July 23, 2019 (sent for review July 9, 2019; reviewed by Peng R. Chen and Lei Wang) Sulfur fluoride exchange (SuFEx) has emerged as the new gener- unique ensemble of factors between the naturally folded protein ation of click chemistry. We report here a SuFEx-enabled, agnostic and its correct partner probe’s latent S–F electrophilic site. approach for the discovery and optimization of covalent inhibi- When the perfect S–F probe for a given protein encounters the tors of human neutrophil elastase (hNE). Evaluation of our ever- denatured form of the latter, there is no detectable reaction (24, growing collection of SuFExable compounds toward various bio- 33). In fact, in our experience with many S–F capture probes and logical assays unexpectedly revealed a selective and covalent hNE various denatured proteins, even including entire denatured inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization proteomes, is that misfolded proteins simply do not react with of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl S–F electrophiles at all (24).
    [Show full text]
  • FD) and Liquid Injection Field Desorption Ionization (LIFDI
    Soft ionization by Field Ionization (FI), Field desorption (FD) and Liquid Injection Field Desorption Ionization (LIFDI) H. Bernhard Linden Linden CMS GmbH [email protected] www.LIFDI.com 1 LINDEN CMS GmbH, 2012 Soft ionization by FI, FD and LIFDI Introduction by mouth watering soft ionization spectra 1. General and theoretical overview 2. Various instruments – identical technique 3. Automated LIFDI 4. Improved FI intensity 5. LIFDI on FT-ICR instruments 6. LIFDI of air/moisture sensitive metal complexes 7. Orbitrap with ESI-LIFDI combination 2 LINDEN CMS GmbH, 2012 FI and FD are known for soft ionization of non-polar compounds, LIFDI outperforms other MS techniques for characterization of organometallics due to its softness and convenient handling order of soft ionization References Liquid injection field desorption/ionization of transition decomposition decreases : ESI > LIFDI metal fluoride complexes Trevor A. Dransfield, Ruqia Nazir, Robin N. Perutz and “LIFDI ... gave the molecular ion peaks [M]+ as base peaks (100%) ... Adrian C. Whitwood With ESI, the compounds showed decomposition.” J. Fluorine Chem. 131, 2010, 1213-1217 loss of CO decreases : MALDI > FAB > FD *) Analysis of ruthenium carbonyl–porphyrin complexes: a comparison of matrix-assisted laser desorption/ionisation “ruthenium carbonyl complexes exhibited time-of-flight, fast-atom bombardment and field desorption abundant carbon monoxide (CO) loss in MALDI-TOF-MS and still a mass spectrometry, measurable CO loss in FAB-MS. Only FD-MS yielded the molecular ion M. Frauenkron, A. Berkessel and J. H. Gross as the base peak of the spectra in all cases.” Eur. J. Mass Spectrom. 1997, 3, 427 - 438 “fragmentation decreases Comparison of electrospray mass spectrometry with other soft ionization techniques for the characterization of cationic along the series FAB > ESI > FD “ *) π-hydrocarbon organometallic complexes , L.
    [Show full text]
  • Applications of Click Chemistry Themed Issue
    This article was published as part of the Applications of click chemistry themed issue Guest editors Professors M.G. Finn and Valery Fokin Please take a look at the issue 4 table of contents to access other reviews in this themed issue CRITICAL REVIEW www.rsc.org/csr | Chemical Society Reviews Click chemistry with DNAw Afaf H. El-Sagheerab and Tom Brown*a Received 1st September 2009 First published as an Advance Article on the web 9th February 2010 DOI: 10.1039/b901971p The advent of click chemistry has led to an influx of new ideas in the nucleic acids field. The copper catalysed alkyne–azide cycloaddition (CuAAC) reaction is the method of choice for DNA click chemistry due to its remarkable efficiency. It has been used to label oligonucleotides with fluorescent dyes, sugars, peptides and other reporter groups, to cyclise DNA, to synthesise DNA catenanes, to join oligonucleotides to PNA, and to produce analogues of DNA with modified nucleobases and backbones. In this critical review we describe some of the pioneering work that has been carried out in this area (78 references). Introduction Azides and unactivated alkynes are almost entirely un- reactive towards the functional groups normally encountered Click chemistry was developed to provide a simple method to join in nature; they react only with each other. together organic molecules in high yields under mild conditions The triazole unit is extremely stable, and is not toxic. 3 and in the presence of a diverse range of functional groups. The In this review we describe the use of click chemistry across best example of this new class of extremely efficient chemical the nucleic acids field, focusing on synthetic strategies and I reactionsistheCu catalysed [3+2] azide–alkyne cycloaddition briefly describing some important practical applications.
    [Show full text]
  • The MALDI Process and Method 1
    1 1 The MALDI Process and Method Franz Hillenkamp , Thorsten W. Jaskolla , and Michael Karas 1.1 Introduction Matrix-assisted laser desorption/ionization ( MALDI ) is one of the two “soft” ioni- zation techniques besides electrospray ionization ( ESI ) which allow for the sensi- tive detection of large, nonvolatile and labile molecules by mass spectrometry. Over the past 27 years, MALDI has developed into an indispensable tool in analyti- cal chemistry, and in analytical biochemistry in particular. In this chapter, the reader will be introduced to the technology as it stands now, and some of the underlying physical and chemical mechanisms as far as they have been investi- gated and clarifi ed to date will be discussed. Attention will also be focused on the central issues of MALDI, that are necessary for the user to understand for the effi cient application of this technique. As an in-depth discussion of these topics is beyond the scope of this chapter, the reader is referred to recent reviews [1–4] . Details of the current state of instrumentation, including lasers and their coupling to mass spectrometers, will be presented in Chapter 2 . As with most new technologies, MALDI came as rather a surprise even to the experts in the fi eld on the one hand, but also evolved from a diversity of prior art and knowledge on the other hand. The original notion had been that (bio)mole- cules with masses in excess of about 500–1000 Da could not be isolated out of their natural (e.g., aqueous) environment, and even less be charged for an analysis in the vacuum of a mass spectrometer without excessive and unspecifi c fragmenta- tion.
    [Show full text]