United States Patent (19) 11 Patent Number: 5,183,665 Hori 45 Date of Patent: Feb

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,183,665 Hori 45 Date of Patent: Feb IIIIUSOOS 183665A United States Patent (19) 11 Patent Number: 5,183,665 Hori 45 Date of Patent: Feb. 2, 1993 54 COMPOSITION FOR PERCUTANEOUS (56) References Cited ADMINISTRATION AND METHOD FOR U.S. PATENT DOCUMENTS ENHANCING PERCUTANEOUS ABSORPTION OF A PHYSIOLOGICALLY 4,522,826 6/1985 Sunshine et al. .................... 54/569 ACTIVE INGREDIENT EMPOLYING THE 4,585,783 4/1986 Sunshine et al. ................... 54/408 SAME 4,590,190 5/1986 Saito et al. .......................... 514/221 4,654,209 3/1987 Leslie et al. ......................... 514/152 4,683,243 7/1987 Sunshine et al..................... 514/557 (75) Inventor: Mitsuhiko Hori, San Francisco, 4,710,497 12/1987 Heller et al. ......... ... 54/221 Calif. 4,719,226 l/1988 Otsuka et al. ... 514/449 4,752,612 6/1988 Saito et al. ... ... 514/42O 4,765,974 8/1988 Tokuda et al. ...................... 424/443 (73) Assignee: Nitto Denko Corporation, Osaka, 4,847,260 7/1989 Abe et al. ............................ 514/279 Japan Primary Examiner-Thurman K. Page Assistant Examiner-Leon R. Horne Attorney, Agent, or Firm-Sughrue, Mion, Zinn, 21 Appl. No.: 299,506 Macpeak & Seas 57 ABSTRACT 22 Filed: Jan. 23, 1989 The present invention relates to a composition for per cutaneous administration which can enhance percutane (51) Int. Cl. .............................................. A61F 13/00 ous absorption of a physiologically active ingredient 52) U.S. C. .................................... 424/449; 424/447; and a method of enhancing percutaneous absorption of 424/448; 514/946 a physiologically active ingredient employing the same. (58 Field of Search ............................. 514/946, 947, ; 424/946, 947, 449 5 Claims, 2 Drawing Sheets 5 4. -- CONTROL -- CHLORPHENRAMINE -- PROMETHANE 2 -o- CEMASTINE -o- CYPROHEPTADNE -o- OPHENHYDRAM NE TIME thr) U.S. Patent Feb. 2, 1993 Sheet 1 of 2 5,183,665 t | 9 U.S. Patent Feb. 2, 1993 Sheet 2 of 2 5,183,665 10H1N00 5,183,665 2 nol, propylene glycol, pyrrolidones, dimethylsulfoxide, COMPOSITION FOR PERCUTANEOUS dimethylacetamide, dimethylformamide, alkyl sulfox ADMINISTRATION AND METHOD FOR ide, phosphine oxide, sugar esters and surfactants are ENHANCING PERCUTANEOUS ABSORPTION OF well known percutaneous delivery enhancers (Barry, B. A PHYSIOLOGICALLY ACTIVE INGREDIENT W., Dermatological Formulations, Marcel Dekker Inc., EMPOLYING THE SAME New York, pages 160-172 (1983)). One enhancer, 1 dodecylazacycloheptan-2-one (Azone), has been shown FIELD OF THE INVENTION to increase the absorption of antibacterial agents, anti The present invention relates to a composition for fungal agents, steroids, iododeoxyuridine and 5 percutaneous administration which can enhance percu O fluorouracil (Stoughton, R. B., Arch. Dermatol, taneous absorption of a physiologically active ingredi 118:474-477 (1982); Stoughton, R. B. et al, Drug Dev, ent and a method of enhancing percutaneous absorption Ind. Pharm., 9:725-744 (1983); Chow, D. S-L. et al., J. of a physiologically active ingredient employing the Pharm. Sci., 73:1794-1799 (1984); Wotton, P. K. et al, Sae. 5 Int. J. Pharm., 24:19-26 (1985); Barry, B. W., J. Contr. BACKGROUND OF THE INVENTION Rel, 6:85-97 (1987); and Barry, B. W. et al, J. Pharm. Percutaneous administration of physiologically ac Pharmacol, 39:535-546 (1987)). To date, the mechanism tive ingredients has been carried out in order to produce of Azone's action is not well understood. However, it is topical effects on the skin or subcutaneous tissues be believed that the site of action is the stratum corneum neath the skin. Examples of such topical effects include 20 (Sugibayashi, K. et al, J. Pharm. Sci, 37:578-580 sterilization, disinfection, analgesia, anti-pruritus, anti (1985)). Azone is minimally absorbed and that which is inflammation and the like. absorbed is removed rapidly from circulation (Wiech On the other hand, oral or intravenous administration ers, J. W. et al, Pharm. Res., 4:519-523 (1987)). of physiologically active ingredients has been carried In addition, is has been reported that the transport of out in order to produce systemic effects in the subject. 25 salicylic acid and acyclovir through skin can be in Oral administration is disadvantageous in that the creased by the addition of small amounts of fatty acids physiologically active ingredients so administered are or alcohols (Cooper, E. R., J. Pharm. Sci, 73:1153-1156 susceptible to first-order metabolism in the liver. Fur (1984); and Cooper, E. R. et al, J. Pharm. Sci, ther, in order to obtain a long-lasting effect, the concen 74:688-689 (1985)). tration of the physiologically active ingredients must be 30 The enhancing effect of N-decylmethylsulfoxide on initially higher than is normally necessary for effective skin permeation of 5-fluorouracil has also been reported ness. In addition, oral administration of some physiolog (Touitou, E. et al, Int, J. Pharm., 27:89-98 (1985)). ically active ingredients, like indomethacin, causes gas Moreover, the enhancing effects of several amides of trointestinal side effects. cyclic amines through hairless mouse skin have been Intravenous administration, although advantageous 35 reported (Mirejovsky, D. et al., J. Pharm. Sci, for obtaining rapid absorption of the physiologically 75:1089-1093 (1986)). Enhancers containing an azacy active ingredients disadvantageously requires a special clo ring and terpene chain have been found to promote ist, such as a physician. mitocymin C penetration through hairless mouse and Recently, methods for achieving systemic effects in a subject through percutaneous administration of physio rat skin (Okamoto, H. et al., J. Pharm. Pharmacol, logically active ingredients have been proposed in order 39:531-534 (1987)). to overcome the above-described problems associated SUMMARY OF THE INVENTION with oral and intravenous administration of physiologi Accordingly, an object of the present invention is to cally active ingredients. Percutaneous administration of provide a composition for percutaneous administration physiologically active ingredients has the following 45 advantages: which can enhance percutaneous permeability and per (1) the physiologically active ingredients enter from cutaneous absorbability of physiologically active ingre the skin directly into the blood stream and are not, dients. therefore, susceptible to first-order metabolism in Another object of the present invention is to provide the liver, 50 a method for enhancing percutaneous permeability and (2) the release of the physiologically active ingredi absorption of physiologically active ingredients. ents can be easily sustained, and These and other objects of the present invention will (3) the concentration of the physiologically active be apparent from the detailed description provided ingredients in the subject is controllable. hereinafter. However, the stratum corneum has long been consid 55 In one embodiment, the objects of the present inven ered a major barrier to the penetration of physiologi tion have been met by a composition for percutaneous cally active ingredients (Marzulli, A. N., J. Invest. Der administration comprising: matol, 39:387-393 (1963)). Studies have shown that (A) a pharmaceutically effective amount of a physio most physiologically active ingredients have a low per logically active ingredient, and meability through skin. As a result, transdermal drug (B) a percutaneous absorption enhancing effective delivery systems have been utilized to accelerate the amount of a member selected from the group con permeability of physiologically active ingredients sisting of an anti-histamine, an anti-depressant, a through skin (Gummer, C. L., Percutaneous Absorption, vasodilator, an anti-psychotic, an anesthetic and an Eds, Bronaugh, R. L. et al, Mercel Dekker Inc., New analgesic, York, pages 561-570 (1985)). 65 wherein component (A) is a different compound from Percutaneous delivery enhancers may offer a means component (B). of increasing penetration of physiologically active in In a second embodiment, the above-described objects gredients. For example, organic solvents such as etha have been met by a method for enhancing percutaneous 5, 183,665 3. 4. permeability and absorption of a physiologically active e.g., methylatropine bromide, methylanisotropine bro ingredient comprising percutaneously administering: mide, etc.; vasodilators, e.g.; isosorbide dinitrate, nitro (A) a pharmaceutically effective amount of a physio glycerin, pentaerythritol tetranitrate, propanyl nitrate, logically active ingredient, and dipyridamole, etc.; antibiotics, such as tetracyclines, (B) a percutaneous absorption enhancing effective e.g., tetracycline, oxytetracycline, metacycline, doxy amount of a member selected from the group con cycline, minocycline, etc., chloramphenicols, erythro sisting of an anti-histamine, an anti-depressant, a mycines, and central nervous system stimulants, such as vasodilator, an anti-psychotic, an anesthetic and an caffeine and amphetamine: and mixtures thereof. analgesic, The amount of physiologically active ingredient to be wherein component (A) is a different compound from 10 incorporated in the composition of the present inven component (B). tion to achieve the desired pharmaceutical effect can be readily determined depending upon the particular phys BRIEF DESCRIPTION OF THE DRAWINGS iologically active ingredient employed, the body FIG. 1 illustrates the penetration percentage per hour weight, the age, the sex and the symptoms of the Sub of propranolol through hairless mouse skin with or 15 ject. In general,
Recommended publications
  • Diphenhydramine Hydrochloride (CASRN 147-24-0) in F344/N Rats
    NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 355 TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIPHENHYDRAMINE HYDROCHLORIDE (CAS NO. 147-24-0) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) LJ.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NTP ‘TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIPHENHYDRAMINE HYDROCHLORIDE (CAS NO. 147-24-0) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) R. Melnick, Ph.D., Study Scientist NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 1989 NTP TR 355 NIH Publication No. 89-2810 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health CONTENTS PAGE ABSTRACT ................................................................ 3 EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY .................. 6 CONTRIBUTORS ............................................................ 7 PEERREVIEWPANEL ........................................................ 8 SUMMARY OF PEER REVIEW COMMENTS ......................................... 9 I. INTRODUCTION ........................................................ 11 I1. MATERIALS AND METHODS .............................................. 21 III. RESULTS ............................................................. 35 RATS ............................................................. 36 MICE ............................................................. 45 GENETIC TOXICOLOGY ............................................... 53 IV.
    [Show full text]
  • Methapyrilene Hydrochloride (CAS No
    National Toxicology Program Toxicity Report Series Number 46 NTP Technical Report on the Hepatotoxicity Studies of the Liver Carcinogen Methapyrilene Hydrochloride (CAS No. 135-23-9) Administered in Feed to Male F344/N Rats July 2000 U.S. Department of Health and Human Services Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Toxicity Study Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • A Comparison of Drug Use in Driver Fatalities and Similarly Exposed Drivers
    DOT HS-802 488 A COMPARISON OF DRUG USE IN DRIVER FATALITIES AND SIMILARLY EXPOSED DRIVERS Contract No. DOT-HS-4-00941 July 1977 Final Report PREPARED FOR: U.S. DEPARTMENT OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION WASHINGTON, D.C. 20590 Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Govern­ ment assumes no liability for its contents or use thereof. Technical Report Documentation Page 1. Report No. 2. Goeemm.nt Accession No. 3. Recipient's Catalog No. DOT HS-802 488 -^. 1. Title and Subtitle 5. Report Date July 1977 A COMPARISON OF DRU^ USE IN DRIVER FATALITIES 6. Performing Organization Code AND SIMILARLY EXPOSED DRIVERS . B. Performing Organization Report No. 7. Authorrs) Robert R. Blackburn, Edward J. Woodhouse 3963-D 9. Performing Organization Name and Address 10. Worb Unit No. (TRAIS) Midwest Research Institute I). Contract at Grant No. 425 Volker Boulevard DOT-HS-4-00941 Kansas City, Missouri 64110 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 28 June 1974-25 March 1977 i U.S. Department of Transportation National Highway Traffic Safety Administration Final Report Washington, D.C. 20590 14. Sponsoring Agency Code 15. supplementary Notes 16. Abstract Crash information, urine, blood and bile samples from 900 fatally injured drivers were collected by medical examiners in 22 areas of the country. Ran­ domly selected living drivers were interviewed at times and places of recent fatal crashes in Dallas, Texas, and Memphis, Tennessee and breath, urine, and blood samples were obtained.
    [Show full text]
  • With [3H]Mepyramine (Trieyclic Antidepressants/Antihistamine/Neurotransmitter/Amitriptyline) VINH TAN TRAN, RAYMOND S
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 6290-6294,, December 1978 Neurobiology Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine (trieyclic antidepressants/antihistamine/neurotransmitter/amitriptyline) VINH TAN TRAN, RAYMOND S. L. CHANG, AND SOLOMON H. SNYDER* Departments of Pharmacology and Experimental Therapeutics, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Julius Axelrod, August 30,1978 ABSTRACT The antihistamine [3H mepyramine binds to Male Sprague-Dawley rats (150-200 g) were killed by cer- HI histamine receptors in mammalian brain membranes. vical dislocation, their brains were rapidly removed and ho- Potencies of H1 antihistamines at the binding sites correlate mogenized with a Polytron for 30 min (setting 5) in 30 vol of with their pharmacological antihistamine effects in the guinea pig ileum. Specific [3Himepyramine binding is saturable with ice-cold Na/K phosphate buffer (50 mM, pH 7.5), and the a dissociation constant of about 4 nM in both equilibrium and suspension was centrifuged (50,000 X g for 10 min). The pellet kinetic experiments and a density of 10pmolper gram ofwhole was resuspended in the same volume of fresh buffer and cen- brain. Some tricyclic antidepressants are potent inhibitors of trifuged, and the final pellet was resuspended in the original secific [3Hmepamine binding. Regional variations of volume of ice-cold buffer by Polytron homogenization. Calf [3Hjmepyramine ing do not correlate with variations in brains were obtained from a local abattoir within 2 hr after the endogeneous histamine and histidine decarboxylase activity. death of the animals and transferred to the laboratory in ice- Histamine is a neurotransmitter candidate in mammalian brain cold saline.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Antihistamines on Zirchrom®-PS
    Technical Bulletin #250 Separation of Antihistamines mAU Analytes 120 1 - Pheniramine 100 2 - Doxylamine 3 - Chlorpheniramine 80 4 - Methapyrilene 5 - Tripelennamine 60 6 - Cyclizine 40 2 3 4 1 5 20 6 0 -20 0 1 2 3 4 5 6 7 LC Conditions Column: -C18, 100 × 4.6 mm Mobile Phase: 10/25/65 A/B/C Flow rate: 1.0 mL/min. A: ACN Temperature: 75 ºC B: THF Injection volume: 5 µL C: 50mM Tetramethylammonium hydroxide, Detection: 254 nm 10mM Triethylamine, pH 12.2 Technical Bulletin #263 Antihistamines on ZirChrom®-PS mAU 4 175 Meclizine 150 Cyclizine 5 125 Cl N 100 1 N N 2 75 N 50 3 25 0 0 1 2 3 4 5 min Analytes 1 - Tripelennamine 2 - Triprolidine 3 - Cyclizine 4 - Pyrrobutamine 5 - Meclizine LC Conditions Column: ZirChrom®-PS, 50 mm × 4.6 mm i.d. Flow rate: 1.0 mL/min. Mobile Phase: Gradient Elution Temperature: 40 ºC Injection volume: 0.5 µL Time (Minutes) % A %B Detection: 254 nm 0 95 5 Back Pressure: 56 bar 1 85 15 4 40 60 A: 25mM HCl, pH 1.9 B: ACN Faster Analysis and Higher Efficiency with Thermally- Stable HPLC Columns Technical Bulletin #269 Dwight Stoll, Peter W. Carr ZirChrom Separations, Inc. Chromatographers have long known that modest increases in The initial separation is shown in Figure 1. Then, the temperature operating temperature can dramatically improve both the was increased to 50 oC, and the eluent flow rate also increased to efficiency and speed of an HPLC separation. Until now, this maintain the same system backpressure.
    [Show full text]
  • Lack of Binding of Methapyrilene and Similar Antihistamines to Rat Liver DNA Examined by 32Ppostlabeling1
    [CANCER RESEARCH 48, 6475-6477, November 15, 1988| Lack of Binding of Methapyrilene and Similar Antihistamines to Rat Liver DNA Examined by 32PPostlabeling1 W. Lijinsky2 and K. Yamashita3 Biochemistry Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, Japan ABSTRACT genie to bacteria (4) with rat liver activation and nonmutagenic to Drosophila," does not induce sister-chromatid exchange (5), The nonmutagenic carcinogen methapyrilene, together with several and has failed to transform mammalian cells in culture under noncarcinogenic analogues, was administered to rats p.o. for as long as 4 conditions in which many complex carcinogens are transform wk at concentrations of 0.1%. DNA was isolated from the liver and other ing (6). Methapyrilene is not highly toxic, and almost its only organs and hydrolyzed, and the identification of covalent adducts was made using the "P postlabeling method of Randerath. Some modified known biological action is to induce proliferation of mitochon procedures were also used to deal with the possibility of very mobile dria in rat liver (7), but not in the liver of hamsters or Guinea adducts being formed from these hydrophilic amines. Although the rats pigs (8). Methapyrilene has other effects on rat liver, which are had received as much as 2 g of amine per kg of body weight, no evidence difficult to relate to carcinogenesis, for example, increasing of formation of DNA adducts in liver or other organs was seen; the level lipid peroxidation (9); this property is shown equally, however, of detection was between 1 in 111"and 1 in 10' nucleotides.
    [Show full text]
  • Citalopram Distribution in Postmortem Cases
    Journal of Analytical Toxicology, Vol. 25, October 2001 Case Report[ Citalopram Distribution in Postmortem Cases Barry Levine*, Xiang Zhang, and John E. Smialek Office of the Chief Medical Examiner, Stateof Maryland, 111 Penn Street, Baltimore, Maryland Gary W. Kunsman and Michael E. Fronlz Bexar County Medical Examiner's Office, 7337 Louis PasteurDrive, San Antonio, Texas78229 Downloaded from https://academic.oup.com/jat/article/25/7/641/729633 by guest on 27 September 2021 Abstract I N-desmethylcitalopram, N-didesmethylcitalopram, citalopram N-oxide, and a propionic acid metabolite. Only parent drug and This is a report of the analytical findings in 13 cases investigated by the desmethyl metabolite appear in the urine in amounts greater either the Office of the Chief Medical Examiner, State of Maryland than 10% of a dose (4). Steady-state plasma therapeutic concen- or the Bexar County (San Antonio, TX) Medical Examiner's Office trations of citalopram are in the range of 0.04 to 0.1 mg/L (5,6). in which citalopram, a highly selective serotonin reuptake inhibitor Although citalopram has been available in Europe as an anti- used therapeutically as an antidepressant, was identified. In 8 of depressant since the 1980s, the drug has only recently been the 9 cases in which both blood and urine specimens were approved for use in the United States. The following is a summary received, the urine citalopram concentration exceeded the blood of the analytical findings in cases reported to the Office of the concentration, indicating that urine is an appropriate specimen for Chief Medical Examiner, State of Maryland and the Bexar County screening citalopram use.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,492,541 B2 Srinivasan Et Al
    USOO9492541 B2 (12) United States Patent (10) Patent No.: US 9,492,541 B2 Srinivasan et al. (45) Date of Patent: *Nov. 15, 2016 (54) PHENYLEPHERINE CONTAINING DOSAGE 4,839,354 A * 6/1989 Sunshine et al. .......... 514,226.5 FORM 4,882,158 A 11/1989 Yang et al. 5,032,401 A 7, 1991 Jamas et al. 5,133,974 A 7, 1992 Paradissis et al. (75) Inventors: Viswanathan Srinivasan, The 5,445,829 A 8, 1995 Paradissis et al. Woodlands, TX (US); Ralph Brown, 5,840,731 A * 11/1998 Mayer et al. ................. 514,289 Southlake, TX (US); David Brown, 6,001,392 A * 12/1999 Wen et al. .................... 424/486 Colleyville, TX (US); Juan Carlos 3:52,- 4 R 358, Stiling et al. Menendez, Bedford, TX (US); 6,462,094 B1 10/2002 Dang et al. Venkatesh Balasubramanian, 6,602,521 B1 8/2003 Ting et al. Arlington, TX (US); Somphet Peter 6,699,502 B1 3/2004 Fanara et al. Suphasawud, Fort Worth, TX (US) 6,797.283 B1 9, 2004 Edgren et al. 2004/022O153 A1 11/2004 Jost-Price et al. 2004/0229849 A1 11/2004 Jost-Price et al. (73) Assignee: SOVEREIGN 2004/0253311 A1 12/2004 Berlin et al. PHARMACEUTICALS, LLC, Fort 2005/0112199 A1 5.2005 Padval et al. Worth, TX (US) 2005/O152967 A1 7/2005 Tengler et al. 2005/O153947 A1 7/2005 Padval et al. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 2648 days.
    [Show full text]
  • Forensic Toxicology Laboratory Office of Chief Medical Examiner New York City
    FORENSIC TOXICOLOGY LABORATORY OFFICE OF CHIEF MEDICAL EXAMINER NEW YORK CITY BASIC DRUGS QUANTITATION by NPD GAS CHROMATOGRAPHY PRINCIPLE Basic drugs encompass the largest group of compounds analyzed at the OCME FTL. This procedure is designed to extract basic drugs from biological specimens for analysis by gas chromatography (GC) using a nitrogen-phosphorus detector (NPD). The procedure is used for quantitative purposes. Basic drugs are extracted from biological fluids or tissue homogenates by adjusting the matrix pH to 9.8 and extracting the drugs with n-butyl chloride. Drugs are back-extracted from n-butyl chloride into an acid; the aqueous solution is made basic and extracted with a small volume of organic solvent which is analyzed by GC NPD. A four-point calibration curve is used for routine all analyses (0.05 mg/L, 0.20 mg/L, 1.0 mg/L and 2.0 mg/L) along with a negative control and three positive controls (0.025 mg/L, 0.5 mg/L and 1.0 mg/L). The low control (0.025 mg/L) challenges the assay near the lower limit of quantitation and the high control (1.0 mg/L) challenges the assay near the upper limit of quantitation. SAFETY The handling of all samples, reagents and equipment is performed within the established laboratory safety guidelines detailed in the safety manual. REAGENTS AND MATERIALS All chemicals should be analytical reagent (AR) grade or higher. The chemical reagents required for the extraction procedure are prepared as indicated. In each case, the prepared reagent is stable for a minimum of six months.
    [Show full text]
  • Pharmacology/Therapeutics Ii Block Ii Handouts – 2016-17
    PHARMACOLOGY/THERAPEUTICS II BLOCK II HANDOUTS – 2016‐17 59. ON‐LINE LEARNING: Anti‐Depressants – Schilling 60. ON‐LINE LEARNING: Bipolar Medications – Schilling 61. & 62 ON‐LINE LEARNING: Sedative‐Hypnotics – Part I & II – Battaglia 63. Drugs of Abuse, tolerance and dependence ‐ Bakowska 64. ON‐LINE LEARNING: AntiPsychotics – Schilling 65. ACTIVE LEARNING SESSION: Psycho‐Pharm – Schilling (Lumen Only) 66. Drugs to Treat Rheumatoid Arthritis & Gout ‐ Clipstone Pharmacology & Therapeutics Anti-Depressants February 15, 2017 George Battaglia, PhD & David Schilling, M.D. ANTIDEPRESSANTS 1. Know, for the following classes of Antidepressant medications: Monoamine Oxidase Inhibitors (MAO-I’s) Tricyclic Antidepressants (TCA’s) Selective Serotonin Reuptake Inhibitors (SSRI’s) Serotonin-Noradrenergic Reuptake Inhibitor (SNRI’s) Atypical Antidepressants o Noradrenergic and Serotonergic alpha2 Adrenergic Receptor Blocker o Norepinephrine Dopamine Reuptake Inhibitor (NDRI’s) o Serotonin/Norepinephrine Reuptake Inhibitor & Serotonin 2S receptor antagonist o Serotonin re-uptake blockade & serotonin 1A receptor partial agonist A. The prototype medication(s) for each class; B. The mechanism of action (often the class name); C. Relevant pharmacodynamics (such as the common and serious adverse effects) Common adverse effects: 5HT activity GI, CNS, Sexual dysfunction, risk of discontinuation syndrome NE activity blood pressure, sweating histamine blocking weight gain, sedation acetylcholine blocking blurred vision, urinary hesitancy, dry mouth, constipation, risk of confusion Serious adverse effects: serotonin syndrome, mania, hyponatremia, activation of suicidal ideation; seizures; cardiac arrhythmia; hypertensive crisis D. Relevant pharmacokinetics Half- life of fluoxetine vs. other antidepressants, MAO-I’s; E. Important potential drug-drug interactions, MAO-I’s & sympathomimetic drugs; MAO-I’s & other antidepressants, Fluoxetine and/or Paroxetine & TCA’s F.
    [Show full text]
  • TR-317: Chlorpheniramine Maleate (CASRN 113-92-8) in F344/N Rats
    NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 317 TOXICOLOGY AND CARCINOGENESIS STUDIES OF CHLORPHENIRAMINE MALEATE (CAS NO. 113-92-8) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NATIONAL TOXICOLOGY PROGRAM The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S.Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test developmentfvalidation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies. The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcino- genesis Bioassay Testing Program, NCI, was transferred to the NIEHS. Chlorpheniramine Maleate, NTP TR 317 NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF CHLORPHENIRAMINE MALEATE (CAS NO. 113-92-8) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 1986 NTP TR 317 NIH Publication No.
    [Show full text]