Mythogenesis As a Reconfiguration of Space in an “Alternate World”: the Legacy of Origin and Diaspora in Experimental Writing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L RES~ARCH Coljncll ·
NA~IOf\i'At ACADEMIES OF SCIENCE AND ENGiNEERING 7 ·.· ·.·. : NATIONAL RES~ARCH ColJNCll · of the UNITED STATES OF AMERICA UNITED• STATES NATIONAL COMMITTEEI . International Union of Radio Sden<:e Nationa.1 Radio Science Meeting 13-15 January 1982 · f l··.. ·· Sponsored by USNC/URSI in cooperation with r Institute of Electrical and Electronics Engineers University of· Colorado Boulder, Colorado U.S.A. ~· 1' National Radio Science Meeting 13-15 January 19 82 Condensed Technical Program TUESDAY, 12 JANUARY 0900 CCIR U.S. Study Group 5 OT 8-8 CCIR U.S. Study ,Gr.oup 6 Radio Building 2000-2400 USNC/URSI Meeting Broker Inn WEDNESDAY, 13 JANUARY 0900-1200 A-1 Time Domai~ 1-ieasurements CRl-42 B-1 Scattering CR2-28 B-2 Electromagnetic Theory CR2-28 C-1 Topics in Information Theory CR0-30 F-1 Propagation Theory and Models CR2-26 J-1 Millimeter-Wave Astronomy UMC Ballroom 1330-1700 A-2 Microwave/Millimeter Wave Measurements CRl-42 B-3 Antenna Theory and Practice CR2-28 B-4 Inverse Scattering CR2-6 C-2 Digital HF: Equaltz ation and Reiated CR0-30 Techniques E-1 EM Noise in the Sea CRl-40 F-2 Ground-Based Remote Sensing CR2-26 H-1 VLF-ELF Wave Injection Into the CRl-46 Magnetosphere J-2 Very Long Baseline Interferometry UMC 157 1700 Commission A Business Meeting CRl-42 Commission C Business Meeting CR0-30 Commission E Business Meeting CRl-40 Commission F Business Meeting CR2-26 Commission H Business Meeting CRl-46 1800-2000 Reception Engineering Center 2000-2200 IEEE Wave Propagation Standards Committee CRl-46 TH.URSDAY, 14 JANUARY 0830-1200 A-3 -
Mellor 2018 Mres Genderpowe
Gender, power and disguise: cross dressing women within Shakespeare and Spenser MELLOR, Hollyann Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/24018/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/24018/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. GENDER, POWER AND DISGUISE: CROSS-DRESSING WOMEN WITHIN SHAKESPEARE AND SPENSER. Submitted by Hollyann Kaye Mellor Department of Development and Society In partial fulfilment of the requirements for the degree of Masters by Research in English Sheffield Hallam University September 2018 Abstract Gender, Power and Disguise: Cross-Dressing Women within Shakespeare and Spenser. Master of Arts in English, 2018. By engaging with Jonathan Dollimore and Alan Sinfield’s (1994) consolidation, subversion and containment theory this dissertation explores how Edmund Spenser and William Shakespeare incorporated female crossdressers within their works to present fictional women as threatening to established Elizabethan gender codes. Transgressive female characters in these works demand particular attention given the insecure variant of patriarchy that had emerged out of Elizabeth I’s reign, and the insistent iconography of female power and constancy that was encouraged throughout the final decades of her rule. This dissertation argues that Spenser and Shakespeare presented crossdressing women as figures who had the potential to subvert established notions of patriarchy during the final decade of the sixteenth-century. -
The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring. -
Cfa in the News ~ Week Ending 3 January 2010
Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis. -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C. -
By: Maddie S. It Takes 84 Earth Years for It to Complete One Orbit
Uranus By: Maddie S. It takes 84 earth years for it to complete one orbit. It's radius is 400.1 miles. At its closest it orbits Uranus appeared to be 1.7 billion miles away. At its only a blue-green ball with farthest it orbits 1.9 billion miles a smooth surface. away. Uranus is too far away to see easily without a telescope. Uranus is the seventh planet Sometimes it is just bright from the sun. It orbits farther enough to see with the naked out, along Uranus's outer eye. ring. Uranus' high powered telescope at the Keck Observatory in Hawaii creates detailed images of Uranus. Each of Uranus' hemispheres receives 42 earth years of sunlight. Uranus' rings are a mix of large chunks of matter and fine particles of dust. One spacecraft has managed to visit Uranus but it took a little creativity to get it there. The rings orbiting Uranus are thinner than those orbiting other planets. Uranus has ten moons. Ariel is Uranus's brightest moon. The moons names are Juliet, Puck Cordelia, Ophelia, Bianca, Desdemona, Portia, Rosalind, Cressida, and Belinda. Umbriel is the darkest moon on Uranus. Uranus Uranus is so far away that for about 200 years scientists could not make out how quickly it turns on its axis. Most planets turn on their axis in such a way that they are almost upright as they move about the sun. It is the only planet with an axis tipped that way, so some think of it as a sideways planet. Like most planets, Uranus has its own natural satellites, or moons. -
Uranian and Saturnian Satellites in Comparison
Compara've Planetology between the Uranian and Saturnian Satellite Systems - Focus on Ariel Oberon Umbriel Titania Ariel Miranda Puck Julie Cas'llo-Rogez1 and Elizabeth Turtle2 1 – JPL, California Ins'tute of Technology 2 – APL, John HopKins University 1 Objecves Revisit observa'ons of Voyager in the Uranian system in the light of Cassini-Huygens’ results – Constrain planetary subnebula, satellites, and rings system origin – Evaluate satellites’ poten'al for endogenic and geological ac'vity Uranian Satellite System • Large popula'on • System architecture almost similar to Saturn’s – “small” < 200 Km embedded in rings – “medium-sized” > 200 Km diameter – No “large” satellite – Irregular satellites • Rela'vely high albedo • CO2 ice, possibly ammonia hydrates Daphnis in Keeler gap Accre'on in Rings? Charnoz et al. (2011) Charnoz et al., Icarus, in press) Porco et al. (2007) ) 3 Ariel Titania Oberon Density(kg/m Umbriel Configuraon determined by 'dal interac'on with Saturn Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Configuraon determined by Titania Oberon Ariel 'dal interac'on with Saturn Umbriel Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Evidence for Ac'vity? “Blue” ring found in both systems Product of Enceladus’ outgassing ac'vity Associated with Mab in Uranus’ system, but source if TBD Evidence for past episode of ac'vity in Uranus’ satellite? Saturn’s and Uranus’ rings systems – both planets are scaled to the same size (Hammel 2006) Ariel • Comparatively low -
Abstract Bookletbooklet
ABSTRACTABSTRACT BOOKLETBOOKLET PlanetPlanet FormationFormation && EvolutionEvolution 20142014 Kiel University, September 8 - 10, 2014 Scientific Rationale The goal of this workshop is to provide a common platform for scientists working in the fields of star and planet formation, exo-planets, astrobiology, and planetary research in general. Most importantly, this workshop aims to stimulate and intensify the dialogue between researchers using various approaches - observations, theory, and laboratory studies. Students and Postdocs are particularly encouraged to present their results and to use the opportunity to learn more about the main questions and most recent results in adjacent fields. www.astrophysik.uni-kiel.de/kiel2014 Contact: [email protected] Foto/Copyright: Czeslaw Martysz Planet Formation & Evolution 2014 8 - 10 September 2014 { Kiel Abstracts [updated: August 25, 2014] Scientific Organization Committee Local Organization Committee Sebastian Wolf (Chair, Universit¨atKiel) Jan Philipp Ruge (Chair) J¨urgenBlum (Universit¨atBraunschweig) Gesa Bertrang Stephan Dreizler (Universit¨atG¨ottingen) Robert Brunngr¨aber Barbara Ercolano (Universit¨atM¨unchen) Florian Kirchschlager Artie Hatzes (Th¨uringerLandessternwarte, Tautenburg) Brigitte Kuhr Willy Kley (Universit¨atT¨ubingen) Florian Ober Thomas Preibisch (Universit¨atM¨unchen) Stefan Reißl Heike Rauer (DLR, Berlin) Peter Scicluna Mario Trieloff (Universit¨atHeidelberg) Sebastian Wolf Robert Wimmer-Schweingruber (Universit¨atKiel) Gerhard Wurm (Universit¨atDuisburg) -
Programme Book
EPSC2018 European Planetary Science Congress 2018 16–21 September 2018 TU Berlin | Berlin | Germany Programme Book © TU Berlin/Dahl access to access to cafeteria area first floor area Information & registration Jupiter room Ground floor area H0104 Ground floor area EPSCEuropean Planetary Science Congress Mars Venus Saturn Uranus Neptune room room room room room H0112 H0111 H0110 H0107 H0106 access to ground floor area Cafeteria area Cafeteria area EPSCEuropean Planetary Science Congress Mercury Press conference Press room room room H2035 H2036 H2037 Second floor area Second floor area EPSCEuropean Planetary Science Congress EEuropeaPn PlanetarSy Science CCongress Table of contents 1 Welcome …………………………………2 General information …………………………………4 Exhibitors, Community events …………………………………6 Splinter meetings & workshops .………………………….….…7 Session overview ……………………………..….8 Monday – Oral programme ..……………………………….9 Tuesday – Oral programme ……………………………….19 Tuesday – Poster programme .………………………………30 Wednesday – Oral programme .……….…………………..…42 Wednesday – Poster programme .………………………………51 Thursday – Oral programme ……………………………….60 Thursday – Poster programme ……………………………….71 Friday – Oral programme ……………………………….81 Author index ……………………………….91 European Planetary Science Congress 2018 2 Welcome Message from the Organizers amateur astronomers, policy makers, the next generation of scientists and engineers, and On behalf of the Executive Committee, the planetary scientists around the world. Scientific Organizing Committee and the Local Organizing Committee, welcome -
Dust Phenomena Relating to Airless Bodies
Space Sci Rev (2018) 214:98 https://doi.org/10.1007/s11214-018-0527-0 Dust Phenomena Relating to Airless Bodies J.R. Szalay1 · A.R. Poppe2 · J. Agarwal3 · D. Britt4 · I. Belskaya5 · M. Horányi6 · T. Nakamura7 · M. Sachse8 · F. Spahn 8 Received: 8 August 2017 / Accepted: 10 July 2018 © Springer Nature B.V. 2018 Abstract Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, mak- ing them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important con- sequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from ∼ 10−3 km to ∼ 103 km, with a focus on recent developments in this field. Keywords Dust · Airless bodies · Interplanetary dust Cosmic Dust from the Laboratory to the Stars Edited by Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle Sterken and Andrew Westphal B J.R. Szalay [email protected] A.R. Poppe [email protected] 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA 2 Space Sciences Laboratory, U.C. Berkeley, Berkeley, CA, USA 3 Max Planck Institute for Solar System Research, Göttingen, Germany 4 University of Central Florida, Orlando, FL 32816, USA 5 Institute of Astronomy, V.N. -
Perfect Little Planet Educator's Guide
Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet. -
The Universe Contents 3 HD 149026 B
History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .