Munich June 21-24, 2003

Total Page:16

File Type:pdf, Size:1020Kb

Munich June 21-24, 2003 4 International Symposium on Laser Precision Microfabrication Munich June 21-24, 2003 Conference Chair Isamu Miyamoto, Osaka University, Japan Co-Chairs Andreas Ostendorf,Laser Zentrum Hannover, Germany Koji Sugioka, RIKEN, Japan Henry Helvajian; The Aerospace Corporation, USA Table of Contents Welcome........................................................................................................................................................1 List of Cooperating Organisations .................................................................................................................1 Invitation to Conference Opening (16th International Conference on Lasers and Electrooptics in Europe) 2 Committees....................................................................................................................................................3 Programme Overview....................................................................................................................................4 Dinner Invitations...........................................................................................................................................6 Oral Presentations: Session Overviews and Abstracts.................................................................................9 Opening Session: Overview on Laser Precision Microfabrication..................................................10 Session 1: Thin-film Processing .....................................................................................................13 Session 2: Fundamentals of fs-laser Processing ...........................................................................17 Session 3: Machining of Silica and Glass.......................................................................................21 Session 4: Manufacturing of Microsystems....................................................................................27 Session 5: Precise Structuring .......................................................................................................32 Session 6: Special Session on EUV Technology ...........................................................................38 Session 7, Part I: Micro-Welding and Melting.................................................................................43 Session 7, Part II: Micro-Welding and Melting ...............................................................................45 Session 8: Applications of fs-laser machining ................................................................................50 Session 9: Precision Marking .........................................................................................................53 Session 10: Drilling and Microcutting .............................................................................................56 Session 11: Laser nano-machining ................................................................................................62 Session 12: Manufacturing of Waveguides ....................................................................................66 Session 13: Dicing Processes ........................................................................................................69 Session 14: Post-Deadline Papers.................................................................................................72 Poster Session: Overview and Abstracts ....................................................................................................77 Index of Authors ..........................................................................................................................................93 Appendix......................................................................................................................................................95 LPM Proceedings Order Form........................................................................................................95 SPIE Copyright Form......................................................................................................................97 List of Sponsors...........................................................................................................................................99 Advertisements..........................................................................................................................................101 LPM 2003 – 4th International Symposium on Laser Microfabrication Munich June 21-24, 2003 Welcome to LPM 2003 The International Symposium on Laser Precision Microfabrication (LPM) focuses on science and technology of advanced laser processing for precision microfabrication. Considering the requests from all over the world, the fourth LPM (LPM 2003) is now Isamu Miyamoto held at Munich, Germany, in cooperation with WLT-Wissenschaftliche Gesellschaft Lasertechnik e.V. The last three LPM conferences have won reputation and popularity as Professor, Dr. one of the most important international meetings in the field of LPM in the world. Eng. LPM 2003 is planned as a four day event, and during the conference, you can also Osaka University enjoy “Laser 2003: World of Photonics” which is one of the largest international trade shows in laser and optics. The aim of LPM 2003 is to provide a forum for discussion of fundamental aspects of laser- material interaction, the state of the art of laser materials processing, and topics for the next generation by the collaboration among fundamental scientists, end users and laser manufactures. I do hope one can find out what technologies are limiting their real applications and future laser technologies to be developed through the papers presented by many world authorities invited to LPM 2003. Conference Chair Professor Dr. Eng. Isamu Miyamoto Osaka University, Japan Special Thanks to the LPM 2003 Cooperating Organizations JSPE - The Japan Society for Precision Engineering JSAP - The Japan Society of Applied Physics Mate 2003 JWS - The Japan Welding Society Mate 2003 - Committee of Micro Joining, The Japan Welding Society LSJ - The Laser Society of Japan JIEP - Japan Institute of Electronics Packaging - 1 - LPM 2003 – 4th International Symposium on Laser Microfabrication Munich June 21-24, 2003 Committees General Chair: Isamu Miyamoto (Osaka University, Japan) Co-Chairs: Andreas Ostendorf (Laser Zentrum Hannover, Germany) Koji Sugioka (RIKEN, Japan) Henry Helvajian (The Aerospace Corp., USA) __________________________________________________________________________________ Program Committee: Organizing Committee: David Ashkenasi (LMTB Berlin, Germany) Zhao-Gu Cheng (SIOFM, China) Dieter Bäuerle (Johannes Kepler University Linz, Friedrich Dausinger (University of Stuttgart, Germany) Austria) Gerd Eßer (Bavarian Laser Zentrum, Germany) Boris Chichkov (Laser Zentrum Hannover, Germany) Burkhard Fechner (Lambda Physik, Japan) Jan Dubowski (NRC, Canada) Jim Fieret (Exitech Ltd., UK) Friedrich Dausinger (University of Stuttgart, Germany) Kenshi Fukumitsu (Hamamatsu Photonics, Japan) Corey Dunsky (Electro Scientific Industries, USA) Arnold Gillner (Fraunhofer ILT, Germany) Gerd Eßer (Bavarian Laser Zentrum, Germany) M. H. Hong (DSI, Singapore) Arnold Gillner (Fraunhofer ILT, Germany) Tony Hoult (Coherent Inc, USA) Malcolm Gower (Exitech Ltd., UK) Juergen Ihlemann (Laser Laboratory Goettingen, Peter Herman (University of Toronto, Canada) Germany) Ingolf Hertel (Max-Born Institut Berlin, Germany) Narumi Inoue (National Defence Academy, Japan) James Horwitz (Naval Research Laboratories, USA) Takashi Ishide (Matsushita Heavy Industry, Japan) Hideo Hosono (Tokyo Institute of Technology, Japan) Shinichi Ishizaka (Japan Steel Works, Japan) Willem Hoving (Philips CFT, Netherlands) Yoshiro Ito (Nagaoka University of Technology, Yoshiro Ito (Nagaoka University of Technology, Japan) Japan) Takahisa Jitsuno (Osaka University, Japan) Kazuyoshi Itoh (Osaka University, Japan) Teruyoshi Kadoya (Trumph, Japan) Takahisa Jitsuno (Osaka University, Japan) Kazuo Kamada (Matsushita Electric Works, Japan) Klaus Koerber (Laser Zentrum Hannover, Germany) Hidehiko Karasaki (Matsushita Industrial Equipment, Vitali Konov (GPI, Russia) Japan) C. Lee (In-Ha University, Korea) Kojiro Kobayashi (Osaka University, Japan) Y. F. Lu (University of Nebraska, USA) Klaus Koerber (Laser Zentrum Hannover, Germany) Hiroshi Masuhara (Osaka University, Japan) Christian Kulik (Laser Zentrum Hannover, Germany) Johan Meijer (University of Twente, Netherlands) William P. Latham (Air Force Research Laboratories, Simon Metev (University of Bremen-BIAS, Germany) USA) Michel Meunier (Ecole Polytechnique Montreal, J. M. Lee (Samsung Electronics, Korea) Canada) Simon Metev (University of Bremen-BIAS, Germany) Hiroaki Misawa (Tokushima University, Japan) Hiroshi Miura (Shizuoka University, Japan) Hiroyuki Niino (AIST, Japan) Takashi Miyoshi (Osaka University, Japan) Jyunji Nishii (AIST-Kansai, Japan) Sumio Nakahara (Kansai University, Japan) Etsuji Ohmura (Osaka University, Japan) Hirokuni Namba (Sumitomo Electric Industry, Japan) Tatsuo Okada (Kyushu University, Japan) Hiroyuki Niino (AIST, Japan) Toshihiko Ooie (AIST-Shikoku, Japan) Satoru Nishio (Tohoku University, Japan) Raj Patel (IMRA America, USA) Klaus Nowitzki (OptecNet Deutschland, Germany) Alan Petersen (Spectra Physics, USA) Etsuji Ohmura (Osaka University, Japan) Juergen Reif (University of Cottbus, Germany) Toshihiko Ooie (AIST-Shikoku, Japan) Uwe Stamm (XTREME Technologies GmbH, Alberto Piqué (Naval Research Laboratories, USA) Germany)
Recommended publications
  • Lecture #16 Glass-Ceramics: Nature, Properties and Processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015
    Glass Processing Lecture #16 Glass-ceramics: Nature, properties and processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015 Lectures available at: www.lehigh.edu/imi Sponsored by US National Science Foundation (DMR-0844014) 1 Glass-ceramics: nature, applications and processing (2.5 h) 1- High temperature reactions, melting, homogeneization and fining 2- Glass forming: previous lectures 3- Glass-ceramics: definition & applications (March 19) Today, March 24: 4- Composition and properties - examples 5- Thermal treatments – Sintering (of glass powder compactd) or -Controlled nucleation and growth in the glass bulk 6- Micro and nano structure development April 16 7- Sophisticated processing techniques 8- GC types and applications 9- Concluding remmarks 2 Review of Lecture 15 Glass-ceramics -Definition -History -Nature, main characteristics -Statistics on papers / patents - Properties, thermal treatments micro/ nanostructure design 3 Reading assignments E. D. Zanotto – Am. Ceram. Soc. Bull., October 2010 Zanotto 4 The discovery of GC Natural glass-ceramics, such as some types of obsidian “always” existed. René F. Réaumur – 1739 “porcelain” experiments… In 1953, Stanley D. Stookey, then a young researcher at Corning Glass Works, USA, made a serendipitous discovery ...… 5 <rms> 1nm Zanotto 6 Transparent GC for domestic uses Zanotto 7 Company Products Crystal type Applications Photosensitive and etched patterned Foturan® Lithium-silicate materials SCHOTT, Zerodur® β-quartz ss Telescope mirrors Germany
    [Show full text]
  • High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
    High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,
    [Show full text]
  • Fundamentals of Laser Assisted Micro– and Nanotechnologies” (FLAMN-10)
    International Conference “Fundamentals of Laser Assisted Micro– and Nanotechnologies” (FLAMN-10) ABSTRACTS ITMO RFBR GPI RAS State Hermitage Museum State Museum "Tzarskoje Selo" July 5-8, 2010 St. Petersburg − Pushkin, Russia INTERNATIONAL CONFERENCE Fundamentals of Laser Assisted Micro– & Nanotechnologies (FLAMN-10) July 5-8, 2010, St. Petersburg − Pushkin, Russia - Section Laser-Matter Interaction (LMI) - Section Laser-Assisted Micro-and Nanotechnologies (LAMN) Associated events: - Workshop “Photophysics of Nano-scale Systems” (W1) - Workshop “Terahertz Radiation Interaction with a Matter” (W2) - Workshop “Laser Cleaning and Artworks Conservation” (W3) - Seminar “Industrial Applications of Fiber Lasers” (S1) - Seminar “Computer Simulations of Laser Technologies” (S2) - School for young scientists and engineers (YSS) Dedicated to 50th anniversary of lasers and laser technology and 110 anniversary of National Research University of Information Technologies, Mechanics and Optics Organizers: • St. Petersburg State University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg, Russia • General Physics Institute of Russian Academy of Sciences (GPI RAS), Moscow, Russia in cooperation with: Laser Association & D.S. Rozhdestvensky Russian Optical Society Sponsors: * Russian Federation Ministry of Education and Science, * St. Petersburg State University of Information Technologies, Mechanics and Optics (ITMO), * Russian Foundation for Basic Research (RFBR), * European Office of Aerospace Research & Development (EOARD) * General Physics Institute of Russian Academy of Sciences (GPI RAS), * Foundation “Dinasiya”, * “Laser Track” Ltd., * Company “Lasers & Apparatus TM”, * CE “Lasertech” Ltd., * “Laser Center” Ltd, * “Mobile Laser Technologies” Ltd., * “Baltex” Ltd., * TRIZ Centre “Tvortchestvo” Ltd., * Company “LaserVarioRakurs” I Honorary Chairs Vladimir N. Vasiliev, Ivan A. Shcherbakov SPb SU ITMO, St. Petersburg, GPI RAS, Moscow Conference Chairs Vadim P. Veiko, Vitaly I. Konov ITMO, St.
    [Show full text]
  • Richard Bijlard, Msc. Technogation - Invenios Invenios Worldwide
    New Bonding Technology enables Multi-Material Photonics Solutions Richard Bijlard, MSc. Technogation - Invenios Invenios Worldwide Langen (Hessen) Germany Eindhoven Netherlands Santa Barbara, California, USA Material Structuring, Processing and Bonding • A variety of processes.. etching, micromachining, drilling laser processing, surface texturing wafer cutting, packaging, plating hot embossing,… ..on a range of materials! glasses, silicon, ceramics, polymers,metals, silicon carbide, thin films, sapphire, pyrex,… Presentation © Invenios – Richard Bijlard FOTURAN® Etch Large area processing Low aspect High aspect ratio ratio Sub-micron Features Embedded feature 3D features with large aspect ratio ! Deep undercut ~300 microns ! Room Temperature Bonding (patented: ATB) • Two or more substrates (different CTEs possible!) • Thin film blocking layer on interface layer • Appropriate wavelength laser • Very locally created plasma, so bulk of the material stays at room temperature • No glue or high temperatures Room Temperature Bonding - Characteristics • High bond strength > strength of the base material • High bond yields with reasonable demands on surface smoothness & cleanliness • Low temperatures, heat impacted zone < 1 µm of bond joint • Possible to create electrical leads in the same process step • Embed fluids or biomaterial/-coatings • Seals hermetically and in a vacuum or inert gas if required • Scalable process, designed for operating in clean room production lines • Flexibility in material selection, proven process! What can you bond?
    [Show full text]
  • Micro-Hole Drilling on Glass Substrates—A Review
    micromachines Review Micro-Hole Drilling on Glass Substrates—A Review Lucas A. Hof 1 and Jana Abou Ziki 2,* 1 Department of Mechanical & Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC H3G 1M8, Canada; [email protected] 2 Bharti School of Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada * Correspondence: [email protected]; Tel.: +1-705-675-1151 (ext. 2296) Academic Editors: Hongrui Jiang and Nam-Trung Nguyen Received: 14 November 2016; Accepted: 3 February 2017; Published: 13 February 2017 Abstract: Glass micromachining is currently becoming essential for the fabrication of micro-devices, including micro- optical-electro-mechanical-systems (MOEMS), miniaturized total analysis systems (µTAS) and microfluidic devices for biosensing. Moreover, glass is radio frequency (RF) transparent, making it an excellent material for sensor and energy transmission devices. Advancements are constantly being made in this field, yet machining smooth through-glass vias (TGVs) with high aspect ratio remains challenging due to poor glass machinability. As TGVs are required for several micro-devices, intensive research is being carried out on numerous glass micromachining technologies. This paper reviews established and emerging technologies for glass micro-hole drilling, describing their principles of operation and characteristics, and their advantages and disadvantages. These technologies are sorted into four machining categories: mechanical, thermal, chemical, and hybrid machining (which combines several machining methods). Achieved features by these methods are summarized in a table and presented in two graphs. We believe that this paper will be a valuable resource for researchers working in the field of glass micromachining as it provides a comprehensive review of the different glass micromachining technologies.
    [Show full text]
  • Microfabrication in Foturan™ Photosensitive Glass Using Focused Ion Beam
    Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2 - 4, 2007, London, U.K. Microfabrication in Foturan™ Photosensitive Glass Using Focused Ion Beam C J Anthony, P T Docker , P D Prewett and K C Jiang processed using a three step process. A glass wafer is exposed Abstract— The fabrication of nano-dimensional features in the to ultra-violet light typically in the 250-350nm range through a TM photoetchable glass Foturan , using focused ion beam quartz-chromium patterned mask. The exposure of the wafer in technology has been characterized. To date, most the prescribed area causes a release of electrons from the Ce++ microfabrication in this material has used UV lithography and donor ion. These electrons then recombine with the Ag+ ions to UV lasers, with minimum feature size of around 10µm determined by the grain structure, though there has been some recent work form Ag atoms. The wafer is then placed in a furnace at 600 using high energy proton irradiation. Focused ion beam degrees centigrade where the exposed parts are crystallized technology offers two potential advantages: features are etched causing the atoms of silver to agglomerate into small fragments. directly without post bake or HF wet etch and features can be Further heat treatment leads to the formation of lithium generated with lateral and depth resolution on the nanoscale. metasilicate. The final stage of processing is to etch the wafer Initial test features were milled to a depth of 1.46μm, without using hydrofluoric acid. The exposed areas etch preferentially distortion due to charging, at a milling rate of 0.23μm3/nC, in agreement with our simulations.
    [Show full text]
  • 3-Dimensional Microstructural
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS 3-DIMENSIONAL MICROSTRUCTURAL FABRICATION OF FOTURANTM GLASS WITH FEMTOSECOND LASER IRRADIATION TEO HONG HAI NATIONAL UNIVERSITY OF SINGAPORE 2009 3-DIMENSTIONAL MICROSTRUCTURAL FABRICATION OF FOTURANTM GLASS WITH FEMTOSECOND LASER IRRADIATION TEO HONG HAI (B. Eng. (Hons.), Nanyang Technological University) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 Acknowledgement ACKNOWLEDGEMENTS I would like to take this opportunity to express my appreciation to my supervisor, Associate Professor Hong Minghui for his guidance during the entire period of my Masters studies. He has been encouraging particularly in trying times. His suggestions and advice were very much valued. I would also like to express my gratitude to all my fellow co-workers from the DSI-NUS Laser Microprocessing Lab for all the assistance rendered in one way or another. Particularly to Caihong, Tang Min and Zaichun for all their encouragement and assistance as well as to Huilin for her support in logistic and administrative issues. Special thanks to my fellow colleagues from Data Storage Institute (DSI), in particular, Doris, Kay Siang, Zhiqiang and Chin Seong for all their support. To my family members for their constant and unconditioned love and support throughout these times, without which, I will not be who I am today. i Table of Contents TABLE OF CONTENTS ACKNOWLEDGEMENTS
    [Show full text]
  • CRC Handbook of Organic Photochemistry and Photobiology Microphotochemistry
    This article was downloaded by: 10.3.98.104 On: 30 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK CRC Handbook of Organic Photochemistry and Photobiology Axel Griesbeck, Michael Oelgemöller, Francesco Ghetti Microphotochemistry: Photochemical Synthesis in Microstructured Flow Reactors Publication details https://www.routledgehandbooks.com/doi/10.1201/b12252-4 Oksana Shvydkiv, Michael Oelgemöller Published online on: 21 Mar 2012 How to cite :- Oksana Shvydkiv, Michael Oelgemöller. 21 Mar 2012, Microphotochemistry: Photochemical Synthesis in Microstructured Flow Reactors from: CRC Handbook of Organic Photochemistry and Photobiology CRC Press Accessed on: 30 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/b12252-4 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly
    [Show full text]
  • Focus: Pgfunctional 12 Biochips Medical PG 10 Applicationsfocus: Medical Applications
    THE OFFICIAL NEWSLETTER OF THE LASER INSTITUTE OF AMERICA Volume: 2123 No: 1 JAJAN/FEBN/FEB 20132015 LIATODAY ILSC 2015: GATHERING TOP MINDS IN LASER SAFETY PG 6 ILSC 2013: EXPERIENCE THE WORLd’S LEADING LASER DIGITAL PHOTONIC SAFETY CONFERENCE PRODUCTION - THE FUTURE PG 6 OF LASER APPLICATIONS PG 14 EXPONENTIAL GROWTH OF MEDICAL LASER APPLICATIONS IN THE U.S. PG 8 INTERNATIONAL YEAR OF LIGHT PG 20 HYBRID FEMTOSECOND LASER MEET3D MICROFABRICATION: THE NEW PRESIDENT RELIABLE AND BOARDTOOL FOR OF FDIRECTORSABRICATION OF FOCUS: PGFUNCTIONAL 12 BIOCHIPS Medical PG 10 ApplicationsFOCUS: Medical Applications Laser Institute of AmericaAmerica, is the the 13501 Ingenuity Drive, Suite 128 international society dedicated to Orlando, FL 32826 fostering lasers, laser applications Phone: +1.407.380.1553 and laser safety worldwide. www.lia.org The world’s leading conference on laser safety Conference General Chair: John O’Hagan, Public Health England, Oxfordshire UK Laser Safety Scientific Sessions (LSSS) Chair: John Tyrer, Loughborough University, Loughborough UK Technical Practical Applications Seminar (PAS) Chair: Thomas Lieb, L*A*I International, Elk Grove, CA USA Medical Practical Applications Seminar Co-Chairs: Vangie Dennis, Spivey Station Surgery Center, Jonesboro, GA USA Leslie Pollard, Southwest Innovation Solutions, Inc., Richardson, TX USA Featuring: • Laser Safety Scientific Sessions – Get the most updated information on laser safety REGISTER • Technical Practical Applications Seminar – Participate in panel and hot topic discussions NOW! • Medical Practical Applications Seminar – Earn contact hours while experiencing cutting-edge presentations March 23-26, 2015 • Poster Presentation Gallery – EMBASSY SUITES | ALBUQUERQUE, NM USA Join presenters to share ideas! Plan to attend the conference where safety professionals meet to review current industry Presented by: standards and learn the latest in laser safety practice and hazard control.
    [Show full text]
  • Microfabricated Solid Oxide Fuel Cells
    Microfabricated Solid Oxide Fuel Cells THÈSE NO 4175 (2008) PRÉSENTÉE LE 26 SEPTEMBRE 2008 À LA FACULTE SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DE CÉRAMIQUE PROGRAMME DOCTORAL EN SCIENCE ET GÉNIE DES MATÉRIAUX ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Samuel REY-MERMET ingénieur en science des matériaux diplômé EPF de nationalité suisse et originaire de Val-d'Illiez (VS) acceptée sur proposition du jury: Dr N. Baluc, présidente du jury Prof. P. Muralt, directeur de thèse Prof. L. Gauckler, rapporteur Dr P. Hoffmann, rapporteur Dr H.-P. Loebl, rapporteur Suisse 2008 i Abstract Micro-fabricated solid oxide fuel cells (μSOFCs) are finding an increasing interest as potential power sources for portable devices such as MP3 players or laptops. The aim of this work was to fabricate a μSOFC demonstrator that works at 500°C and is fuelled by hydrogen. This thesis was divided into two parts. The first one was devoted to the development of an electrolyte and electrodes in form of sputtered thin films with electrical and mechanical properties suitable for the implementation in a real cell. YSZ and CGO electrolyte have been reactively sputtered from metallic targets. Both films are dense and have a columnar microstructure. The ionic conductivity of these films was of 0.5 S/m at 550°C for the CGO and of 5.5 x 10-3 S/m at 500°C for the yttria stabilized zirconia (YSZ) . Albeit the ceria doped gadolinia (CGO) was a better ionic conductor at low temperature, it was not possible to obtain an open circuit voltage (OCV) with a CGO electrolyte film.
    [Show full text]
  • A Bright Future for Glass-Ceramics
    A bright future for glass-ceramics From their glorious past, starting with their accidental discovery, to successful commercial products, the impressive range of properties and exciting potential applications of glass-ceramics indeed ensure a bright future! by Edgar Dutra Zanotto lass-ceramics were discovered – somewhat accidently G – in 1953. Since then, many exciting papers have been published and patents granted related to glass-ceram- ics by research institutes, universities and companies worldwide. Glass-ceramics (also known as vitro- cerams, pyrocerams, vitrocerâmicos, vitroceramiques and sittals) are produced by controlled crystal- lization of certain glasses – generally induced by nucleating additives. This is in contrast with sponta- neous sur- face crys- tallization, which is normally not wanted in glass manufacturing. They always con- tain a residual glassy phase and one or more embedded crystalline phases. The crystallinity varies between 0.5 and 99.5 percent, most frequently between 30 and 70 percent. Controlled ceramization yields an (Credit: Schott North America.) array of materials with interesting, sometimes unusual, combinations of properties. American Ceramic Society Bulletin, Vol. 89, No. 8 19 A bright future for glass-ceramics Unlike sintered ceramics, glass- ceramics are inherently free from poros- ity. However, in some cases, bubbles or pores develop during the latter stages of crystallization. Glass-ceramics have, in principle, several advantages. • They can be mass produced by any glass-forming technique. • It is possible to design their nano- structure or microstructure for a given application. Fig. 1. Standing, from left to right, TC-7 members Ralf Muller, Guenter VoelKsch, Linda • They have zero or very low porosity.
    [Show full text]
  • Let There Be Light Glass and Light Are Partners in Creating a Perfect Atmosphere in Airplanes and Cars
    6 THE SCHOTT TECHNOLOGY MAGAZINE SCHOTT.COM/SOLUTIONS 2/2016 2/201 SCHOTT SOLUTIONS SCHOTT Let there be light Glass and light are partners in creating a perfect atmosphere in airplanes and cars. Es werde Licht: Glas und Licht sind Partner, die in Flugzeugen und Autos eine perfekte Atmosphäre schaffen. FOTURAN® Sidelights Material with unlimited possibilities Shift boundaries optically Material der unbegrenzten Möglichkeiten Optische Grenzen verschieben Let’s create atmosphere above the clouds. By using holistic light management that orchestrates a variety of light sources in a coordinated scenario, we enable designers to create atmospheric impressions. What’s your next milestone? milestones.schott.com EDITORIAL Dear readers, glass and light are truly the perfect partners. Liebe Leserinnen und Leser! Glas und Licht sind Partner, die hervorragend zueinander passen. The world of optics and the de — Die Welt der Optik und invention of the light bulb die Erfindung der Glühbirne confirm this. And with the bestätigen dies. Mit der LED LED, for the first time we verfügen wir zudem über ein now have a light source with Leuchtmittel, mit dem sich which natural light can be natürliches Licht erstmals almost perfectly replicated auf künstliche Weise nahezu synthetically. Today, we can perfekt nachbilden lässt. Wir create lighting moods and können nun in geschlosse- transitions in closed rooms nen Räumen Lichtstimmun- as well as outdoors under gen und -wechsel wie unter the open sky. freiem Himmel erzeugen. Our experts at SCHOTT Unsere SCHOTT Exper- have been working for de- ten, die sich seit Jahrzehnten cades on lighting solutions Board of Management of SCHOTT AG: mit Beleuchtungslösungen that use glass and other Dr.
    [Show full text]