Coleoptera: Curculionidae: Scolytinae) from Russia and Adjacent Countries

Total Page:16

File Type:pdf, Size:1020Kb

Coleoptera: Curculionidae: Scolytinae) from Russia and Adjacent Countries Russian Entomol. J. 28(4): 389–399 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2019 A key to species of the tribe Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) from Russia and adjacent countries Îïðåäåëèòåëüíûå òàáëèöû âèäîâ òðèáû Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) Ðîññèè è ñîïðåäåëüíûõ ñòðàí M.Yu. Mandelshtam1, A.V. Petrov2 Ì.Þ. Ìàíäåëüøòàì1, À.Â. Ïåòðîâ2 1 St. Petersburg State Forest Technical University named after S.M. Kirov, Institutskii per. 5, St. Petersburg 194021, Russia. E-mail: [email protected] 1 Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, 194021 Санкт- Петербург, Россия. 2 Institute of Forest Science RAS, Sovetskaya st. 21, Uspenskoe, Moscow Region 143030, Russia. E-mail: [email protected] 2 Институт лесоведения Российской академии наук, с. Успенское, ул. Советская, д. 21, 143030 Московская обл., Россия. KEY WORDS: Coleoptera, Curculionidae, Scolytinae, Hylastini, Hylastes, Hylurgops, bark beetles, taxonomy, Russia, endemics, countries of the former USSR. КЛЮЧЕВЫЕ СЛОВА: Coleoptera, Curculionidae, Scolytinae, Hylastini, Hylastes, Hylurgops, короеды, систематика, Россия, эндемики, страны бывшего СССР. ABSTRACT. Species of the tribe Hylastini Erichson, The tribe Hylastini LeConte, 1876 includes four 1836 from Russia and adjacent countries are reviewed genera of Scolytinae: Hylastes Erichson, 1836, Hylur- and keys to genera and species of the tribe are provided. gops LeConte, 1876, Scierus LeConte, 1876 and Pach- Data on synonymy, geographic distribution and host- ysquamus Mercado-Vélez et Negrón, 2014 [Wood, plants of all Hylastini species of Russia and neighboring 1986; Wood, Bright, 1992; Mercado-Vélez, Negrón, states are given in an annotated list of species. Special 2014] of which two are recorded from Russia and attention is given to a poorly known subendemic species adjacent countries. The Palaearctic fauna of the tribe of Hylastini, Hylastes substriatus Strohmeyer, 1914 breed- Hylastini currently includes 27 species [Wood, Bright, ing on Schrenk spruce and limited in the distribution by 1992; Pffefer, 1995; Knížek, 2011]. Besides, 8 fossil the Tien-Shan mountains, i.e. by states of Middle Asia species were described from Baltic amber [Schedl, and neighboring provinces of China. New synonymy is 1947; Wood, Bright, 1992]. established: Hylurgops imitator (Reitter, 1900), syn.n. Species in the tribe are characterized by the follow- of Hylurgops interstitialis (Chapuis, 1875). ing features: 1) body cylindrical (Figs 1–4, 20); 2) vestiture of the upper side of the body usually includes РЕЗЮМЕ. Рассмотрен видовой состав короедов both hair-like setae and scales, often vestiture is rather трибы Hylastini Erichson, 1836 России и сопредель- poorly developed (Figs 5–6); 3) head elongate, subros- ных стран и приведены таблицы для определения trate, frons not sexually dimorphic (Figs 15–16); 4) eye родов и видов трибы. В аннотированный список oval, entire; 5) antennal funicle 7-segmented, scape видов собраны сведения о синонимии, географи- elongate, club conical; 6) prothoracic precoxal area ческом распространении и кормовых породах всех large, its lateral margins strongly elevated from anteri- видов трибы Hylastini России и соседних государств. or rim to coxae forming acutely elevated precoxal Специальное внимание уделено плохо изученному ridge; 7) pronotum narrowing anteriorly with more or единственному субэндемичному виду трибы Hyla- less strongly developed constriction in the anterior stini бывшего СССР, Hylastes substriatus Strohmeyer, third of its length, anterior margin simply rounded 1914, развивающемуся на ели Шренка и ограни- (Figs 17–19), not armed; 8) surface of pronotum punc- ченного в распространении горами Тянь-Шаня: tured, without crenulations, denticles or rugosities; 9) странами Средней Азии и граничными провинция- base of elytra with poorly developed crenulations, not ми Китая. Установлена новая синонимия: Hylurgops elevated; 10) elytral apex convex, simply rounded imitator (Reitter, 1900) = Hylurgops interstitialis without profound armature; 11) tarsal segment 3 wider (Chapuis, 1875), syn.n. than 1 or 2 (Figs 13–14). How to cite this article: Mandelshtam M.Yu., Petrov A.V. 2019. A key to species of the tribe Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) from Russia and adjacent countries // Russian Entomol. J. Vol.28. No.4. P.389–399. doi: 10.15298/rusentj.28.4.08 390 M.Yu. Mandelshtam, A.V. Petrov Description of the proventriculus in Hylastes and ences (Vladivostok), Natural History Museum (Lon- Hylurgops is given by Nobuchi [1969] and Lopez- don), Naturhistorisches Museum Wien (Vienna), Natu- Buenfil et al. [2001] (Figs 7–8). The proventriculus in ral History Museum (Budapest), and the United States both genera is narrowing posteriorly; anterior plate National Museum of Natural History (Washington) were sclerotized on lateral sides, indistinctly bordered on also examined. crop, posteriorly with about 20–25 transverse ridges. In Data about distribution were taken principally from Hylurgops ridges are replaced by rows of minute tuber- Knížek [2011] and data about host plants from Pfeffer cles in anterior portion (except lateral sides), the tuber- [1995] and Krivolutskaya [1958, 1983, 1996], but many cles becoming sharper and longer in middle of anterior unlisted sources were used as well as the authors’ own portion [Nobuchi, 1969]. In Hylastes ridges are more or field observations. less curved and accompanied with spinulae in middle of Photographs of beetles were taken using a Canon anterior portion and replaced by rows of sharp tuber- 50D camera and macro lens MP-E 65mm, and pro- cles, becoming larger on each lateral side [Nobuchi, cessed using the program CombineZP. 1969]. Posterior plate as long as anterior; closing teeth long, extending beyond middle of masticatory brush. In Results Hylurgops crop rather closely covered by long spines, in Hylastes crop rather closely covered by pubescence [Nobuchi, 1969]. KEY TO THE RUSSIAN GENERA IN THE HYLASTINI: In male genitalia the median lobe is cylindrical, nar- 1. Third tarsal segment emarginate, narrow, 1.0–1.1x as rowing posteriorly; dorsal lobes overlapping, subequal to wide as the second segment (Fig. 13); pronotum without half length of median lobe with wedge-shaped hind mar- noticeable constriction in the anterior third of its length or gins; lateral lobes longer than dorsal ones, attaining 2/3 of this constriction is only poorly developed, sides of prono- tum usually parallel for most of its length, form of prono- median lobe length [Grocholski et al., 1977, Michalski et tum elongate-oval when viewed from above (Figs 17–18); al., 1983]. Apophyses as long as median lobe, apophyses pronotum more elongated, averaging 1.2x longer than at base either divided (Figs 21–22, 26) or fused forming wide; pronotal disc lacking or with fewer small than large V-like figure (Figs 23–25); spicule longer than aedeagus, punctures (Figs 9–11) ............ Hylastes Erichson, 1836 sickle-shaped, with flattened base adjoining the apices of — Third tarsal segment bilobed, broad, 1.3–1.7x as wide as the apophyses. the second segment (Fig. 14); pronotum with conspicuous External morphology is very variable within species constriction on anterior third, strongly narrowing anteri- of this tribe and have led to numerous taxonomic discus- orly, nearly triangular when viewed from above, broad sions about the validity of several species [Pfeffer, (Fig. 19), 0.9–1.1 times as long as wide; pronotal disc 1944; Hansen, 1956; Lekander, 1965; Schedl, 1968; usually with about equal number of smaller and larger punctures ............................. Hylurgops LeConte, 1876 Beaver, 1970; Grocholski et al, 1976, 1977]. All species breed in coniferous hosts [Wood, 1982, Genus Hylastes Erichson, 1836 1986], mostly in habitats with high humidity, often in In Russia and neighboring countries (in borders of the stumps, roots or logs contacting with ground. Some former USSR) 10 species are recorded. Out of these, Hylastes species are of economic importance, damag- H. parallelus Chapuis, 1875 is unknown to us and therefore ing root neck or roots of young pines during maturation not included in the key. It is apparently closely related to feeding; this feeding may cause stress and death of H. ater (Paykull, 1800) and H. brunneus (Erichson, 1836) young pines. according to Murayama [1962], but differs from these by the widely rounded, not nearly rectangular, basal angles of pro- notum, the very large and shallow punctures on elytral striae, Material and methods and narrow interstriae. The structure of ventrite 5 in the male in H. parallelus is undescribed in literature. Nobuchi [1969] Specimens were collected by the authors from 1975 made notes on the proventriculus of but without illustrations. This description did not allow us to establish differences to 2019 in the forests of the Russian Federation, includ- between H. paralellus and H. brunneus. ing European part of Russia (Belgorod, Ivanovo, Kalin- ingrad, Kaluga, Kursk, Leningrad, Moscow, Novgorod, KEY TO THE HYLASTES SPECIES OF RUSSIA AND NEIGHBORING Pskov, Tambov, Tula, Tver, Vladimir, Vologda, Vor- COUNTRIES. onezh, Yaroslavl Provinces), Republic of Crimea, Re- 1. Pronotum subrectangular, anterior half wider or of equal public of Karelia, North and North-West Caucasus width to the posterior half, 1.2–1.35 x as long as wide, (Krasnodar Terr., Adygeya Republic, Dagestan Repub- pronotal disc with strong elongated punctures,
Recommended publications
  • Newsletter Alaska Entomological Society
    Newsletter of the Alaska Entomological Society Volume 12, Issue 1, March 2019 In this issue: Some food items of introduced Alaska blackfish (Dallia pectoralis T. H. Bean, 1880) in Kenai, Alaska8 Announcements . .1 Two new records of mayflies (Ephemeroptera) Arthropods potentially associated with spruce from Alaska . 11 (Picea spp.) in Interior Alaska . .2 Changes in soil fungal communities in response to A second Alaska record for Polix coloradella (Wals- invasion by Lumbricus terrestris Linnaeus, 1758 ingham, 1888) (Lepidoptera: Gelechioidea: Oe- at Stormy Lake, Nikiski, Alaska . 12 cophoridae), the “Skunk Moth” . .5 Review of the twelfth annual meeting . 19 Announcements New research to assess the risk of ticks tat suitability and probabilistic establishment model to dis- cover the climatic limits and probability of tick survival and tick-borne pathogens in Alaska in Alaska. For more information on ticks in Alaska and to learn how you can Submit-A-Tick, please visit: https: The geographic range of many tick species has expanded //dec.alaska.gov/eh/vet/ticks (website is in develop- substantially due to changes in climate, land use, and an- ment) or contact Dr. Micah Hahn ([email protected]). imal and human movement. With Alaska trending to- wards longer summers and milder winters, there is grow- ing concern about ticks surviving further north. Recent th passive surveillance efforts in Alaska have revealed that 69 Western Forest Insect Work Confer- non-native ticks—some with significant medical and vet- ence erinary importance—are present in the state. There is a new collaborative effort between the University of Alaska, The 69th Western Forest Insect Work Conference will the Alaska Department of Fish and Game, and the Of- be held April 22–25 2019 in Anchorage, Alaska at fice of the State Veterinarian to understand the risk of the Anchorage Marriott Downtown.
    [Show full text]
  • First Record of Hylastes Opacus Erichson and Crypturgus Hispidulus Thomson, C
    Kumbaşli et al.: First records of Scolytinae species for the Turkish fauna - 4585 - FIRST RECORD OF HYLASTES OPACUS ERICHSON AND CRYPTURGUS HISPIDULUS THOMSON, C. G. (COLEOPTERA; CURCULIONIDAE; SCOLYTINAE) FOR THE TURKISH FAUNA KUMBAŞLI, M.1 – HIZAL, E.2 – ACER, S.2 – ARSLANGÜNDOĞDU, Z.2* – ADAY KAYA, A. G.3 1Department of Wildlife Ecology and Management, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey 2Department of Forest Entomology and Protection, Faculty of Forestry, Istanbul University- Cerrahpaşa, Istanbul, Turkey 3Yenişarbademli Vocational School, Applied Sciences University of Isparta, Isparta, Turkey *Corresponding author e-mail: [email protected]; phone:+90-212-338-2400/ext. 25256; fax: +90-212-338-2424 (Received 21st May 2018; accepted 11th Jul 2018) Abstract. Scolytinae subfamily (Coleoptera: Curculionidae) is represented by 135 species in Turkey including 8 species of the genus Hylastes Ericson and 7 species of the genus Crypturgus Ericson. A total of 79 adult individuals of Hylastes opacus Erichson and 6 adult individuals of Crypturgus hispidulus Thomson, C. G. were obtained from log and pheromone traps in pine stands at twelve localities during 2014. H. opacus and C. hispidulus were recorded for the first time in Turkey. H. opacus were obtained from trap logs of Pinus brutia and Pinus nigra and also pheromone traps in P. brutia stands. Adult individuals of C. hispidulus were observed in association with Orthotomicus erosus and Pityogenes pennidens on P. brutia and P. nigra log traps. Keywords: Hylastes opacus, European bark beetle, Crypturgus hispidulus, Pinus brutia, Pinus nigra, Marmara, Turkey Introduction The Scolytinae subfamily (Coleoptera: Curculionidae) is one of the largest groups of Coleoptera and it is represented by 135 species in Turkey (Wood and Bright, 1992a, b; Knížek, 1998; Selmi, 1998; Sarıkaya and Avcı, 2011; Sarıkaya 2013; Sarıkaya and Knížek, 2013; Cognato, 2015; Lieutier et al., 2016).
    [Show full text]
  • Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
    United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Late Neogene Insect and Other Invertebrate Fossils from Alaska and Arctic/Subarctic Canada
    Invertebrate Zoology, 2019, 16(2): 126–153 © INVERTEBRATE ZOOLOGY, 2019 Late Neogene insect and other invertebrate fossils from Alaska and Arctic/Subarctic Canada J.V. Matthews, Jr.1, A. Telka2, S.A. Kuzmina3* 1 Terrain Sciences Branch, Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8. Present address: 1 Red Maple Lane, Hubley, N.S., Canada B3Z 1A5. 2 PALEOTEC Services – Quaternary and late Tertiary plant macrofossil and insect fossil analyses, 1-574 Somerset St. West, Ottawa, Ontario K1R 5K2, Canada. 3 Laboratory of Arthropods, Borissiak Paleontological Institute, RAS, Profsoyuznaya 123, Moscow, 117868, Russia. E-mails: [email protected]; [email protected]; [email protected] * corresponding author ABSTRACT: This report concerns macro-remains of arthropods from Neogene sites in Alaska and northern Canada. New data from known or recently investigated localities are presented and comparisons made with faunas from equivalent latitudes in Asia and Greenland. Many of the Canadian sites belong to the Beaufort Formation, a prime source of late Tertiary plant and insect fossils. But new sites are continually being discovered and studied and among the most informative of these are several from the high terrace gravel on Ellesmere Island. One Ellesmere Island locality, known informally as the “Beaver Peat” contains spectacularly well preserved plant and arthropod fossils, and is the only Pliocene site in Arctic North America to yield a variety of vertebrate fossils. Like some of the other “keystone” localities discussed here, it promises to be important for dating and correlation as well as for documenting high Arctic climatic and environmental conditions during the Pliocene.
    [Show full text]
  • The Pine-Bark Beetle, Hylastes ,Ater, in New Zealand
    NEW ZEALAND STATE FOREST SERVICE. CIRCULAR No. 33. A. D. McGAVOCK, Directol' of FoPestry, Reprint from Journal of Science and Technology, ·vol. XIV, No. 1. THE PINE-BARK BEETLE, HYLASTES ,ATER, IN NEW ZEALAND. BY ARTHUR F. CLARK, Forest Entomologist. WELLINGTON. W. A. G. SKINNER. GQVE,RNMENT PRINTER. 1932. NEW ZEALAND STATE FOREST SERVICE. CIRCULAR NO. 33. A. D. McGAVOCK, Director- of Forestry. Reprint from Journal of Science and Technology, Vol. XIV, No. 1, THE PINE-BARK BEETLE, HYLASTES ATER, IN NEW ZEALAND. By AB,THUR F. CLARK, Forest Entomologist, State Forest Service. INTRODUCTION. ALTHOUGH the Coleoptera is the best represented of any order in New Zealand, there are but few species of the family Ipidae. This is rather surprising when it is considered that the Dominion originally possessed very large areas of coniferous and hardwood forests, some four million acres of which still remain in their virgin state, and, further, that many species of other families of beetles associated with forests, such as the Cerambycids and Colydiids, are to be found. The arrival and establishment of Hylastes ater Payk., which is the first introduced Ipid beetle to become so estab­ lished, adds to the number of the native species, but is nevertheless a very unwelcome addition. Forestry conditions in New Zealand differ to some extent from those existing in the Old World, in that attempts to regenerate the native timber trees are still in their infancy. Whilst the planting of introduced tree species dates from the earliest days of settlement, during the last decade a programme of extensive establishment of introduced conifers has been carried out, with the result that more than 500,000 acres are at present under this type of forest, the greater part of which has been established since 1921.
    [Show full text]
  • Aspects of the Ecology and Behaviour of Hylastes Ater
    ASPECTS OF THE ECOLOGY AND BEHAVIOUR OF Hylastes ater (Paykull) (Coleoptera: Scolytidae) IN SECOND ROTATION Pinus radiata FORESTS IN THE CENTRAL NORTH ISLAND, New Zealand, AND OPTIONS FOR CONTROL. A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in the University of Canterbury by. Stephen David Reay University of Canterbury 2000 II Table of Contents ABSTRACT ..................................................................................................................................................... 1 1. GENERAL INTRODUCTION ............................................................................................................. 3 1.1 INTRODUCTION TO SCOL YTIDAE .......................................................................................................... 3 1.2 LIFE HISTORY ...................................................................................................................................... 6 1.3 THE GENUS HYLASTES ERICHSON ......................................................................................................... 8 1.4 HYLASTES ATER (PAYKULL) ................................................................................................................ 11 1.5 HYLASTES ATER IN NEW ZEALAND ...................................................................................................... 17 1.6 THE OBJECTIVES OF TIDS RESEARCH PROJECT .................................................................................... 23 2. OBSERVATIONS ON
    [Show full text]
  • Hylobius Abietis
    On the cover: Stand of eastern white pine (Pinus strobus) in Ottawa National Forest, Michigan. The image was modified from a photograph taken by Joseph O’Brien, USDA Forest Service. Inset: Cone from red pine (Pinus resinosa). The image was modified from a photograph taken by Paul Wray, Iowa State University. Both photographs were provided by Forestry Images (www.forestryimages.org). Edited by: R.C. Venette Northern Research Station, USDA Forest Service, St. Paul, MN The authors gratefully acknowledge partial funding provided by USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology. Contributing authors E.M. Albrecht, E.E. Davis, and A.J. Walter are with the Department of Entomology, University of Minnesota, St. Paul, MN. Table of Contents Introduction......................................................................................................2 ARTHROPODS: BEETLES..................................................................................4 Chlorophorus strobilicola ...............................................................................5 Dendroctonus micans ...................................................................................11 Hylobius abietis .............................................................................................22 Hylurgops palliatus........................................................................................36 Hylurgus ligniperda .......................................................................................46
    [Show full text]
  • Long-Distance Dispersal of Non-Native Pine Bark Beetles from Host Resources
    Ecological Entomology (2017), 42, 173–183 DOI: 10.1111/een.12371 Long-distance dispersal of non-native pine bark beetles from host resources KEVIN D. CHASE,1,∗ DAVE KELLY,1 ANDREW M. LIEBHOLD,2 MARTIN K.-F. BADER3 andECKEHARD G. BROCKERHOFF1,4 1School of Biological Sciences, Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand, 2US Forest Service Northern Research Station, Morgantown, West Virginia, U.S.A., 3Scion (New Zealand Forest Research Institute), Rotorua, New Zealand and 4Scion (New Zealand Forest Research Institute), Christchurch, New Zealand Abstract. 1. Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. 2. The aim of the present study was to determine the long distance dispersal capabilities of two non-native pine bark beetles (Hylurgus ligniperda and Hylastes ater) in a modified and fragmented landscape with non-native pine trees. The role of pine density in relation to the abundance of dispersing beetles was also investigated. 3. This study took place in the Southern Alps, New Zealand. A network of insect panel traps was installed in remote valleys at known distances from pine resources (plantations or windbreaks). Beetle abundance was compared with spatially weighted estimates of nearby pine plantations and pine windbreaks. 4. Both beetles were found ≥25 km from the nearest host patch, indicating strong dispersal and host detection capabilities. Small pine patches appear to serve as stepping stones, promoting spread through the landscape. Hylurgus ligniperda (F.) abundance had a strong inverse association with pine plantations and windbreaks, whereas H.
    [Show full text]
  • Phoretic on Bark Beetles (Coleoptera: Scolytinae): Global Generalists, Local Specialists?
    ARTHROPOD BIOLOGY Diversity and Host Use of Mites (Acari: Mesostigmata, Oribatida) Phoretic on Bark Beetles (Coleoptera: Scolytinae): Global Generalists, Local Specialists? 1,2,3 1 2 WAYNE KNEE, MARK R. FORBES, AND FRE´ DE´ RIC BEAULIEU Ann. Entomol. Soc. Am. 106(3): 339Ð350 (2013); DOI: http://dx.doi.org/10.1603/AN12092 ABSTRACT Mites (Arachnida: Acari) are one of the most diverse groups of organisms associated with bark beetles (Curculionidae: Scolytinae), but their taxonomy and ecology are poorly understood, including in Canada. Here we address this by describing the diversity, species composition, and host associations of mesostigmatic and oribatid mites collected from scolytines across four sites in eastern Ontario, Canada, in 2008 and 2009. Using Lindgren funnel traps baited with ␣-pinene, ethanol lures, or Ips pini (Say) pheromone lures, a total of 5,635 bark beetles (30 species) were collected, and 16.4% of these beetles had at least one mite. From these beetles, a total of 2,424 mites representing 33 species from seven families were collected. The majority of mite species had a narrow host range from one (33.3%) or two (36.4%) host species, and fewer species had a host range of three or more hosts (30.3%). This study represents the Þrst broad investigation of the acarofauna of scolytines in Canada, and we expand upon the known (worldwide) host records of described mite species by 19%, and uncover 12 new species. Half (7) of the 14 most common mites collected in this study showed a marked preference for a single host species, which contradicts the hypothesis that nonparasitic mites are typically not host speciÞc, at least locally.
    [Show full text]
  • Kenai National Wildlife Refuge Species List - Kenai - U.S
    Kenai National Wildlife Refuge Species List - Kenai - U.S. Fish and Wild... http://www.fws.gov/refuge/Kenai/wildlife_and_habitat/species_list.html Kenai National Wildlife Refuge | Alaska Kenai National Wildlife Refuge Species List Below is a checklist of the species recorded on the Kenai National Wildlife Refuge. The list of 1865 species includes 34 mammals, 154 birds, one amphibian, 20 fish, 611 arthropods, 7 molluscs, 11 other animals, 493 vascular plants, 180 bryophytes, 29 fungi, and 325 lichens. Of the total number of species, 1771 are native, 89 are non-native, and five include both native and non-native subspecies. Non-native species are indicated by dagger symbols (†) and species having both native and non-native subspecies are indicated by double dagger symbols (‡). Fifteen species no longer occur on the Refuge, indicated by empty set symbols ( ∅). Data were updated on 15 October 2015. See also the Kenai National Wildlife Refuge checklist on iNaturalist.org ( https://www.inaturalist.org/check_lists/188476-Kenai-National-Wildlife- Refuge-Check-List ). Mammals ( #1 ) Birds ( #2 ) Amphibians ( #3 ) Fish ( #4 ) Arthropods ( #5 ) Molluscs ( #6 ) Other Animals ( #7 ) Vascular Plants ( #8 ) Other Plants ( #9 ) Fungi ( #10 ) Lichens ( #11 ) Change Log ( #changelog ) Mammals () Phylum Chordata Class Mammalia Order Artiodactyla Family Bovidae 1. Oreamnos americanus (Blainville, 1816) (Mountain goat) 2. Ovis dalli Nelson, 1884 (Dall's sheep) Family Cervidae 3. Alces alces (Linnaeus, 1758) (Moose) 4. Rangifer tarandus (Linnaeus, 1758) (Caribou) Order Carnivora Family Canidae 5. Canis latrans Say, 1823 (Coyote) 6. Canis lupus Linnaeus, 1758 (Gray wolf) 7. Vulpes vulpes (Linnaeus, 1758) (Red fox) Family Felidae 8. Lynx lynx (Linnaeus, 1758) (Lynx) 9.
    [Show full text]
  • Horizon Scan of Invasive Alien Species for the Island of Ireland
    Management of Biological Invasions (2020) Volume 11, Issue 2: 155–177 CORRECTED PROOF Research Article Horizon scan of invasive alien species for the island of Ireland Frances E. Lucy1,*, Eithne Davis1,*, Roy Anderson2, Olaf Booy3, Ken Bradley4, J. Robert Britton5, Colin Byrne6, Joseph M. Caffrey7, Neil E. Coughlan8, Kate Crane8, Ross N. Cuthbert8, Jaimie T.A. Dick8, James W.E. Dickey8, Jeffrey Fisher9, Cathal Gallagher10, Simon Harrison11, Matthew Jebb12, Mark Johnson13, Colin Lawton13, Dave Lyons14, Tim Mackie4, Christine Maggs5, Ferdia Marnell14, Tom McLoughlin15, Dan Minchin16, Oonagh Monaghan15, Ian Montgomery8, Niall Moore3, Liam Morrison13, Rose Muir4, Brian Nelson14, Art Niven17, Colette O’Flynn18, Bruce Osborne19, Ruth M. O’Riordan11, Neil Reid8, Helen Roy20, Rory Sheehan1, Dorothy Stewart15, Monica Sullivan21, Paula Tierney22, Paula Treacy23, Elena Tricarico24 and Wayne Trodd15 1Centre for Environmental Research, Innovation and Sustainability, Dept. of Environmental Science, Institute of Technology, Ash Lane, Sligo, Ireland, 2Royal Entomological Society, Belfast, Northern Ireland, 3GB Non-native Species Secretariat, Sand Hutton, York, UK, 4Department of Agriculture, Environment and Rural Affairs, Dundonald House, Upper Newtownards Road, Ballymiscaw, Belfast, Northern Ireland, 5University of Bournemouth, Poole UK, 6Dept of Housing, Planning and Local Govt., Custom House, Dublin, Ireland, 7INVAS Biosecurity Ltd., 82 Lakelands Close, Stillorgan, Co Dublin, Ireland, 8Institute for Global Food Security, School of Biological Sciences,
    [Show full text]