Aspects of the Ecology and Behaviour of Hylastes Ater

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Ecology and Behaviour of Hylastes Ater ASPECTS OF THE ECOLOGY AND BEHAVIOUR OF Hylastes ater (Paykull) (Coleoptera: Scolytidae) IN SECOND ROTATION Pinus radiata FORESTS IN THE CENTRAL NORTH ISLAND, New Zealand, AND OPTIONS FOR CONTROL. A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in the University of Canterbury by. Stephen David Reay University of Canterbury 2000 II Table of Contents ABSTRACT ..................................................................................................................................................... 1 1. GENERAL INTRODUCTION ............................................................................................................. 3 1.1 INTRODUCTION TO SCOL YTIDAE .......................................................................................................... 3 1.2 LIFE HISTORY ...................................................................................................................................... 6 1.3 THE GENUS HYLASTES ERICHSON ......................................................................................................... 8 1.4 HYLASTES ATER (PAYKULL) ................................................................................................................ 11 1.5 HYLASTES ATER IN NEW ZEALAND ...................................................................................................... 17 1.6 THE OBJECTIVES OF TIDS RESEARCH PROJECT .................................................................................... 23 2. OBSERVATIONS ON ASPECTS OF THE ECOLOGY AND BEHAVIOUR OF H. ATER AND H. LIGNIPERDA IN SECOND ROTATION P. RADIATA FORESTS IN THE CENTRAL NORTH ISLAND, NEW ZEALAND .......................................................................................................................... 25 2.1 A PRELIMINARY INVESTIGATION OF H. ATER AND H. LIGNJPERDA LARVAL POPULATIONS .................. 25 2.1.1 Introduction .............................................................................................................................. 25 2.1.2 Methods ................................................................................................................................... 27 2.13 Results ..................................................................................................................................... 32 2.1.4 Discussion ................................................................................................................................ 36 2.2 A STUDY INVESTIGATING ASPECTS OF THE ECOLOGY AND BEHAVIOUR OF H. ATER AND H LlGNJPERDA ..................................................................................................................... .37 2.2.1 The annual flight activity and colonisation behaviour of H. ater and H. ligniperda ............... 38 2.2.1.1 Introduction ........................................................................................................................................ 38 2.2.1.2 Methods ...................................................... ;....................................................................................... 38 2.2.1.3 Results and Discussion ....................................................................................................................... 43 2.2.2 The larval composition of stump populations .......................................................................... 52 2.2.2.1 Introduction ........................................................................................................................................ 52 2.2.2.2 Methods .............................................................................................................................................. 53 2.2.2.3 Results and Discussion ....................................................................................................................... 53 2.2.3 The emergence of H. ater and H. ligniperda from P. radiata stumps ..................................... 66 2.2.3.1 Introduction ........................................................................................................................................ 66 2.2.3.2 Methods .............................................................................................................................................. 66 2.2.3.3 Results and Discussion ....................................................................................................................... 68 2.3 CONCLUSION ...................................................................................................................................... 70 3. THE PRIMARY EFFECT OF H. ATER ATTACK ON SEEDLINGS ........................................... 75 3.1 THE INCIDENCE OF H. ATER ATTACK AND MORTALITY IN SECOND ROTATION P. RADIATA FORESTS IN THE CENTRAL NORTH ISLAND, NEW ZEALAND ............................................................................................ 75 3.1.1 Introduction .............................................................................................................................. 75 3.1.2 Methods ................................................................................................................................... 77 3.1.3 Results ..................................................................................................................................... 82 III 3.104 Discussion ................................................................................................................................ 90 3.2 THE INFLUENCE OF SUB-LETHAL AIT ACK BY HATER ON THE GROWTH OF SEEDLINGS ...................... 95 3.2.1 Introduction .............................................................................................................................. 95 3.2.2 Methods ................................................................................................................................... 96 3.2.3 Results ................................................................................................................................... 100 3.2.4 Discussion .............................................................................................................................. 115 4. SECONDARY EFFECTS OF H. ATER ATTACK ON P. RADIATA SEEDLINGS ................... 118 4.1 INTRODUCTION ................................................................................................................................ 118 4.2 METHODS ......................................................................................................................................... 120 4.3 RESULTS .......................................................................................................................................... 122 4.4 DISCUSSION ..................................................................................................................................... 126 5. THE RESISTANCE OF P. RADIATA SEEDLINGS TO H. ATER ATTACK. ............................ 136 5.1 INTRODUCTION ................................................................................................................................ 136 5.2 METHODS ......................................................................................................................................... 141 5.3 RESULTS .......................................................................................................................................... 143 504 DISCUSSION ..................................................................................................................................... 149 6. THE ORIENTATION OF H. ATER AND H. LIGNIPERDA TO HOST VOLATILES AND BROAD-SPECTRUM ATTRACTANTS .................................................................................................. 154 6.1 INTRODUCTION ................................................................................................................................ 154 6.2 METHODS ......................................................................................................................................... 160 6.3 RESULTS .......................................................................................................................................... 164 6.4 DISCUSSION ...................................................................... ; .............................................................. 169 7. GENERAL DISCUSSION ................................................................................................................. 174 7.1 INTRODUCTION ................................................................................................................................ 174 7.2 OPTIONS FOR THE CONTROL OF HATER IN NEW ZEALAND .............................................................. 178 7.3 SITE-RISK ASSESSMENT AND DAMAGE FORECASTING ....................................................................... 181 7.4 THE DEVELOPMENT OF A MANAGEMENT STRATEGY TO MINIMISE RISKS TO SEEDLINGS ASSOCIATED WITHH ATERATTACK ............................................................................................................................... 184 7.5 THE DIRECTION OF H. ATER RESEARCH IN NEW ZEALAND ................................................................ 188 ACKNOWLEDGEMENTS ........................................................................................................................ 191 REFERENCES ...........................................................................................................................................
Recommended publications
  • Ophiostomatoid Fungal Infection and Insect Diversity in a Mature Loblolly Pine Stand
    Ophiostomatoid Fungal Infection and Insect Diversity in a Mature Loblolly Pine Stand by Jessica Ahl A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 5, 2018 Keywords: Loblolly pine, hyperspectral interferometry, insect diversity Copyright 2019 by Jessica Ahl Approved by Dr. Lori Eckhardt, Chair, Professor of Forestry and Wildlife Sciences Dr. Ryan Nadel, Assistant Research Professor Dr. James Beach, CytoViva Director, Technology Department Dr. David Held, Associate Professor of Entomology Abstract Root-feeding beetles and weevils are known vectors of ophiostomatoid fungi, such as Leptographium and Grosmannia, that have been associated with a phenomenon called Southern Pine Decline in the Southeastern United States. One of these fungi, species name Leptographium terebrantis, has a well-known effect on pine seedlings, but the effect on mature, field-grown trees and associated insect populations is still to be determined. This study examined changes in insect diversity one year pre- and post-inoculation of mature loblolly pine trees with varying levels of a L. terebrantis isolate, giving special attention to monitoring insects of concern. Three different insect traps of two types – pitfall and airborne – were used during the twenty-five month study. Insects were collected every two weeks, identified to family where possible, and further sorted to morphospecies. Of 9,748 insects collected, we identified 16 orders, 149 families, and a total of 676 morphospecies. Of these, less than ten individuals were each Hylastes, Hylobiini, and Ips species of concern. We collected over 60 individual ambrosia beetles in nine species.
    [Show full text]
  • Detection and Quantification of Leptographium Wageneri, The
    1798 Detection and quantification of Leptographium wageneri, the cause of black-stain root disease, from bark beetles (Coleoptera: Scolytidae) in Northern California using regular and real-time PCR Wolfgang Schweigkofler, William J. Otrosina, Sheri L. Smith, Daniel R. Cluck, Kevin Maeda, Kabir G. Peay, and Matteo Garbelotto Abstract: Black-stain root disease is a threat to conifer forests in western North America. The disease is caused by the ophiostomatoid fungus Leptographium wageneri (W.B. Kendr.) M.J. Wingf., which is associated with a number of bark beetle (Coleoptera: Scolytidae) and weevil species (Coleoptera: Curculionidae). We developed a polymerase chain reac- tion test to identify and quantify fungal DNA directly from insects. Leptographium wageneri DNA was detected on 142 of 384 bark beetle samples (37%) collected in Lassen National Forest, in northeastern California, during the years 2001 and 2002. Hylastes macer (LeConte) was the bark beetle species from which Leptographium DNA was amplified most regularly (2001: 63.4%, 2002: 75.0% of samples). Lower insect–fungus association rates were found for Hylurgops porosus (LeConte), Hylurgops subcostulatus (Mannerheim), Hylastes gracilis (LeConte), Hylastes longicollis (Swaine), Dendroctonus valens (LeConte), and Ips pini (Say). The spore load per beetle ranged from 0 to over1×105 spores, with only a few beetles carrying more than1×103 spores. The technique permits the processing of a large number of samples synchronously, as required for epidemiological studies, to study infection rates in bark beetle populations and to identify potential insect vectors. Résumé : Le noircissement des racines est une maladie qui menace les forêts de l’ouest de l’Amérique du Nord.
    [Show full text]
  • Alien Invasive Species and International Trade
    Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A.
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • “Can You Hear Me?” Investigating the Acoustic Communication Signals and Receptor Organs of Bark Beetles
    “Can you hear me?” Investigating the acoustic communication signals and receptor organs of bark beetles by András Dobai A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science In Biology Carleton University Ottawa, Ontario © 2017 András Dobai Abstract Many bark beetle (Coleoptera: Curculionidae: Scolytinae) species have been documented to produce acoustic signals, yet our knowledge of their acoustic ecology is limited. In this thesis, three aspects of bark beetle acoustic communication were examined: the distribution of sound production in the subfamily based on the most recent literature; the characteristics of signals and the possibility of context dependent signalling using a model species: Ips pini; and the acoustic reception of bark beetles through neurophysiological studies on Dendroctonus valens. It was found that currently there are 107 species known to stridulate using a wide diversity of mechanisms for stridulation. Ips pini was shown to exhibit variation in certain chirp characteristics, including the duration and amplitude modulation, between behavioural contexts. Neurophysiological recordings were conducted on several body regions, and vibratory responses were reported in the metathoracic leg and the antennae. ii Acknowledgements I would like to thank my supervisor, Dr. Jayne Yack for accepting me as Master’s student, guiding me through the past two years, and for showing endless support and giving constructive feedback on my work. I would like to thank the members of my committee, Dr. Jeff Dawson and Dr. John Lewis for their professional help and advice on my thesis. I would like to thank Sen Sivalinghem and Dr.
    [Show full text]
  • Coleoptera: Curculionidae: Scolytinae) from Russia and Adjacent Countries
    Russian Entomol. J. 28(4): 389–399 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2019 A key to species of the tribe Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) from Russia and adjacent countries Îïðåäåëèòåëüíûå òàáëèöû âèäîâ òðèáû Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) Ðîññèè è ñîïðåäåëüíûõ ñòðàí M.Yu. Mandelshtam1, A.V. Petrov2 Ì.Þ. Ìàíäåëüøòàì1, À.Â. Ïåòðîâ2 1 St. Petersburg State Forest Technical University named after S.M. Kirov, Institutskii per. 5, St. Petersburg 194021, Russia. E-mail: [email protected] 1 Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, 194021 Санкт- Петербург, Россия. 2 Institute of Forest Science RAS, Sovetskaya st. 21, Uspenskoe, Moscow Region 143030, Russia. E-mail: [email protected] 2 Институт лесоведения Российской академии наук, с. Успенское, ул. Советская, д. 21, 143030 Московская обл., Россия. KEY WORDS: Coleoptera, Curculionidae, Scolytinae, Hylastini, Hylastes, Hylurgops, bark beetles, taxonomy, Russia, endemics, countries of the former USSR. КЛЮЧЕВЫЕ СЛОВА: Coleoptera, Curculionidae, Scolytinae, Hylastini, Hylastes, Hylurgops, короеды, систематика, Россия, эндемики, страны бывшего СССР. ABSTRACT. Species of the tribe Hylastini Erichson, The tribe Hylastini LeConte, 1876 includes four 1836 from Russia and adjacent countries are reviewed genera of Scolytinae: Hylastes Erichson, 1836, Hylur- and keys to genera and species of the tribe are provided. gops LeConte, 1876, Scierus LeConte, 1876 and Pach- Data on synonymy, geographic distribution and host- ysquamus Mercado-Vélez et Negrón, 2014 [Wood, plants of all Hylastini species of Russia and neighboring 1986; Wood, Bright, 1992; Mercado-Vélez, Negrón, states are given in an annotated list of species. Special 2014] of which two are recorded from Russia and attention is given to a poorly known subendemic species adjacent countries.
    [Show full text]
  • First Record of Hylastes Opacus Erichson and Crypturgus Hispidulus Thomson, C
    Kumbaşli et al.: First records of Scolytinae species for the Turkish fauna - 4585 - FIRST RECORD OF HYLASTES OPACUS ERICHSON AND CRYPTURGUS HISPIDULUS THOMSON, C. G. (COLEOPTERA; CURCULIONIDAE; SCOLYTINAE) FOR THE TURKISH FAUNA KUMBAŞLI, M.1 – HIZAL, E.2 – ACER, S.2 – ARSLANGÜNDOĞDU, Z.2* – ADAY KAYA, A. G.3 1Department of Wildlife Ecology and Management, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey 2Department of Forest Entomology and Protection, Faculty of Forestry, Istanbul University- Cerrahpaşa, Istanbul, Turkey 3Yenişarbademli Vocational School, Applied Sciences University of Isparta, Isparta, Turkey *Corresponding author e-mail: [email protected]; phone:+90-212-338-2400/ext. 25256; fax: +90-212-338-2424 (Received 21st May 2018; accepted 11th Jul 2018) Abstract. Scolytinae subfamily (Coleoptera: Curculionidae) is represented by 135 species in Turkey including 8 species of the genus Hylastes Ericson and 7 species of the genus Crypturgus Ericson. A total of 79 adult individuals of Hylastes opacus Erichson and 6 adult individuals of Crypturgus hispidulus Thomson, C. G. were obtained from log and pheromone traps in pine stands at twelve localities during 2014. H. opacus and C. hispidulus were recorded for the first time in Turkey. H. opacus were obtained from trap logs of Pinus brutia and Pinus nigra and also pheromone traps in P. brutia stands. Adult individuals of C. hispidulus were observed in association with Orthotomicus erosus and Pityogenes pennidens on P. brutia and P. nigra log traps. Keywords: Hylastes opacus, European bark beetle, Crypturgus hispidulus, Pinus brutia, Pinus nigra, Marmara, Turkey Introduction The Scolytinae subfamily (Coleoptera: Curculionidae) is one of the largest groups of Coleoptera and it is represented by 135 species in Turkey (Wood and Bright, 1992a, b; Knížek, 1998; Selmi, 1998; Sarıkaya and Avcı, 2011; Sarıkaya 2013; Sarıkaya and Knížek, 2013; Cognato, 2015; Lieutier et al., 2016).
    [Show full text]
  • Effects Of. Prescribed Fire and Fire Surrogates on Saproxylic Coleoptera in the Southern Appalachians of North Carolina 1
    Effects of. Prescribed Fire and Fire Surrogates on Saproxylic Coleoptera in the Southern Appalachians of North Carolina 1 2 Joshua W. Campbell , James L. Hanula and Thomas A. Waldrop 3 USDA Forest Service, Southern Research Station, 320 Green St., Athens, Georgia 30602-2044 USA J. Entomol. Sci. 43(1): 57-75 (January 2008) Abstract We examined the effects of forest management practices (prescribed burning, me­ chanical, and prescribed burn plus mechanical) on saproxylic forest Coleoptera in the southern Appalachian Mountains of North Carolina. During the 2-yr study, we captured 37,191 Coleoptera with baited multiple-funnel traps and pipe traps, comprising 20 families and 122 species that were used for our analysis. Saproxylic beetle numbers increased greatly from the first year to the second year on all treatments. Species richness and total abundance of Coleoptera were not significantly affected by the treatments, but several families (e.g., Elateridae, Cleridae, Trogositi­ dae, Scolytidae) were significantly more abundant on treated plots. Abundances of many spe­ cies, including various species of Scolytidae were significantly affected by the treatments. How­ ever, these scolytids (Hylastes salebrosus Eichoff, Ips grandicollis Eichoff, Xyloborinus saxeseni Ratzburg, Xyleborus sp., Xyleborus atratus Eichoff) did not respond in the same way to the treatments. Likewise, other Coleoptera such as Pityophagus sp. (Nitidulidae), Hylobius pales Herbst (Curculionidae), and Xylotrechus sagittatus Germar (Cerambycidae) also varied in their responses to the treatments. Species richness was not significantly different for the spring 2003 trapping seasons, but the fall 2003 sample had a higher number of species on mechanical shrub removal only and mechanical shrub removal plus prescribed burning plots compared with con­ trols.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • A Baseline Invertebrate Survey of the Knepp Estate - 2015
    A baseline invertebrate survey of the Knepp Estate - 2015 Graeme Lyons May 2016 1 Contents Page Summary...................................................................................... 3 Introduction.................................................................................. 5 Methodologies............................................................................... 15 Results....................................................................................... 17 Conclusions................................................................................... 44 Management recommendations........................................................... 51 References & bibliography................................................................. 53 Acknowledgements.......................................................................... 55 Appendices.................................................................................... 55 Front cover: One of the southern fields showing dominance by Common Fleabane. 2 0 – Summary The Knepp Wildlands Project is a large rewilding project where natural processes predominate. Large grazing herbivores drive the ecology of the site and can have a profound impact on invertebrates, both positive and negative. This survey was commissioned in order to assess the site’s invertebrate assemblage in a standardised and repeatable way both internally between fields and sections and temporally between years. Eight fields were selected across the estate with two in the north, two in the central block
    [Show full text]
  • Proceedings of the Entomological Society of Washington. Washington, Etc
    http://www.biodiversitylibrary.org/ Proceedings of the Entomological Society of Washington. Washington, etc. :Entomological Society of Washington http://www.biodiversitylibrary.org/bibliography/2510 v. 107 (2005): http://www.biodiversitylibrary.org/item/100258 Page(s): Page 554, Page 555, Page 556, Page 557, Page 558, Page 559, Page 560, Page 561, Page 562, Page 563, Page 564 Contributed by: Smithsonian Institution Libraries Sponsored by: Smithsonian Generated 30 January 2012 12:06 PM http://www.biodiversitylibrary.org/pdf3/009416500100258 This page intentionally left blank. The following text is generated from uncorrected OCR. [Begin Page: Page 554] PROC. ENTOMOL. SOC. WASH. 107(3), 2005, pp. 554-564 NONINDIGENOUS WOODBORING COLEOPTERA (CERAMBYCIDAE, CURCULIONIDAE: SCOLYTINAE) NEW TO OREGON AND WASHINGTON, 1999-2002: CONSEQUENCES OF THE INTRACONTINENTAL MOVEMENT OF RAW WOOD PRODUCTS AND SOLID WOOD PACKING MATERIALS J. R. LaBonte, a. D. Mudge, and K. J. R. Johnson Plant Division, Oregon Department of Agriculture, 635 Capitol Street, Salem, OR, 97301-2532, U.S.A. (e-mail: [email protected]) Abstract. — Urban forests, port areas, mills and businesses known to have received or handled imported wood or wood products were surveyed for nonindigenous woodboring insects in Oregon and southernmost western Washington from 1999-2002, predominantly using Lindgren funnel traps. Intercept® panel traps and/or Scots pine bait logs. Several other woodborer surveys or projects, using various traps and lures, also took place con- currently. Eight species of nonindigenous woodboring beetles new to Oregon, Washington, the western U.S., western North America, or North America are recorded for the first time: Phymatodes testaceus (L.), Tetropium castaneum L., Xylotrechus hircus (Gebler), and X.
    [Show full text]
  • Biology and Ecology of Leptographium Species and Their Vectos As Components of Loblolly Pine Decline Lori G
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Biology and ecology of Leptographium species and their vectos as components of loblolly pine decline Lori G. Eckhardt Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Plant Sciences Commons Recommended Citation Eckhardt, Lori G., "Biology and ecology of Leptographium species and their vectos as components of loblolly pine decline" (2003). LSU Doctoral Dissertations. 2133. https://digitalcommons.lsu.edu/gradschool_dissertations/2133 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. BIOLOGY AND ECOLOGY OF LEPTOGRAPHIUM SPECIES AND THEIR VECTORS AS COMPONENTS OF LOBLOLLY PINE DECLINE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Plant Pathology & Crop Physiology by Lori G. Eckhardt B.S., University of Maryland, 1997 August 2003 © Copyright 2003 Lori G. Eckhardt All rights reserved ii ACKNOWLEDGMENTS I gratefully acknowledge the invaluable input provided by my dissertation advisor, Dr. John P. Jones. Among many other things, he has demonstrated his patients, enthusiasm and understanding as I struggled to pursue my graduate studies. I am indebted to Dr. Marc A. Cohn, for his guidance, encouragement, support and most of all, his friendship.
    [Show full text]