<<

j385

Index

a – biological computations 275f. activation energies 39, 126 – canonical system 259 active-matrix liquid crystal displays – cellular neural networks (CNN) 266ff. (AMLCDs) 134, 144, 147 – cerebral cortex 275 action potential 252f. – CMOL (Cmos/MOLecular hybrid) 278ff. AFM (atomic force microscopy) 13, 15, 56, – CMOL Nano-Cortex 279f. 170f., 181f. – Connected Network of Adapted Processors – MWNT tip 171 (CNAPs) chip 268ff. – SWNT tip 170f. – contextual analysis techniques 260 ALD (atomic layer deposition) 36 – cortical column analysis 280f. anti-ferroelectric 113f. – cortical networks 276 – ordering 331f. – digital neural network chip 265f. Arrhenius plot 39 – digital signal processing (DSP) 258ff. artificial intelligence 251, 257f. – digital SIMD parallel processing 268ff. – flexibility trade-offs 260ff. b – front-end operations 258ff. back bias effect 24 – Hidden Markov Model (HMM) 260 back-etched 14, 30ff. – instruction level parallelism (ILP) 274 background charge problem 53 – intelligent signal processing (ISP) 259, 263 ballistic transport 34 – latching switch 278 barrier – Markov Model 260 – drain-induced 24 – media chips 258 – electrostatic potential 11f., 19, 37, 111, 332f. – nanogrid 278f. – energy 126 – neuro-inspired silicon 263, 265 – InAsP 37ff. – off-the-shelf 258 – injection 200 – performance overkill 273 – tunneling 19, 191f., 195 – processor node (PN) array 269ff. barrier tunneling – self-organizing structures 274f. – asymmetric 192 – SIMD (Single Instruction, Multiple Data) Bayesian networks 256ff. architecture 267ff. BCB (benzocyclobutane) 32 – SYNAPSE-1 processor 272f. biological-inspired hardware 257ff. – The Broadcast Hierarchy (TBH) 278 – Amdahl’s law 258, 260ff. biologically inspired models 280 – analog/mixed signal design 267f. block current 38 – analog neural network chip 265f. Bohr magneton 107 – aVLSI (analog Very-Large-Scale-Integration) Boltzmann technology 257, 263ff. – constant 140, 344, 363 – back-end operations 258ff. – statistics 106, 113

Nanotechnology. Volume 4: Information Technology II. Edited by Rainer Waser Copyright Ó 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31737-0 386j Index

Boolean logic 69f., 214, 219, 368 – room-temperature 30, 125ff. – functions 70, 75, 189, 205 – SiGe heterostructures 5f. – operations 69f., 189 – single transport model 126 – variables 197f., 219 – temperature-dependent 126f. Broglie wavelength 49 – uni-axial strain techniques 6 building blocks 53f., 220f., 263ff. – variable-range hopping (VRH) model – aVLSI (analog Very-Large-Scale- 126f. Integration) 263ff. CMOS (Complementary Metal-Oxide- – fault-tolerant full adder 221 Semiconductor) 3ff. – fault-tolerant half adder 223 – active-matrix liquid crystal displays – full adder 220f., 224ff. (AMLCDs) 134, 144 – half adder 220f., 224ff. – circuits 45, 54, 62f., 65, 203 – integrate and fire neuron 264 – CMOL, see biological-inspired hardware – molecular wires 190f. – 3D-DRAM array devices 3, 22ff. – domino-type logic 58 c – double-gate device 12ff. carbon nanofibers (CNFs) 159 – FinFET 13, 16ff. – multi-walled (MWCNFs) – Floating-Gate Flash 3, 20 – PECVD 159f., 169 – gate all-around device 13, 15f. – vertical array 169 – high-k gate dielectrics 4, 7f. carbon nanotubes (CNTs) 51f., 155ff. – inverter 99 – chiral 156 – logic 54, 63f. – CVD (chemical-vapor deposition) 157ff. – metal gate 4, 7f. – device physics 166f. – midgap-like materials 8, 11 – fabrication 163ff. – MOSFETs (Metal-Oxide-Semiconductor – FETs 161ff. Field-Effect Transistor) 3ff. – growth 157ff. – multi-bridge 16 – interconnects 167f. – multi-gate devices 5, 8, 12ff. – memory devices 167ff. – multi-gate flash cell 19ff. – multi-walled (MWNTs) 155ff. – NAND 20f. – 160ff. – nano-size 3 – nanoporous template 162f. – n-type (NMOS) 6, 9 – nanotube-on-insulator (NOI) 162 – planar double-gate 13, 15 – probes in metrology 170 – poly-silicon gate 8 – properties 155ff. – p-type (PMOS) 5f. – single-electron transistor (SET) 52 – recessed channel array transistor (RCAT) – single-walled (SWNTs) 155ff. 22 – structure 155ff. – silicon-on insulator, see SOI – thermal interface material (TIM) 169 – SONOS SOI FinFET 4 – vertical aligned 163, 168 – tri-gate device 16f., 20 CBE (chemical beam epitaxy) 30f., 37 – ultra-thin silicon-on insulator, see SOI CCD (charge-coupled-device) 115 – wafer-bonded planar double-gate 13ff. channel CMP (chemical mechanical polishing) 13f., – doping 11f., 16, 22 168 – InAs 39f. conduction band 8f., 30 charge carrier mobility – barrier 37 – channel direction 6f. – offset 8 – conjugated 125f., 130, 132f. conjugation, see organic semiconductor – crystal orientation 6f. Coulomb – enhancement 5ff. – coupled quantum dashes 113 – gate-voltage dependent 126f. – diamond 48, 54, 199 – molecular ordering 126f. – interaction 113f., 343, 360 – multiple trapping and release (MTR) – island 46ff. model 126f. – potential 342 Index j387

Coulomb blockade 46, 48f., 53f., 58, 351 – drain contact 95, 97, 99 – oscillation 48, 50f., 53, 62 – layer thickness 100 – state 47f. – materials 69, 72ff. Cranck-Nickolson algorithm 347 – NOT-gate, see magnetic domain wall logic cryptography, see quantum information devices current – source contact 95, 97, 99 – modulation 97 Field-Effect Transistor (FET) 29 – on/off ratio 40, 41f., 65, 97 film – peak-to-valley ratio 63 – amorpous semiconductor 125f., 128 CVD (chemical-vapor deposition) 14, 157ff. – disordered polythienylenevinylene (PTV) – epitaxy 14 127 – plasma-enhanced (PECVD) 134, 157, 172 – iridium thin 170 – TEOS (tetraethyl orthosilicate) – Langmuir-Blodgett 201 – poly(3-hexylthiophene) (P3HT) thin 128ff. d – SAM, see self-assembled monolayer Damascene technique 23 – semicrystalline 126, 131f. Deutsch-Joszca class of problems 120f. – small-molecule polycrystalline 127ff. dielectric layer 7f. – spun-cast 130 dielectrics high-k 8, 30, 37 – vaccum-grown 131f. dissipation fluorescence 222, 224f., 227ff. – energy 93f., 116, 363, 367 Fourier transform operations 214 – power 97, 104, 116, 141 Fowler-Nordheim tunneling currents 7, 20 doping fluctuations 34 frequency 222 drift-and-diffusion mechanism 34 – cut-off 140, 143 – dump pulse of 230 e – Larmor 96 electromigration 167f., 183, 186f. – photons 222, 227, 229 – single-molecule device 186f. – stokes pulse of 230 electron spin, see spin 69, 93 fuzzy logic 257f. electroplating 31 electrostatic potential map 126 g Elliott-Yafet gate – mode 98 – AND-gate 82ff. – spin relaxation mechansim 98 – bottom 13ff. energy-delay-product (EDP) 40, 41 – capacitance 18, 47, 58 energy dispersion relation 97f. – chemical logic 215 entropy 366 – Cr wrap 36f. etching 14, 16, 22 – defined quantum dot 113 – aspect ratio 168 – delay 39, 41f. – wet 31f. – dielectric growth 23 evaporation 131f., 185 – dielectric tunneling 4, 20 – metal 32, 36 – electrochemical 186f. – thermal 131f. – fully silicided NiSi 9 – double- 12f., 16, 29 f – Hadamard 374 FBI (focused ion beam) milling – induced drain current 3 72f., 77, 79ff. – leakage current 3, 7 Fermi-Dirac statistics 113 – length 3f., 10f., 13 Fermi energy 101, 113, 218 – material 9, 14, 16, 19f. Fermi-level 190, 344 – metal 7f., 13ff. – pinning 30 – multi- 12ff. Fermi velocity 99 – nþ poly-silicon gate 8, 10, 13, 15 ferroelectric 114 – NOT-gate 75ff. ferromagnetic 69, 95, 106 – oxidation step 51 388j Index

– pþ poly-silicon gate 8f., 13, 15 – leakage 3f. – quantum logic 214, 367f., 374 – 72 – single Mid-Gap 9 – resistance 62 – top 13ff. – triple- 16, 29 l – voting 335 Lande g-factor 107 – wrap-around 29, 36 Landauer-Shannon limit 94, 116 Green’s function 342 Larmor frequency 96 lattice matching 29 h leakage current 22, 38, 97, 99 Hadamard – quantum 62 – gate 374 – trap-assisted tunneling 22 – matrix 374 lithography 50, 136, 158 Hamiltonian 213f., 218 – electron-beam 3, 10, 13, 16, 184 – Hubbard-like, see quantum cellular automata – Extreme Ultra-Violet 25 (QCA) – interferometric 171 Hartree-Fock approximation 347 – top-down 291 Heisenberg uncertainty principle 49 – 22nm 288 heterostructure nanowire transistor 36ff. local density functional approximation – benchmarking 39ff. (LDA) 341 – design 30, 37, 40 logic devices – InAs 29ff. – chemical logic gates 215 – InAsP 37ff. – concatenation 217, 226f., 243 – segments 37 – finite-state machines by electrical – WIGFETs 36ff. adressing 236ff. hot electron injection 20 – finite-state machines by optical hybrid spintronics 93 adressing 217f., 228ff. – spin bipolar junction transistors, see SBJTs – inter-molecular-level 213ff. – spin field effect transistors, see SPINFETs – intra-molecular-level 213ff. – molecular-based computing 214 i – molecular combinational circuits 216, IETS (inelastic electron tunneling 219ff. spectroscopy) 202f. – molecular logic implementation by impact ionization processes 33, 37 photophysics 219, 221f., 224ff. International Technology Roadmap for – multi-valued logic 219 Semiconductors (ITRS) 3f., 7, 62, 167, – quantum cellular automata, see QCA 175 – quantum computing 213f., 363ff. information theory 366ff. – quasiclassical computing 214 ionization – set-reset machine 237ff. – intensity 222 – Stimulated Raman Adiabatic Passage – two-photon 223 (STIRAP) pump-probe control scheme – potential 129 229ff. island long channel transistors 30f., 33ff. – capacitance 62 – InAs nanowire transistor 34 – Coulomb 46ff. – MISFET model 34f. – metal 49 – planar Metal-Insulator-Semiconductor Field- – semiconductor 49 Effect Transistor (MISFET) 33 – SET 55, 57 low-operating-power (LOP) 69 – size 49f., 61f. – applications 62 – style designs 311 – arithmetic units 64 – circuits 65 j LSI (large-scale integrated circuits) 45 junction – CMOS 62 – capacitance 3 – SET-based 45 Index j389 m nanowire magnetic – doping profile 289 – cellular automata 115 – field effect controllable 289 – flux density 107 – growth 30 magnetic domain wall 70ff. – heterostructure WIGFETs 36ff. – de-pinning 80 – imperfections 72, 292f., 303 – injection pad 81, 84 – InAs/InAsP Wrapped-Insulator-Gate Field- – nucleation 74, 80f. Effect Transistor (WIGFET) 36ff. – pinning 80f. – InAs Wrapped-Insulator-Gate Field-Effect – propagation 72, 74ff. Transistor (WIGFET) 29ff. – shift register 84 – Indium Arsenide (InAs) 30ff. – structure 72 – junctions 72 – velocity 74 – length 292, 303 magnetic domain wall logic 69ff. – lithographc-scale 311 – data erasing 84ff. – materials 30ff. – data processing 75ff. – matrix 30f., 33 – data writing 84ff. – planar Permalloy 72 – field-progammable gate arrays (FPGAs) 70 – processing 30ff. – magnetic/non-magnetic/magnetic tri-layer – seed catalyst 289 structures, see MTJs – Si 30 – material 72ff. – vertical 29 – nanowire 74f., 84 – wrap-gate array 37 magnetic domain wall logic devices 71, 75ff. nanowire-based programmable – AND-gate 82ff. architectures 287ff. – NOT-gate 75ff. – alternate approaches 322f. – stub 76 – area 319f. magnetic field 73f., 76ff. – bootstrap testing 317ff. – phase diagram 81, 84 – building blocks 287, 293f., 303 – pseudo- 96f., 99 – assembly 290, 292 magneticrandomaccessmemory(MRAM) 70 – bottom-up synthesis techniques 287 magnetic solitons 70, 72 – crossbar arrays 287f. magnetization – crosspoint arrays 294ff. – configuration 70, 76 – decoders 296ff. – dynamics 82 – field-programmable gate arrays (FPGAs) – hysteresis 73, 77 288, 290, 309 – nanowire 75f. – inversion 298, 304, 309 – reversal 73f., 76, 80 – memory core 294, 302 – stable orientations 72 – multiplexer operation 297ff. – stub 76 – nanowire buffer 299f. magnetostatic interactions 70 – nanowire coding 296f. magnons 105 – nanowire inverter 299f. Markov Model 260 – non-programmable crosspoint defect MOKE (magneto-optical Kerr effect) 292f., 303 magnetometer 73f., 77ff. – post-fabrication configuration 288, 296 – analysis 79 – programmable crossbar interconnect – trace 78, 80 arrays 295, 304 monolithic spintronics, see SSL – programmable diode crosspoints MOSFETs (Metal-Oxide-Semiconductor 302ff. Field-Effect Transistor), see CMOS – programmable wired-OR plane 294f. Monte Carlo simulation 346, 351 – restoration 298, 300ff. MTJs (magnetic tunnel junctions) 70 – stochastic assembly 288, 302 – defect tolerance 313ff. n – delay 320 nanotubes, see carbon nanotubes – energy 320f. 390j Index

– logic architecture 303ff. o – basic clocking 305f. ONO (oxide-nitride-oxide) dielectric 20ff. – CMOS IO 311f. organic semiconductors 128ff. – construction 304 – conjugated polymers 125ff. – DeMorgan’s laws 304 – conjugated small-molecule 127f., 131ff. – Error-Correcting-Codes (ECC) 303 – p-conjugation 128ff. – interconnect 307, 309ff. – copper phthalocyanine (F16CuP) 131f., – Island-style designs 311 134, 141f. – logic circuit 305 – device structures 134ff. – nanoPLA block 304f., 307f. – fullerene 131, 134 – precharge evaluation 306f. – MISFETs (metal-insulator-semiconductor – programming 305 field-effect transistors) 125ff. – registers and sequential logics 305f. – n-channel transistors 134, 138, 141f. – memory array 302f. – oligothiophenes 132 – net area density 321f. – p-channel transistors 133, 138f., 141f. – technology 289ff. – pentacene 131ff. – assembly 290, 292 – poly(3-hexylthiophene) (P3HT) thin film – crosspoints 290 128ff. – 289, 292f., 303 – polythiophene 128 neuro-inspired hardware, see biological- – sexithiophene 131 inspired hardware – thin-film transistor (TFT), see organic TFT neuro-inspired models, see biologically – triethylsilyl (TES) anthradithiophene inspired models 133 neuroscience 252ff. – triisopropylsilyl (TIPS) pentacene 133 – artificial neural networks (ANNs) 257f., organic TFT 265, 273 – active-matrix electronic ink displays – attractor model 257 (AMEIDs) 145f. – auto-associative network 256f. – active-matrix organic light-emitting diode – back-propagation (BP) algorithm 255, 257, (AMOLED) pixel 145ff. 266 – active-matrix -dispersed liquid- – excitatory postsynaptic potential (EPSP) crystal displays (PDLCDs) 145ff. 253 – active-matrix twisted-nematic liquid crystal – functions 263 displays (TN-LCDs) 145f. – hardware, see biological-inspired hardware – ambipolar 138 – Heaviside step function 256 – applications 143ff. – Hebb’s law 253 – electrical characteristics 138ff. – Hopfield net 256 – extended graphics array (XGA) display – inhibitory postsynaptic potential (IPSP) 145 253 – flexible roll-up 145 – integrate and fire neuron 264 – liquid crystal cell 144 – inter-neuron communication 253 – low-voltage 137f. – leaky integrator 253 – manufacturing 126, 134ff. – long-term depression 253 – structures 135ff. – long-term potentiation (LTP) 253 organic transistors, see organic – neural circuits 252 semiconductors – neural model, see perceptron organic vapor-phase deposition 131 – neuromorphic engineering 264f. oxide 12f., 16f. – neurons 252ff. – buried 13, 16f. – neurotransmitter 253 – Al2O3 8, 162 – Palm associative network 256, 279 – Hf-oxides 8, 36 – winner-take-all function 253 – La2O3 8 – non-volatile data storage 69 SiO2 8, 16, 36, 163, 168 Nuclear Magnetic Resonance (NMR) – SiOx -spacer layer 37 Spectroscopy 214, 376 – ZrO2 8 Index j391 p – operation 333, 338, 343, 349, 358 Pauli spin matrix 107, 374 – power dissipation 353f. PECVD (plasma-enhanced chemical-vapor – simulated annealing 346 deposition) 157ff. – simulators 347f. perceptron 253ff. – split-current 359 – delta rule 254 – technology 348ff. – multi-layer (MLP) 255 – voting gate 335 – neural network algorithms 254f., 265 quantum communication 366 – single-layer 254 quantum computing 118f., 213f., 363ff. Permalloy 72 – class of complexity 364f. – films 72 – computer 120f., 364f. – wire 73f. – cryptography 366, 369 99, 105 – Dirac notation 369 – bath 113 – information carriers 368 photoresist 30ff. – information theory 367ff. Planck constant 49, 177, 342 – irreversible computation 367f. Poisson equation 342 – Kane quantum computer 377 polymer – logic devices 213ff. – conjugated, see organic semiconductors – Neumann-type architecture 363 – film 32, 127, 185 – operation scheme 372f. – layer 36 – qubits, see qubits – semiconducting 125, 130 – reversible computation 367f. – solution-processed 132 – spin-based 118, 121 – Turing machine 363f. q quantum-coupled architecture 116 quantum algorithm 364, 364f., 373 quantum dashes 330ff. – execution 373 374f. – factorization 120, 365 quantum dot 47, 49, 108, 116, 213, 215ff. – Grover’s 120, 365 – AlGaAs 348, 355f. – initialization 373 – antipodal 360 – Shor’s 120, 365f., 375 – Au 241f. – termination 373 – CdS 241f. quantum cellular automata (QCA) 114, 215, – dashes 113f. 329ff. – exchange-coupled 121 – action 336, 339, 343 – GaAs 108, 345, 348, 355f. – basic effect 356f. – gate-defined 113 – cell 333ff. – InP 108 – cell polarization 338 – silicon 348f. – – circuits 338, 343f., 346ff. Si/SiO2 355 – clocked architecture 336ff. – stability map 239 – configuration-interaction 341ff. – tunneling 336f. – fabrication 349f. quantum error correction 374f., 377 – Hubbard-like Hamiltonian 339f. quantum information 214, 367ff. – implementation with metallic junctions quantum inverter 121 354f. quantum leakage current 62 – implementation with semiconductors quantum logic gates 214, 367f., 374 355ff. – Hadamard 374 – logic 334, 338 – Toffoli 374 – modeling 339ff. – universal 374 – molecular 357f. quantum-mechanical – nanomagnetic 358f. – 3-D simulations 19 – Notre Dame architecture 333ff. – tunneling 46f., 370 – operating speed 350f. – wave function 370 – operating temperature 348f. quantum mechanics 368ff. 392j Index

– entanglement of states 119, 369, 371 – -on-nothing (SON) 13ff. – Hilbert space 369, 371 – thermal oxidation 51 – parallelism 119f., 371 – wafers 6, 14, 50 – quantization of states 369 silicidation 9 – superposition of states 369ff. Si3N3 capping layer 16f. quantum of conductance, see single-molecule Si3Nx 30f., 33, 36 devices – gate-dielectric layer 30, 32f. quantum single-charge-transfer devices 49 – point contacts (QPC) 356 – single-electron pump 49, 54 – resistance 49, 62 – single-electron turnstile 49 – simulations 229ff. single-electron inverter 54, 56 – size effect 49 single-electron logic 54ff. – Turing machine 119, 228, 363f. – basic SET logic 54ff. – wire 95, 116 – binary-decision-diagram logic 58, 64 qubit 118f., 364, 366, 368ff. – charge-state logic 54, 62 – Bloch sphere 369f. – domino-type logic 58 – candidates 375ff. – multiple-gate SET 56ff. – charge 379 – multiple-valued logic 59f., 64 – Cooper pair box (CPB) 379 – pass-transistor logic 56, 58 – entanglement 371 – SET-MOSFET configurations 59f., 63f. – flux 379ff. – voltage-state logic 54 – fractional flux 380f. single-electron quantizer 60f. – Hamiltonian operator 371ff. single-electron transfer 49 – Josephson junctions 378ff. single-electron transistor (SET) 45ff. – no-cloning theorem 372 – Al 50 – Nuclear Magnetic Resonance (NMR)- – carbon nanotubes (CNTs) 52 based 376 – fabrication 49ff. – physical realization 121 – GaAs/AlGaAs heterostructures 53 – quiet 380 – logic application 54ff. – register 371, 373 – material 50 – requirements 375 – operation principle 46ff. – Solid-State-based 376f. – PADOX (pattern-dependent oxidation) – states 214, 229, 370ff. 51ff. – superconducting 378ff. – room-temperature operating 51ff. – Si 50f., 53f. r – XOR gate 54, 56f., 63 Raman transition 219 single-electron tunneling 46, 54, 62 – state 47f. s single-molecule device Sallow Trench Isolation 23 – artifacts 201f. SBJTs 106f. – highest occupied molecular orbital Schrödinger equation 341, 347 (HOMO) 177f., 190, 192, 200 self-assembled monolayer (SAM) 132, 138, – lowest unoccupied molecular orbital 181ff. (LUMO) 176, 178, 190, 192, 200 – gate dielectric 139 – programmable logic arrays (PLA) 189 – low-energy surfaces 132 – quantum of conductance 178 SEM (scanning electron microscopy) 22ff. – set-up 176ff. short channel transistors 29f., 32, 35f. – single molecule single-electron transistor SiGe layer 5f., 14f. 199f. – etch technique 16 – strong coupling limit 177f. silicon – strong coupling regime 177 – epitaxy 10, 16 – transmission coefficient 177 – layer 6, 9f., 12f., 50 – weak coupling limit 177 – neuro-inspired 263, 265 – weak coupling regime 178 Index j393 single-molecule device building logical – D’yakonov-Perel’ mode 98 ciruits 203ff. – Elliott-Yafet spin relaxation mechansim 98 – crossbars 204ff. – injection 95f., 104 – hybrid molecular/CMOS circuits 205 spin injection efficiency 104ff. – NanoCell 206f. spin – programmable logic arrays 204f. – interactions 94, 99 – self-organization process 203f., 206 – majority 95f., 104, 106 single-molecule device functions 189f. – minority 96, 104, 106 – Aviram-Ratner mechanism 191f. – phonon coupling 106 – crossbar latch 189, 197f., 203 – polarization 69, 93, 96ff. – diode-diode logic 193f., 203 – polarized half-metals 105 – hysteretic switches 189, 196f., 205f. – precession 96f. – inverting logic 195ff. – pseudo-vector 118 – molecular diodes 190ff. – quantization axis 97, 108f. – molecular latch 189 – Rashba spin-orbit interaction 96f., 99f. – 189f. – relaxation 98f., 108 – negative differential resistance (NDR) 189, – selective barriers 105 194ff. – split band 97, 106 – programmable logic arrays (PLA) 189, 196, – splitting energy 106 204ff. – upspin state 93, 109 – resonant tunneling diode 194f. – wire 111 – signal restoration 189, 196ff. SPINFETs 93ff. – rectification 192f. – device performance 101f. single-molecule device realization 179ff. – Dresselhaus-type 100f. – crossbar structure 184f., 189, 205f. – ideal 94ff. – crossed wire 183 – non-ballistic 102ff. – electromigration 183, 186f. – non-idealities 97, 99 – electrochemical gate 186f. – n-type 99 – mechanically controlled break junctions – one-dimensional (1-D) channel 95, 98f. 179ff. – Rashba-type 100f. – nanogaps 183f., 187, 199 – Spin-Lifetime Transistor 102, 104f. – nanoparticle array 188 – switching speed 107 – scanning probe methods (SPM) 179, 181ff. – transfer characteristics 95 – three-terminal devices 185, 199 spintronic Slater determinant 341f. – devices 69, 93ff. SOI (silicon-on insulator) transistor 3ff. – technologies 69 – bulk 10f. SSL (Single Spin Logic) 94, 107ff. – fully depleted (FD) 5, 8ff. – bistable spin polarization 107f. – n-channel 10 – bit error probability 111, 113, 117 – partially depleted 10 – charge-based paradigms 113f. – single-gate 11f. – clocking 115f., 118 – substrate 50 – code converters 112 – ultra-thin 9ff. – energy dissipation 116f. source/drain (S/D) 4, 9ff. – NAND gate 109ff. spacer layer – operating temperature 117 – lower-k 36 – power dissipation 116 – – SiOx 37 read spin bits 108f. spin 93ff. – realization 111f. – based quantum computing 118ff. – 3-spin array 109f. – coated 30ff. – stability of spin polarization 108 – flip time 108 – undirectionality 114f. – detection efficiency 105 – write spin bits 108f. – downspin state 93, 109 STM (scanning tunneling microscopy) 14, – Dresselhaus spin-orbit interaction 99ff. 182f. 394j Index

subthreshold slope 11ff. – junction 47, 49ff. – inverse (subthreshold swing) 36, 39, 140 tunneling 20, 46 switching 196ff. – quantum dot 336f. – adiabatic 94, 336 – resistance 351f. – device 48 – resonant 194f. – hysteretic 196f. – structure 359f. – intrinsic 62 turn-off characteristics 11, 22 – MTJ 70 two-dimensional electron gas (2DEG) 355 – speed 10, 62f., 107 – time 18 v van der Waals interactions 125 t variable range hopping (VRH) 126 TEOS (tetraethyl orthosilicate) 14, 16f., 168 VLSI (Very-Large-Scale-Integration) TEM (transmission electron microscopy) 3ff. technology thermionic – analog (aVLSI) 257, 263f. – current 20 – conventional 290, 306 – emission 19 transconductance 33, 36, 38, 99, 140 w amplifier 264 wafer bonding 13ff. transfer characteristics 35, 38, 40 wavevector 97ff. transition WIGFET (Wrapped-Insulator-Gate Field-Effect dump 229 Transistor), see nanowire stokes 229 truth table 220f., 223, 226, 234ff. z tunable workfunction, see gate material Zeemann tunnel – effect 106 – capacitor 47 – splitting 111, 113, 116