Report Geology of Vermont
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DEERFIELD RIVER WATERSHED Assessment Report
DEERFIELD RIVER WATERSHED Assessment Report 2004-2008 Downstream of Fife Brook Dam The Commonwealth of Massachusetts Executive Office of Environmental Affairs The Commonwealth of Massachusetts Executive Office of Environmental Affairs 251 Causeway Street, Suite 900 Boston, MA 02114-2119 Mitt Romney GOVERNOR Kerry Healey LIEUTENANT GOVERNOR Tel: (617) 626-1000 Fax: (617) 626-1181 Ellen Roy Herzfelder or (617) 626-1180 SECRETARY http://www.state.ma.us/envir November 19, 2004 Dear Friends of the Deerfield River Watershed: It is with great pleasure that I present you with the Assessment Report for the Deerfield River Watershed. The report helped formulate the 5-year watershed action plan that will guide local and state environmental efforts within the Deerfield River Watershed over the next five years. The report expresses some of the overall goals of the Executive Office of Environmental Affairs, such as improving water quality, restoring natural flows to rivers, protecting and restoring biodiversity and habitats, improving public access and balanced resource use, improving local capacity, and promoting a shared responsibility for watershed protection and management. The Deerfield River Watershed Assessment Report was developed with input from the Deerfield River Watershed Team and multiple stakeholders including watershed groups, state and federal agencies, Regional Planning Agencies and, of course, the general public from across the Watershed. We appreciate the opportunity to engage such a wide group of expertise and experience as it allows the state to focus on the issues and challenges that might otherwise not be easily characterized. From your input we have identified the following priority issues: • Water Quantity • Water Quality • Fish Communities • Wildlife and Terrestrial Habitat • Open Space • Recreation I commend everyone involved in this endeavor. -
Native Americans Ol'
Native Americans ol' Clarendon, Vermont *This is only a report of my early findings. This is subject to charge as new evidence and facts arise. I\rly research has led me to cliscover two groups of Native Americiurs that could have resided in Clarendon and one other that may have simply passed through time to time. The tribe of Native l[mericans that has the highest likelihood of being in Clarendon isi the Mahican, specifically the subdivision Mahican proper. Their territory extended from Poughkeepsie, New York to Deerfield, I\4assachusetts, and extended flrttrest north in Rutland. It is important to mention that tlhey are not to be mistaken with the Mohegan tribes of Connecticut; however, they do have lineage witkr one another. As a side note, the Mahicans have lineage with the Lenape and ['equot. Other names for the Mahicans is as follows: Akochakanen (koquois name that means "Those who,speak a strangertongue"), Canoe Indians (Given by colonists), Hikanagi/Nhilcana (Given by the Shawnee), Laups (Given by the French), Orunges (,Given by a school textbook author, Chauvignerie, who rvas referring to a specific Mahican tribe in 1736), River Indians (Given by the Dutch), and Uragees (Again given by an author, Colden, in reference to a specific tribe of the.Mahicans 1747). Mahicans were hunters of southwestem and western Vermont. lheir langrllge belonged to the linguistic family of the Algonquian, spoken with an r-dialect. Sieldom did they settle anywhere in Vermont to stay due to the fact that they were typically hLunters, hotvever, it is not irnprobable that they had permanent selllements in Clarendon.r Historic territory of the |tdahicans l Swanton, John R., The lndion Tribes of North America,1953 pg. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Trains, Logs, Moose, and Birds: Building on the Past and Reaching Toward the Future with Cultural Heritage and Nature-Based Ecotourism in Island Pond, Vermont
Trains, Logs, Moose, and Birds: Building on the Past and Reaching toward the Future with Cultural Heritage and Nature-based Ecotourism in Island Pond, Vermont Environmental interpretation involves communicating about natural history, cultural heritage, and environmental issues to visitors engaged in recreational pursuits in a way that is interesting and entertaining. Interpreters seek to enhance visitors’ recreational experiences while assisting recreation managers in protecting the resources through the use of interpretive media. By Thomas R. Hudspeth* he Vermont Landscape Conference considers views of the past and visions of the future, using the paintings of Vermont Tlandscape painter Charles Louis Heyde as a jumping off point. This paper looks at trains and logs in Island Pond’s past and their contri- bution to the area’s unique sense of place. It then considers moose and birds and other watchable wildlife as potential contributors to Island Pond’s economic revival and sustainable development—development that meets the needs of the present without compromising the needs of future generations. Island Pond is a village in the Town of Brighton in the wild and re- mote Northeast Kingdom of Vermont, a region that encompasses Cale- donia, Essex, and Orleans counties and is currently confronting high unemployment, poverty, and outmigration of youth. The village takes its name from the adjacent body of water, which in turn is named for the twenty-acre island in the pond. This paper describes a collaborative Vermont History 70 (Winter/Spring 2002): 47–60. © 2002 by the Vermont Historical Society. ISSN: 0042-4161; online ISSN: 1544-3043 48 ..................... project between the University of Vermont (UVM) and the Island Pond community that develops watchable wildlife and other year- round ecotourism opportunities in the area, primarily through the use of environmental interpretation media. -
Cambrian Trilobite Ovatoryctocara Granulata Tchernysheva, 1962 and Its Biostratigraphic Significance
Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 213–221 www.elsevier.com/locate/pnsc Cambrian trilobite Ovatoryctocara granulata Tchernysheva, 1962 and its biostratigraphic significance Jinliang Yuan a,*, Yuanlong Zhao b, Jin Peng b, Xuejian Zhu a, Jih-pai Lin c a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, East Beijing Road 39, Nanjing 210008, China b College of Resource and Environment Science, Guizhou University, Guiyang 550003, China c School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA Received 28 March 2008; received in revised form 27 May 2008; accepted 14 August 2008 Abstract The genus Ovatoryctocara Tchernysheva, 1962, and its key species Ovatoryctocara granulata Tchernysheva, 1962, are revised. Ovatoryctocara granulata occurs near the base of the Ovatoryctocara Zone and ranges up into the lower portion of the Kounamkites Zone in the Siberian Platform. O. granulata also appears in southeastern Guizhou, South China, but O. granulata in northern Greenland may represent an indefinite species. Specimens of Ovatoryctocara from Newfoundland cannot be identified to species level. Specimens includ- ing two cranidia and three pygidia from the lower part of the Aoxi Formation at Yaxi Village, Shizhu Town, eastern Tongren, north- eastern Guizhou, were previously assigned to O. granulata, which is now reassigned as a new species O. yaxiensis sp. nov. It bears the following main features: glabella club-shaped, slightly expanded medially, with four pairs of lateral furrows, of which S1–S3 are trian- gular pits, S4 is shallow, connecting with axial furrow; shorter palpebral lobe situated a little anterior to the midway of facial suture across the fixigenae, longer posterolateral area (exsag.); semielliptical pygidium consisting of seven axial rings with a terminal piece and with eight pairs of marginal tips giving a sawtooth-like shape of the lateral margins in dorsal view. -
Taconic Physiography
Bulletin No. 272 ' Series B, Descriptive Geology, 74 DEPARTMENT OF THE INTERIOR . UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR 4 t TACONIC PHYSIOGRAPHY BY T. NELSON DALE WASHINGTON GOVERNMENT PRINTING OFFICE 1905 CONTENTS. Page. Letter of transinittal......................................._......--..... 7 Introduction..........I..................................................... 9 Literature...........:.......................... ........................... 9 Land form __._..___.._.___________..___._____......__..__...._..._--..-..... 18 Green Mountain Range ..................... .......................... 18 Taconic Range .............................'............:.............. 19 Transverse valleys._-_-_.-..._.-......-....___-..-___-_....--_.-.._-- 19 Longitudinal valleys ............................................. ^...... 20 Bensselaer Plateau .................................................... 20 Hudson-Champlain valley................ ..-,..-.-.--.----.-..-...... 21 The Taconic landscape..................................................... 21 The lakes............................................................ 22 Topographic types .............,.....:..............'.................... 23 Plateau type ...--....---....-.-.-.-.--....-...... --.---.-.-..-.--... 23 Taconic type ...-..........-........-----............--......----.-.-- 28 Hudson-Champlain type ......................"...............--....... 23 Rock material..........................'.......'..---..-.....-...-.--.-.-. 23 Harder rocks ....---...............-.-.....-.-...--.-......... -
Glover Flood Resilience Element
FLOOD RESILIENCE PLAN for the Town of Glover, Vermont Prepared by Meghann Carter NorthWoods Stewardship Center East Charleston, VT in cooperation with the Glover Planning Commission and Glover Selectboard February, 2015 Paid for in part by the Barton Hydro Project Municipal Planning Grant Introduction With an all-hazards mitigation plan now written and pending approval, the Town of Glover is obligated to begin to address identified pertinent hazards, one of which is flooding and fluvial erosion. The purpose of this plan is to identify key hazard areas which are most likely to be affected by flood and fluvial erosion and to propose potential actions to minimize these hazards and their impacts. Potential major points of impact include dams, culverts, bridges, and infrastructure such as roads and buildings within the floodplains. Goals (1) Identify areas of greatest risk to flooding and fluvial erosion within the Town of Glover. (2) Develop recommendations for future actions to create a flood-and fluvial erosion-safe Glover, minimizing threats to public safety, property, and water quality. Flooding and Fluvial Erosion in Vermont Flooding and fluvial erosion are Vermont’s most common and costly types of natural disaster and over time, many compounding factors have increased Vermont’s susceptibility to flood damage. As climate change affects global temperature fluctuations, storms of greater power and higher frequency are anticipated, and indeed this trend has been observed in recent decades. This trend had led to global, state, and regional efforts to better prepare for these events by identifying sensitive resources, key areas of vulnerability, and implementing mitigations. In the interest of promoting local flood resilience, as of July 1, 2014, according to new legislation (Act 16), any newly adopted or readopted municipal or regional plan must have a Flood Resilience Plan Element. -
The Geology of the Lyndonville Area, Vermont
THE GEOLOGY OF THE LYNDONVILLE AREA, VERMONT By JOHN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT COMMISSION MONTPELIER, VERMONT BULLETIN NO. 8 1956 Lake Willoughby, seen from its north shore. TABLE OF CONTENTS ABSTRACT ......................... 7 INTRODUCTION 8 Location 8 Geologic Setting ..................... 8 Previous Work ...................... 8 Purpose of Study ..................... 9 Method of Study 10 Acknowledgments . 11 Physiography ...................... 11 STRATIGRAPHY ....................... 16 Lithologic Descriptions .................. 16 Waits River Formation ................. 16 General Statement .................. 16 Distribution ..................... 16 Age 17 Lithological Detail .................. 17 Gile Mountain Formation ................ 19 General Statement .................. 19 Distribution ..................... 20 Lithologic Detail ................... 20 The Waits River /Gile Mountain Contact ........ 22 Age........................... 23 Preliminary Remarks .................. 23 Early Work ...................... 23 Richardson's Work in Eastern Vermont .......... 25 Recent Detailed Mapping in the Waits River Formation. 26 Detailed Work in Canada ................ 28 Relationships in the Connecticut River Valley, Vermont and New Hampshire ................... 30 Summary of Presently Held Opinions ........... 32 Discussion ....................... 32 Conclusions ...................... 33 STRUCTURE 34 Introduction and Structural Setting 34 Terminology ...................... -
Nutrient Loading and Impacts in Lake Champlain – Missisquoi Bay and Lake Memphremagog
Nutrient Loading and Impacts in Lake Champlain – Missisquoi Bay and Lake Memphremagog Missisquoi Bay. IJC Collection Lake Memphremagog. IJC Collection Missisquoi Bay Cyanobacteria. Pierre Leduc Prepared by the International Joint Commission April 21, 2020 Table of Contents I. Synthesis Document ........................................................................................................................ 3 A. Context ........................................................................................................................................ 3 Cyanobacteria .................................................................................................................................. 3 Actions and Consequences of Non-action ........................................................................................ 3 The Governments’ Reference ........................................................................................................... 4 IJC’s Approach to the Reference ...................................................................................................... 5 Workshops to Review Science and Policy on Nutrient Loading ........................................................ 6 Public Meeting and Online Consultation .......................................................................................... 6 B. IJC Analysis of SAG Reports ....................................................................................................... 7 C. Common Basin Recommendations and IJC Recommendations -
Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States
Graduate Theses, Dissertations, and Problem Reports 2011 Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States Margaret E. Walker-Milani West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Walker-Milani, Margaret E., "Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States" (2011). Graduate Theses, Dissertations, and Problem Reports. 3327. https://researchrepository.wvu.edu/etd/3327 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States Margaret E. Walker-Milani THESIS submitted to the College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Geology Richard Smosna, Ph.D., Chair Timothy Carr, Ph.D. John Renton, Ph.D. Kathy Bruner, Ph.D. -
Stratigraphy and Structure of a Portion of the Castleton Quai)Rangle, Vermont
STRATIGRAPHY AND STRUCTURE OF A PORTION OF THE CASTLETON QUAI)RANGLE, VERMONT By E-AN ZEN VERMONT GEOLOGICAL SURVEY CHARLES C. DoLL, State Geologist Piibli shed by .VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BUILETIN No. 25 1964 CONTENTS PAGE ABSTRACT ..........................5 iNTRODUCTION ....................... 6 ACKNOWLEDGMENTS .................... 10 STRATIGRAPHY ........................ 11 Introduction ........................ ii Taconic Sequence: Lower Cambrian Units .......... 11 I3iddie Knob Formation ................. 11 Bull Formation .................... 13 West Castleton Formation ............... IS Taconic Sequence: Post-Lower Cambrian Units ....... 20 General Remarks ..................... 20 1-latch Full Formation ................. 21 Ponitney Slate ..................... 23 Indian River Slate ................... 24 lXuvlet Formation ................... 25 'laconic Sequence: Discussion ............... 27 Stratigraphic Relations Within the Post-Lower Cambrian Units 27 Stratigraphic Relations Between the Lower Cambrian Succes- sion and Later Rock Units ............... 28 Synclinoriuin Sequence ...................It Precambrian: Mount Holly Series ............ 31 Lower Cambrian: Cheshire Quartzite ............31 Lower Cambrian: Winooski Dolostone .......... 32 Upper Cambrian: Undifferentiated Danby—Clarendon Springs Fonnations ..................... 33 Lower Orciovician: Shelburne Formation ......... 34 Lower Ordovician: Bascom Fonnation .......... 36 T4ower Ordovieian: Chipman Formation .......... 37 Middle Ordovieian: