Vitis Vinifera L. Ssp. Sativa) Based on Chloroplast DNA Polymorphisms

Total Page:16

File Type:pdf, Size:1020Kb

Vitis Vinifera L. Ssp. Sativa) Based on Chloroplast DNA Polymorphisms Molecular Ecology (2006) 15, 3707–3714 doi: 10.1111/j.1365-294X.2006.03049.x MultipleBlackwell Publishing Ltd origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms R. ARROYO-GARCÍA,*† L. RUIZ-GARCÍA,* L. BOLLING,* R. OCETE,‡ M. A. LÓPEZ,‡ C. ARNOLD,§ A. ERGUL,¶ G. SÖYLEMEZO˝LU,** H. I. UZUN,†† F. CABELLO,‡‡ J. IBÁÑEZ,‡‡ M. K. ARADHYA,§§ A. ATANASSOV,¶¶ I. ATANASSOV,¶¶ S. BALINT,*** J. L. CENIS,††† L. COSTANTINI,‡‡‡ S. GORIS- LAVETS,§§§ M. S. GRANDO,‡‡‡ B. Y. KLEIN,¶¶¶ P. E. M C GOVERN,**** D. MERDINOGLU,†††† I. PEJIC,‡‡‡‡ F. PELSY,†††† N. PRIMIKIRIOS,§§§§ V. RISOVANNAYA,§§§ K. A. ROUBELAKIS-ANGELAKIS,§§§§ H. SNOUSSI,¶¶¶¶ P. SOTIRI,***** S. TAMHANKAR,††††† P. THIS,‡‡‡‡‡ L. TROSHIN,§§§§§ J. M. MALPICA,† F. LEFORT¶¶¶¶¶ and J. M. MARTINEZ-ZAPATER* *Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain, †Departamento de Biotecnología, INIA, Ctra. de A Coruña km 7, 28040 Madrid, Spain, ‡Departamento de Fisiología y Zoología, Universidad de Sevilla, C/Reina Mercedes 6, 41012 Sevilla, Spain, §National Center of Competence in Research 'Plant Survival', University of Neuchâtel, Emile Argand 11, Ch 2007, Neuchâtel, Switzerland, ¶Institute of Biotechnology, Ankara University, 065000 Besevler-Ankara, Turkey, **Department of Horticulture, Faculty of Agriculture, Ankara University, 06110 Diskapi-Ankara, Turkey, ††Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey, ‡‡Finca El Encin, IMIDRA, Alcalá de Henares, 28800 Madrid, Spain, §§National Clonal Germplasm Repository, USDA-ARS, University of California, Davis, CA 95616, USA, ¶¶AgroBioInstitute, D. Tzankov 8, 1164 Sofia, Bulgaria, ***Department of Viticulture, University of Agricultural Sciences and Veterinary Medicine ‘Ion Ionescu de la Brad’, Aleea Mihail Sadoveanu nr. 3, 700490 Romania, †††IMIDA, La Alberca, 30150 Murcia, Spain, ‡‡‡Istituto Agrario S. Michele all’Adige, Via Mach 1, 38010 Trento, Italy, §§§Institute of Vine and Wine Magarach, 31 Kirov St., 98600 Yalta, Crimea, Ukraine, ¶¶¶Hebrew University Hospital, Ein Kerem, Jerusalem, POB 12000, Israel, ****MASCA, University of Pennsylvania Museum, Philadelphia, PA 19104, USA, ††††UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-ULP, 28 rue de Herrlisheim, BP 20507, 68021 Colmar, France, ‡‡‡‡Department of Plant Breeding, Genetics and Biometrics, University of Zagreb, HR-10000 Zagreb, Croatia, §§§§Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece, ¶¶¶¶Laboratoire de Biotechnologie, Institut National de la Recherche Agronomique de Tunisie, Rue Hédi Karray, 2049 Ariana, Tunisia, *****Institute of Biology, Academy of Science, Tirana, Albania, †††††Agharkar Research Institute, Department of Science and Technology, Pune-411 004, India, ‡‡‡‡‡UMR DGPC Génétique de la Vigne, ENSAM-INRA 2pl. P. Viala, 34060 Montpellier, France, §§§§§Viticulture Department, Kuban State Agrarian University, 350044 Krasnodar, Russia, ¶¶¶¶¶Laboratory of Applied Genetics, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland Abstract The domestication of the Eurasian grape (Vitis vinifera ssp. sativa) from its wild ancestor (Vitis vinifera ssp. sylvestris) has long been claimed to have occurred in Transcaucasia where its greatest genetic diversity is found and where very early archaeological evidence, including grape pips and artefacts of a ‘wine culture’, have been excavated. Whether from Transcaucasia or the nearby Taurus or Zagros Mountains, it is hypothesized that this wine culture spread southwards and eventually westwards around the Mediterranean basin, together with the transplantation of cultivated grape cuttings. However, the existence of morphological differentiation between cultivars from eastern and western ends of the modern distribution of the Eurasian grape suggests the existence of different genetic contribution from local sylvestris populations or multilocal selection and domestication of sylvestris genotypes. To tackle this issue, we analysed chlorotype variation and distribution in 1201 samples of sylvestris and sativa genotypes from the whole area of the species’ distribution and studied their genetic relationships. The results suggest the existence of at least two important origins for the cultivated germplasm, one in the Near East and another in the western Mediterranean region, the latter of which gave rise to many of the current Western European cultivars. Indeed, over 70% of the Iberian Peninsula cultivars display chlorotypes that are only compatible with their having derived from western sylvestris populations. Correspondence: José Miguel Martínez Zapater, Fax: 34-915854506; E-mail: [email protected] © 2006 The Authors Journal compilation © 2006 Blackwell Publishing Ltd 3708 R. ARROYO-GARCÍA ET AL. Keywords: chloroplasts diversity, crop origins, domestication centres, domestication, genetic variation, grapevine Received 7 December 2005; revision received 12 May 2006; accepted 2 June 2006 c. 2200 bc, and on the coasts of the Italian and Iberian Introduction Peninsulas (c. 800 bc) (McGovern 2003). On the other hand, The Eurasian grape (Vitis vinifera L.) is the most widely the existence of morphological differentiation among cultivated and economically important fruit crop in the cultivars from distinct geographical areas in the Near East world (Vivier & Pretorius 2002). Cultivated grapevines and in the western Mediterranean region supports the (Vitis vinifera spp. sativa) are thought to have been second possibility in which wild local sylvestris germplasm domesticated from wild populations of Vitis vinifera spp. significantly contributed to the generation of grape cultivars, sylvestris (Levadoux 1956). These wild vines are dioecious possibly through multiple domestication events (Negrul plants still occurring in small isolated populations along 1938; Levadoux 1956; Mullins et al. 1992). This possibility is riverbank forests from the Atlantic coast of Europe to compatible with an eastern ancestral origin for the wine Tajikistan and the western Himalayas (Zohary & Hopf culture and viticulture practices and its spread from east 2000). The exploitation of wild grape fruit as a food source to west. Resolving this issue has important implications by Palaeolithic hunter-gatherer populations is well for understanding the origin of current grape cultivars documented at many prehistoric sites across Europe and provides information on the processes involved in (Zohary 1996). However, the domestication of the grapevine the domestication of woody plant species. has been linked to the production of wine, which required The analysis of the amount and distribution of genetic more fruit to be viable as well as storage containers made variation in cultivated (V. vinifera ssp. sativa) and wild of pottery to preserve the beverage, developments that (V. vinifera ssp. sylvestris) populations can help in under- did not occur until the Neolithic period (c. 8500–4000 bc) standing the process of grapevine domestication. V. vinifera (McGovern et al. 1986). The domestication process involved plants are highly heterozygous and the vegetative propa- the selection of hermaphrodite genotypes producing larger gation of cultivars has maintained their high heterozygosity and sweeter berries of attractive colours and the development levels. When cultivars from the same geographic regions of techniques for their vegetative propagation (Zohary & are grouped, nuclear DNA microsatellite markers pro- Hopf 2000). vide weak discrimination between different geographic Major questions regarding grapevine domestication groups, with the greatest variation existing within the cultivar concern the number of domestication events and the groups themselves (Aradhya et al. 2003). Additionally, geographic locations where they took place. Two basic European grape cultivars have a complex history of move- divergent hypotheses can be formulated: (i) a restricted ment over growing regions, which hampers the recogni- origin hypothesis in which domestication took place tion of clear geographic trends in their distribution from a limited wild stock in a single location, with those (Sefc et al. 2000). To try overcoming these problems we cultivars subsequently being transplanted to other regions have used variation in the chloroplast genome to analyse (Olmo 1976); and (ii) a multiple-origin hypothesis in which the relationships between sylvestris and sativa grapevine domestication could have involved a large number of groups. The chloroplast genome has a lower evolutionary founders recruited during an extended time period and rate than the nuclear genome (Provan et al. 1999), and along the entire distribution range of the wild progenitor being maternally inherited in grapevine (Arroyo-García species (Mullins et al. 1992). In agreement with the first et al. 2002) can only be disseminated by seeds or cuttings. possibility, archaeological research has traced the earliest Furthermore, preliminary genotyping of grapevine evidence for large-scale winemaking, presumably exploiting cultivars from different locations for a few chloroplast a domesticated plant, to the Neolithic period in the northern microsatellite loci have shown the existence of a reduced mountainous regions of the Near East, encompassing the number of chlorotypes, which could show specific geographic northern Zagros, eastern Taurus and Caucasus Mountains distributions (Arroyo-García
Recommended publications
  • Xylella Fastidiosa HOST: GRAPEVINE
    Xylella fastidiosa HOST: GRAPEVINE What is Xylella fastidiosa and why is it so serious? ◆ A dangerous bacterium threatening hundreds of species of plants in the UK ◆ It is spreading across southern Europe from its origins in the Americas ◆ Can be transported by sap-feeding insects such as spittlebugs ◆ Causes plant death by blocking water transporting vessels (xylem) ◆ Currently no cure Vitis vinifera ◆ Deciduous climbing shrub ◆ Flaky bark ◆ Climbs by tendrils reaching 15–18m high ◆ Three- or five-lobed, coarsely toothed leaves, 7.5–15cm long and wide, with stalks half as long as the blade, hairy underneath and of variable colour ◆ Tiny greenish flowers ◆ Oval or globose fruit Healthy Diseased What is BRIGIT? A collaborative project aimed at reducing the risk of a Xylella introduction into the UK and mitigating the risks in the event of an outbreak. Please turn over to find out more. What to look 1 out for 2 ◆ Marginal leaf scorch 1 ◆ Leaf chlorosis 2 ◆ Premature loss of leaves 3 ◆ Matchstick petioles 3 ◆ Irregular cane maturation (green islands in stems) 4 ◆ Fruit drying and wilting 5 ◆ Stunting of new shoots 5 ◆ Death of plant in 1–5 years Where is the plant from? 3 ◆ Plants sourced from infected countries are at a much higher risk of carrying the disease-causing bacterium Do not panic! 4 How long There are other reasons for disease symptoms to appear. Consider California. of University Montpellier; watercolour, RHS Lindley Collections; “healthy”, RHS / Tim Sandall; “diseased”, J. Clark, California 3 J. Clark & A.H. Purcell, University of California 4 J. Clark, University of California 5 ENSA, Images © 1 M.
    [Show full text]
  • Grape Basics
    Grape Basics s – any c ll grape olor – A vitamins C Shop and Save ntain and K co < For eating fresh, choose h help heal cu whic ts. table grapes. They have thinner skins and are sweet and juicy. Grapes grown for juice or wine have thicker skins and much Raisins more sugar. < Depending on the variety of < Look for firm, plump grapes grape, raisins (dried grapes) that are firmly attached to become dark brown or golden. green, flexible stems. < Look for tightly-sealed < Avoid grapes that are containers or covered bulk shriveled, sticky, have brown bins. Raisins should feel soft spots, or with dry, brittle and pliable. stems. < Store raisins in an airtight < Grapes are commonly purple, container in a cool, dry, dark red or pale green. They may place. be seedless or have seeds. Try < different colors, sizes and Once opened, reseal the textures by choosing the variety package tightly to help prevent that is lowest in price. hardening. For best quality use within 6 months. < If raisins become hard, soak in hot liquid for 5 to 15 minutes. Drain and use. < It takes 1 cup of grapes to make ¼ cup of raisins. They Store Well both have about 100 calories. Waste Less M Whole grapes are a I Leave grapes on the stem but remove any grapes that are serious choking hazard for shriveled, brown, or moldy. perforated plastic bag. For best children younger than four I Grapes can be kept on the quality, use within 7 to 10 days. years old. Cut grapes in countertop for a day or two, but I Rinse under cool water just half lengthwise or even last longer when refrigerated.
    [Show full text]
  • So You Want to Grow Grapes in Tennessee
    Agricultural Extension Service The University of Tennessee PB 1689 So You Want to Grow Grapes in Tennessee 1 conditions. American grapes are So You Want to Grow versatile. They may be used for fresh consumption (table grapes) or processed into wine, juice, jellies or Grapes in Tennessee some baked products. Seedless David W. Lockwood, Professor grapes are used mostly for fresh Plant Sciences and Landscape Systems consumption, with very little demand for them in wines. Yields of seedless varieties do not match ennessee has a long history of grape production. Most recently, those of seeded varieties. They are T passage of the Farm Winery Act in 1978 stimuated an upsurge of also more susceptible to certain interest in grape production. If you are considering growing grapes, the diseases than the seeded American following information may be useful to you. varieties. French-American hybrids are crosses between American bunch 1. Have you ever grown winery, the time you spend visiting and V. vinifera grapes. Their grapes before? others will be a good investment. primary use is for wine. uccessful grape production Vitis vinifera varieties are used S requires a substantial commit- 3. What to grow for wine. Winter injury and disease ment of time and money. It is a American problems seriously curtail their marriage of science and art, with a - seeded growth in Tennessee. good bit of labor thrown in. While - seedless Muscadines are used for fresh our knowledge of how to grow a French-American hybrid consumption, wine, juice and jelly. crop of grapes continues to expand, Vitis vinifera Vines and fruits are not very we always need to remember that muscadine susceptible to most insects and some crucial factors over which we Of the five main types of grapes diseases.
    [Show full text]
  • Starting a Vineyard in Texas • a GUIDE for PROSPECTIVE GROWERS •
    Starting a Vineyard in Texas • A GUIDE FOR PROSPECTIVE GROWERS • Authors Michael C ook Viticulture Program Specialist, North Texas Brianna Crowley Viticulture Program Specialist, Hill Country Danny H illin Viticulture Program Specialist, High Plains and West Texas Fran Pontasch Viticulture Program Specialist, Gulf C oast Pierre Helwi Assistant Professor and Extension Viticulture Specialist Jim Kamas Associate Professor and Extension Viticulture Specialist Justin S cheiner Assistant Professor and Extension Viticulture Specialist The Texas A&M University System Who is the Texas A&M AgriLife Extension Service? We are here to help! The Texas A&M AgriLife Extension Service delivers research-based educational programs and solutions for all Texans. We are a unique education agency with a statewide network of professional educators, trained volunteers, and county offices. The AgriLife Viticulture and Enology Program supports the Texas grape and wine industry through technical assistance, educational programming, and applied research. Viticulture specialists are located in each region of the state. Regional Viticulture Specialists High Plains and West Texas North Texas Texas A&M AgriLife Research Denton County Extension Office and Extension Center 401 W. Hickory Street 1102 E. Drew Street Denton, TX 76201 Lubbock, TX 79403 Phone: 940.349.2896 Phone: 806.746.6101 Hill Country Texas A&M Viticulture and Fruit Lab 259 Business Court Gulf Coast Fredericksburg, TX 78624 Texas A&M Department of Phone: 830.990.4046 Horticultural Sciences 495 Horticulture Street College Station, TX 77843 Phone: 979.845.8565 1 The Texas Wine Industry Where We Have Been Grapes were first domesticated around 6 to 8,000 years ago in the Transcaucasia zone between the Black Sea and Iran.
    [Show full text]
  • Current Breeding Efforts in Salt‐And Drought-Tolerant Rootstocks –
    12/12/2017 Current Breeding Efforts in Salt‐and Drought-Tolerant Rootstocks – Andy Walker ([email protected]) California Grape Rootstock Improvement Commission / California Grape Rootstock Research Foundation CDFA NT, FT, GV Improvement Advisory Board California Table Grape Commission American Vineyard Foundation E&J Gallo Winery Louise Rossi Endowed Chair in Viticulture Rootstock Breeding Objectives • Develop better forms of drought and salinity tolerance • Combine these tolerances with broad nematode resistance and high levels of phylloxera resistance • Develop better fanleaf degeneration tolerant rootstocks • Develop rootstocks with “Red Leaf” virus tolerance 1 12/12/2017 V. riparia Missouri River V. rupestris Jack Fork River, MO 2 12/12/2017 V. berlandieri Fredericksburg, TX Which rootstock to choose? • riparia based – shallow roots, water sensitive, low vigor, early maturity: – 5C, 101-14, 16161C (3309C) • rupestris based – broadly distributed roots, relatively drought tolerant, moderate to high vigor, midseason maturity: – St. George, 1103P, AXR#1 (3309C) 3 12/12/2017 Which rootstock to choose? • berlandieri based – deeper roots, drought tolerant, higher vigor, delayed maturity: – 110R, 140Ru (420A, 5BB) • champinii based – deeper roots, drought tolerant, salt tolerance, but variable in hybrids – Dog Ridge, Ramsey (Salt Creek) – Freedom, Harmony, GRNs • Site trumps all… soil depth, rainfall, soil texture, water table V. monticola V. candicans 4 12/12/2017 CP‐SSR LN33 1613-59 V. riparia x V. rupestris Couderc 1613 14 markers 22 haplotypes Harmony Freedom V. berlandieri x V. riparia Couderc 1616 Ramsey Vitis rupestris cv Witchita refuge V. berlandieri x V. rupestris 157-11 (Couderc) 3306 (Couderc) V. berlandieri x V. vinifera 3309 (Couderc) Vitis riparia cv.
    [Show full text]
  • Growing Grapes in Missouri
    MS-29 June 2003 GrowingGrowing GrapesGrapes inin MissouriMissouri State Fruit Experiment Station Missouri State University-Mountain Grove Growing Grapes in Missouri Editors: Patrick Byers, et al. State Fruit Experiment Station Missouri State University Department of Fruit Science 9740 Red Spring Road Mountain Grove, Missouri 65711-2999 http://mtngrv.missouristate.edu/ The Authors John D. Avery Patrick L. Byers Susanne F. Howard Martin L. Kaps Laszlo G. Kovacs James F. Moore, Jr. Marilyn B. Odneal Wenping Qiu José L. Saenz Suzanne R. Teghtmeyer Howard G. Townsend Daniel E. Waldstein Manuscript Preparation and Layout Pamela A. Mayer The authors thank Sonny McMurtrey and Katie Gill, Missouri grape growers, for their critical reading of the manuscript. Cover photograph cv. Norton by Patrick Byers. The viticulture advisory program at the Missouri State University, Mid-America Viticulture and Enology Center offers a wide range of services to Missouri grape growers. For further informa- tion or to arrange a consultation, contact the Viticulture Advisor at the Mid-America Viticulture and Enology Center, 9740 Red Spring Road, Mountain Grove, Missouri 65711- 2999; telephone 417.547.7508; or email the Mid-America Viticulture and Enology Center at [email protected]. Information is also available at the website http://www.mvec-usa.org Table of Contents Chapter 1 Introduction.................................................................................................. 1 Chapter 2 Considerations in Planning a Vineyard ........................................................
    [Show full text]
  • The Story of Our Biodynamic Vineyard Biodynamics at Eco Terreno
    The Story of Our Biodynamic Vineyard Biodynamics at Eco Terreno We staunchly believe that in order to become understanding of water usage to planting a successful grape growers and winemakers, we substantial bee garden, all of our work has must first create a healthy native ecosystem directly translated into us becoming more for our vineyards. In fact we’re so passionate informed stewards of our resources. In about being dedicated caretakers of the restoring the natural riparian areas on land that we named ourselves our property along the Russian “Great wines are not produced, Eco Terreno, which means “of River’s native wild habitats they are carefully cultivated.” the land” in Italian and “Land we are joining the cultivated Ecology in Spanish.” This and the non-cultivated lands passion has led to our transition together. We believe that by Mark Lyon, WINEMAKER to organic and biodynamic actively promoting biodiversity farming practices that are necessary to in our vineyards, we will explicitly becoming strong regenerative growers. From produce grapes and wine that reflect the planting cover crops to developing a holistic full expression of our terroir. The Biodynamic farming standard was the world’s first organic standard, started in 1928, by farmers in Austria and Germany. Today farmers in more than in 42 countries practice Biodynamic farming. how biodynamic is different Biodynamics is a holistic approach to farming In short, biodynamic viticulture takes us developed in the 1920’s as a response to the beyond organic farming, to a system where failures of chemical agriculture. Founded the subtle influences of the seasons, the by scientist and philosopher Rudolf Steiner, movement of the moon and planets, and the ancient practices were married with an dynamic interplay of life above and below understanding of chemistry and plant ground coalesces in the grapes grown and physiology to create a system that treats wines made.
    [Show full text]
  • Evaluating Resistance to Grape Phylloxera in Vitis Species with an in Vitro Dual Culture Assay WLADYSLAWA GRZEGORCZYK ~ and M
    Evaluating Resistance to Grape Phylloxera in Vitis Species with an in vitro Dual Culture Assay WLADYSLAWA GRZEGORCZYK ~ and M. ANDREW WALKER 2. Forty-one accessions of 12 Vitis L. and Muscadinia Small species were evaluated for resistance to grape phylloxera (Daktulosphaira vitifoliae Fitch) using an in vitro dual culture system. The performance of the species tested in this study was consistent with previously published studies with whole plants and helps confirm the utility of in vitro dual culture for the study of grape/phylloxera interactions. This in vitro system provides rapid results (8 wk) and the ability to observe the phylloxera/grape interaction without interference from other factors. This system also provides an evaluation that overemphasizes susceptibility, thus providing more confidence in the resistance responses of a given species or accession. Among the unusual responses were the susceptibility of V. riparia Michx. DVIT 1411; susceptibility within V. berlandieri Planch.; relatively wide ranging responses in V. rupestris Scheele; and the lack of feeding on the roots of V. califomica Benth., in contrast to the severe foliar feeding damage that occurred on this species. Vitis califomica #11 and V. girdiana Munson DVIT 1379 were unusual because phylloxera on them had the shortest generation times. Such accessions might be used to examine how grape hosts influence phylloxera behavior. Very strong resistance was found within V. aestivalisMichx. DVIT 7109 and 7110; I/. berlandieric9031; V. cinereaEngelm; I/. riparia (excluding DVIT 1411 ); V. rupestris DVIT 1418 and 1419; and M. rotundifolia Small. These species and accessions seem to possess enough resistance to enable their use in breeding with minimal concern about phylloxera susceptibility.
    [Show full text]
  • Flyer2021bibliobusweb-44104.Pdf
    Bibliothèques Comment municipales une fenêtre sur le monde nous joindre ? la réponse est humaine Par téléphone : 022 418 92 70 Vous avez une question et vous souhaitez (répondeur 24h/24h, laissez votre nom une réponse personnalisée ? InterroGE est et numéro d’emprunteur) un service de renseignements à distance accessible par formulaire. Le réseau des Par e-mail : hors-murs.bmu @ville-ge.ch bibliothèques genevoises vous offre, en bibli-o-bus Toutes les informations sur : www.bm-geneve.ch moins de trois jours, un résultat fiable et des sources identifiées. horaires www.interroge.ch & infos pratiques janvier à décembre 2021 s’inscrire L’emprunt de documents à domicile ainsi que l’accès aux ressources numériques à distance nécessitent une inscription préalable au Le bibli-o-bus bibli-o-bus ou dans l’une des bibliothèques municipales de la ville de Genève (voir condi- LE BIBLI-O-BUS EST UN SERVICE PROPOSÉ PAR LA VILLE tions sur notre site internet). DE GENÈVE EN COLLABORATION AVEC L’ASSOCIATION DES emprunter COMMUNES GENEVOISES. QUATRE VÉHICULES DESSERVENT Empruntez jusqu’à 20 documents et 10 magazines sur l’ensemble du réseau 28 COMMUNES DANS 34 POINTS DE STATIONNEMENT. pour une période de 28 jours. Vous y trouverez un vaste choix de documents pour adultes, enfants et adolescent-e s : des romans, des documentaires, des livres lus ou en prolonger Prolongez jusqu’à 3 fois vos emprunts auprès grands caractères, des bandes dessinées, des albums illustrés, des bibliothécaires, par téléphone, par e-mail des films et bien plus encore. ou via votre espace personnel en ligne.
    [Show full text]
  • Dialogue Winter 2019/20 | 1 Editorial (Continued)
    the Banque Cantonale de Genève magazine | Winter 2019 / 20 Best practices and added value for companies Private asset management accessible from CHF 50,000 thanks to Best of Genesis BCGE L’essentiel de la finance The dynamic municipality of Presinge continues the renovation of its historic buildings 051219 1816/CH/E/ Simple Secure Smart Online trading: take control! Do you prefer to manage your stock market investments independently? Take the bull by the horns and trade using a site that gives you everything you need: ✔ brokerage fees from CHF 8 ✔ management of accounts and payments on an integrated platform ✔ access to all the financial information Request for access: ■ email at [email protected] ■ ask a relationship manager at Banque Cantonale de Genève ■ call 058 211 21 00 1816 BCGE.ch 1816-CH-E-051219-APPROVED-210x297-BCGE-1816-19BCGE417.indd 1 06.12.19 09:52 1816-CH-E-051219-APPROVED-210x297-BCGE-1816-19BCGE417.indd 5 décembre, 2019 Editorial Contents Active discretionary Economic outlook Geneva economic dashboard 2 management: What are the implications for investments in an environment a resilient species of negative interest rates and a strong Swiss franc? 4 Blaise Goetschin Sustainable development CEO Best practices and added value for companies 5 BCGE visits the UN 6 Darwinism, the theory of competitive species selection, is also widespread in the financial SME QR-bill: get ready now 6 world. The methods used to manage securities portfolios are directly concerned. Indeed, the Investment Private asset management accessible from CHF 50,000 framework conditions for asset management have thanks to Best of Genesis 7 been undergoing profound structural changes The Synchrony LPP 80 B embodies a more dynamic in recent years: technological developments, and less cautious pension planning 8 artificial intelligence and robotisation, regulatory Analysis – L’essentiel de la finance developments, standardisation of advisory processes Recession or no recession? 9 and investor protection.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • Dual RNA Sequencing of Vitis Vinifera During Lasiodiplodia Theobromae Infection Unveils Host–Pathogen Interactions
    International Journal of Molecular Sciences Article Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions Micael F. M. Gonçalves 1 , Rui B. Nunes 1, Laurentijn Tilleman 2 , Yves Van de Peer 3,4,5 , Dieter Deforce 2, Filip Van Nieuwerburgh 2, Ana C. Esteves 6 and Artur Alves 1,* 1 Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (M.F.M.G.); [email protected] (R.B.N.) 2 Laboratory of Pharmaceutical Biotechnology, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; [email protected] (L.T.); [email protected] (D.D.); [email protected] (F.V.N.) 3 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; [email protected] 4 Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium 5 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa 6 Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-370-766 Received: 28 October 2019; Accepted: 29 November 2019; Published: 3 December 2019 Abstract: Lasiodiplodia theobromae is one of the most aggressive agents of the grapevine trunk disease Botryosphaeria dieback. Through a dual RNA-sequencing approach, this study aimed to give a broader perspective on the infection strategy deployed by L. theobromae, while understanding grapevine response. Approximately 0.05% and 90% of the reads were mapped to the genomes of L.
    [Show full text]