Mapping Genes for Complex Traits in Domestic Animals and Their Use in Breeding Programmes

Total Page:16

File Type:pdf, Size:1020Kb

Mapping Genes for Complex Traits in Domestic Animals and Their Use in Breeding Programmes REVIEWS Mapping genes for complex traits in domestic animals and their use in breeding programmes Michael E. Goddard*‡ and Ben J. Hayes‡ Abstract | Genome-wide panels of SNPs have recently been used in domestic animal species to map and identify genes for many traits and to select genetically desirable livestock. This has led to the discovery of the causal genes and mutations for several single-gene traits but not for complex traits. However, the genetic merit of animals can still be estimated by genomic selection, which uses genome-wide SNP panels as markers and statistical methods that capture the effects of large numbers of SNPs simultaneously. This approach is expected to double the rate of genetic improvement per year in many livestock systems. Quantitative trait Traits that are controlled by a single gene, such as flower Over the past 20 years, two approaches have been A measurable trait that colour in pea plants, have been important in elucidat- used to discover the genes and polymorphisms contrib- depends on the cumulative ing the mechanisms of heredity, yet most traits that are uting to variation in complex traits. In one approach action of many genes and the important in agriculture, medicine and evolution candidate genes have been targeted based on their role environment, and that can vary quantitative traits among individuals over a given are complex or . These traits include: in the physiology of the trait (for example, the expres- range to produce a continuous susceptibility to many diseases, such as diabetes in sion level of milk proteins), and in the other approach distribution of phenotypes. humans; agriculturally important traits, such as the milk the genes that affect a trait of interest have been mapped yield of dairy cows; and traits that affect fitness in the to a chromosomal location using genetic markers2–4. Estimated breeding value wild, such as the clutch size of birds. However, progress in identifying the causal genes for An estimate of the additive genetic merit for a particular Identifying genes for complex traits would greatly complex traits has been slow as linkage mapping results trait that an individual will pass enhance our understanding of these traits, but in domes- in large confidence intervals. on to its descendents. tic animals there would also be a practical benefit to agri- The recent availability of large panels of SNPs in culture. Traditionally, the genetics of complex traits in domestic species has given new momentum to the Heritability The proportion of phenotypic these species has been studied without identifying the search for the mutations underlying variation in com- variance caused by additive genes involved. Selection has been based on estimated plex traits through the use of genome-wide association genetic variation. breeding values calculated from phenotypic records and (GWA) studies. This Review concentrates on domesti- pedigrees, and on knowledge of the heritability of each cated species, especially those for which the possibility trait. This has been successful, but the process is slow if of dissecting the architecture of important quantitative the trait can only be measured in one sex (for example, traits is enhanced by the availability of genome-wide milk yield), after death (for example, meat quality) or SNP panels — these species include cattle, dogs and *Department of Agriculture late in life (for example, longevity), or if measuring the chickens. Genome-wide SNP panels for sheep, pigs and Food Systems, University trait is expensive (for example, methane production, and horses have also recently become available. of Melbourne, Royal Parade, feed requirement or disease resistance). Therefore, to We first discuss the experimental designs, statistical Parkville 3010, Australia. ‡Biosciences Research improve on these traits, it would be advantageous analyses and results of this research. GWA studies have Division, Department of to identify genes for them and select animals carrying successfully identified genes causing simple Mendelian Primary Industries, Victoria, the desirable alleles1. Thus, compared with research on traits, but these studies have not yet identified genes for 1 Park Drive, Bundoora complex traits in humans, there is greater emphasis in complex traits. Animal breeders can nevertheless use 3083, Australia. domesticated animals on predicting genetic merit and the results of GWA studies for genetic improvement of Correspondence to M.E.G. genomic e-mail: phenotype and less emphasis on discovering genes domestic animals by using a technique called [email protected] and pathways. However, both aims are important and are selection, which potentially leads to large increases in doi:10.1038/nrg2575 covered in this Review. the rate of genetic improvement5. Genomic selection is NATURE REVIEWS | GENETICS VOLUME 10 | JUNE 2009 | 381 © 2009 Macmillan Publishers Limited. All rights reserved REVIEWS already being used successfully to select dairy cattle car- long-range LD does not apply across breeds because rying desirable alleles for milk yield and other traits, and animals from different breeds do not share a recent is likely to be applied to all livestock in the near future common ancestor. This Ne history is similar to that as well as to crops and aquaculture. We describe the experienced by dogs, which show a similar pattern of science behind this revolution and, finally, we discuss LD to cattle15, but is the opposite of that experienced by the directions for future research into complex traits in humans. The European human Ne was only ~3,000 but domesticated animals. then increased enormously in the last 10,000 years12 (FIG. 1). Consequently, humans have similar LD to cattle The history of QTL mapping at short distances but almost no LD at long distances In the decades before the advent of GWA studies, genes (FIG. 2a). Genetic improvement affecting production and fitness traits in domestic ani- This pattern of LD in domestic animals means that Deliberate genetic change in a mals were mapped to chromosomal regions using link- a marker may be in LD with a QTL some distance away population of domestic animals linkage disequilibrium or plants brought about by age analysis and (LD) between and hence show an association with the trait affected human control of their selection markers and QTLs. As we explain below, differences by the QTL. Consequently, one does not need as dense and breeding that makes them between animals and humans in family structure and a panel of SNPs for a GWA study in many domestic more suitable for the purpose in the extent of LD affected the power and precision of animal species as in humans. Conversely, markers that for which they are kept. mapping in animal studies compared with observations are located several centimorgans from the QTL can Genomic selection in human studies. show an association to the trait, making precise map- Selection of animals for ping more difficult. This problem can be overcome by breeding based on Linkage analysis. Early attempts to map QTLs used using multiple breeds: markers that show a consistent estimated breeding values blood groups as genetic markers6–8. However, the power pattern of LD with a QTL across breeds must be close calculated from the joint (FIG. 2b) effects of genetic markers of this approach was markedly enhanced by the identifi- to that QTL . covering the whole genome. cation of numerous highly variable microsatellite mark- The traditional mapping strategy was to use linkage ers. Typically, a linkage analysis was performed using to map a QTL to a large region and then use LD to map Linkage disequilibrium microsatellite markers, often with large half-sibling it more precisely. However, discovering and typing a The absence of linkage 9 equilibrium so that the allele at families . The ability to generate hundreds of offspring panel of dense markers across the confidence interval of one locus is correlated with the per sire made this approach more powerful in livestock a single QTL was a major undertaking until the arrival allele at another locus. than in humans. However, linkage analysis usually of genome-wide panels of SNPs. mapped the QTLs to a large interval of 20 centimorgans Effective population size (cM) or more4,9, which made it difficult to identify the GWA studies The number of individuals in underlying mutation and to use the marker information Principles and tools. The basic design of a GWA study is an idealized population with random mating and no in animal breeding programmes. that a sample of animals are recorded for a trait of inter- selection that would lead to the est and assayed for a genome-wide panel of markers to same rate of inbreeding as LD and the effect of effective population size. More detect statistical associations between the trait and any observed in the real population. precise mapping is possible using LD between markers of the markers. Design parameters include the choice The effective population size can be much less than the and QTLs because LD decays quickly as the distance and number of animals and markers. Most commonly, actual population size owing between marker and QTL increases. A linkage analy- the data from a GWA study are analysed one SNP at a to the unequal genetic sis uses recombination events in the recorded pedigree time using a simple linear model that includes: the effect contribution of individuals to and traces chromosome segments to a common ances- of a SNP; fixed effects, such as the cohort or group to the next generation. tor in the pedigree. By contrast, LD mapping relies on which the animal belongs; and the polygenic breeding value Linear model chromosome segments inherited from a common ances- of each animal, which is due to all other genes A statistical model that tor before the recorded pedigree — this is because it is affecting the trait. assumes that the observed the inheritance of identical chromosome segments by The genomic sequence is available for several phenotypic value can be multiple descendents from a common ancestor that domestic species, including cattle, horses, chickens and explained by the sum of the effects of independent causes LD.
Recommended publications
  • Interpreting Noncoding Genetic Variation in Complex Traits and Human Disease
    REVIEW Interpreting noncoding genetic variation in complex traits and human disease Lucas D Ward1,2 & Manolis Kellis1,2 Association studies provide genome-wide information about the genetic basis of complex disease, but medical research has focused primarily on protein-coding variants, owing to the difficulty of interpreting noncoding mutations. This picture has changed with advances in the systematic annotation of functional noncoding elements. Evolutionary conservation, functional genomics, chromatin state, sequence motifs and molecular quantitative trait loci all provide complementary information about the function of noncoding sequences. These functional maps can help with prioritizing variants on risk haplotypes, filtering mutations encountered in the clinic and performing systems-level analyses to reveal processes underlying disease associations. Advances in predictive modeling can enable data-set integration to reveal pathways shared across loci and alleles, and richer regulatory models can guide the search for epistatic interactions. Lastly, new massively parallel reporter experiments can systematically validate regulatory predictions. Ultimately, advances in regulatory and systems genomics can help unleash the value of whole-genome sequencing for personalized genomic risk assessment, diagnosis and treatment. Understanding the genetic basis of disease can transform medicine ture of the human genome, and its systematic mapping by the HapMap by elucidating relevant biochemical pathways for drug targets and by Project9, allowed single-nucleotide polymorphisms (SNPs) to be used enabling personalized risk assessments1,2. With the evolution of technol- as markers for common haplotypes, which could be genotyped using ogies over the past century, geneticists are no longer limited to studying chip technology. The stage was set for a flood of unbiased, genome-wide Mendelian disorders and can tackle complex phenotypes.
    [Show full text]
  • Genetics in Harry Potter's World: Lesson 2
    Genetics in Harry Potter’s World Lesson 2 • Beyond Mendelian Inheritance • Genetics of Magical Ability 1 Rules of Inheritance • Some traits follow the simple rules of Mendelian inheritance of dominant and recessive genes. • Complex traits follow different patterns of inheritance that may involve multiples genes and other factors. For example, – Incomplete or blended dominance – Codominance – Multiple alleles – Regulatory genes Any guesses on what these terms may mean? 2 Incomplete Dominance • Incomplete dominance results in a phenotype that is a blend of a heterozygous allele pair. Ex., Red flower + Blue flower => Purple flower • If the dragons in Harry Potter have fire-power alleles F (strong fire) and F’ (no fire) that follow incomplete dominance, what are the phenotypes for the following dragon-fire genotypes? – FF – FF’ – F’F’ 3 Incomplete Dominance • Incomplete dominance results in a phenotype that is a blend of the two traits in an allele pair. Ex., Red flower + Blue flower => Purple flower • If the Dragons in Harry Potter have fire-power alleles F (strong fire) and F’ (no fire) that follow incomplete dominance, what are the phenotypes for the following dragon-fire genotypes: Genotypes Phenotypes FF strong fire FF’ moderate fire (blended trait) F’F’ no fire 4 Codominance • Codominance results in a phenotype that shows both traits of an allele pair. Ex., Red flower + White flower => Red & White spotted flower • If merpeople have tail color alleles B (blue) and G (green) that follow the codominance inheritance rule, what are possible genotypes and phenotypes? Genotypes Phenotypes 5 Codominance • Codominance results in a phenotype that shows both traits of an allele pair.
    [Show full text]
  • The Genetics of Complex Traits Programme Course 7.5 Credits Genetiska Mekanismer Bakom Komplexa Egenskaper 8MEA14 Valid From: 2019 Autumn Semester
    DNR LIU-2019-00662 1(5) The genetics of complex traits Programme course 7.5 credits Genetiska mekanismer bakom komplexa egenskaper 8MEA14 Valid from: 2019 Autumn semester Determined by The Board for First and Second Cycle Programmes at the Faculty of Medicine and Health Sciences Date determined 2019-03-07 LINKÖPING UNIVERSITY FACULTY OF MEDICINE AND HEALTH SCIENCES LINKÖPING UNIVERSITY THE GENETICS OF COMPLEX TRAITS FACULTY OF MEDICINE AND HEALTH SCIENCES 2(5) Main field of study Medical Biology Course level Second cycle Advancement level A1X Course offered for Master's Programme in Experimental and Medical Biosciences Entry requirements Degree of Bachelor of Science, 180 ECTS in a major subject area such as medicine, biology, technology/natural sciences, odontology or veterinary medicine. 90 ECTS of courses included in the Bachelor degree should be in subjects such as biochemistry, cell biology, molecular biology, genetics, gene technology, microbiology, immunology, physiology, histology, anatomy or pathology. Documented skills in English corresponding to level 6/B. Intended learning outcomes The student will learn and understand the basis of quantitative genetic techniques, in particular how they pertain to the identification of genes underlying complex traits and diseases. Knowledge and understanding On completion of the course, the student shall be able to: Describe and understand statistical quantitative genetic techniques and how they apply to complex traits. Explain the statistical basis of quantitative traits. Explain and distinguish between linkage and linkage disequilibrium and their uses. Analyse the genetic architecture of different behavioral and disease-related traits. Analyse and understand the theory and steps required to identify the genetic components of a quantitative trait.
    [Show full text]
  • Genetic Analysis of Complex Traits in the Emerging Collaborative Cross
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Research Genetic analysis of complex traits in the emerging Collaborative Cross David L. Aylor,1 William Valdar,1,13 Wendy Foulds-Mathes,1,13 Ryan J. Buus,1,13 Ricardo A. Verdugo,2,13 Ralph S. Baric,3,4 Martin T. Ferris,1 Jeff A. Frelinger,4 Mark Heise,1 Matt B. Frieman,4 Lisa E. Gralinski,4 Timothy A. Bell,1 John D. Didion,1 Kunjie Hua,1 Derrick L. Nehrenberg,1 Christine L. Powell,1 Jill Steigerwalt,5 Yuying Xie,1 Samir N.P. Kelada,6 Francis S. Collins,6 Ivana V. Yang,7 David A. Schwartz,7 Lisa A. Branstetter,8 Elissa J. Chesler,2 Darla R. Miller,1 Jason Spence,1 Eric Yi Liu,9 Leonard McMillan,9 Abhishek Sarkar,9 Jeremy Wang,9 Wei Wang,9 Qi Zhang,9 Karl W. Broman,10 Ron Korstanje,2 Caroline Durrant,11 Richard Mott,11 Fuad A. Iraqi,12 Daniel Pomp,1,14 David Threadgill,5,14 Fernando Pardo-Manuel de Villena,1,14 and Gary A. Churchill2,14 1Department of Genetics, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, USA; 2The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 3Department of Epidemiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, USA; 4Department of Microbiology and Immunology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, USA; 5Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA; 6Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
    [Show full text]
  • Reference Trait Analysis Reveals Correlations Between Gene Expression and Quantitative Traits in Disjoint Samples
    HIGHLIGHTED ARTICLE | INVESTIGATION Reference Trait Analysis Reveals Correlations Between Gene Expression and Quantitative Traits in Disjoint Samples Daniel A. Skelly,* Narayanan Raghupathy,* Raymond F. Robledo,* Joel H. Graber,*,† and Elissa J. Chesler*,1 *The Jackson Laboratory, Bar Harbor, Maine 04609 and †MDI Biological Laboratory, Bar Harbor, Maine 04609 ORCID IDs: 0000-0002-2329-2216 (D.A.S.); 0000-0002-5642-5062 (E.J.C.) ABSTRACT Systems genetic analysis of complex traits involves the integrated analysis of genetic, genomic, and disease-related measures. However, these data are often collected separately across multiple study populations, rendering direct correlation of molecular features to complex traits impossible. Recent transcriptome-wide association studies (TWAS) have harnessed gene expression quantitative trait loci (eQTL) to associate unmeasured gene expression with a complex trait in genotyped individuals, but this approach relies primarily on strong eQTL. We propose a simple and powerful alternative strategy for correlating independently obtained sets of complex traits and molecular features. In contrast to TWAS, our approach gains precision by correlating complex traits through a common set of continuous phenotypes instead of genetic predictors, and can identify transcript–trait correlations for which the regulation is not genetic. In our approach, a set of multiple quantitative “reference” traits is measured across all individuals, while measures of the complex trait of interest and transcriptional profiles are obtained in disjoint subsamples. A conventional multivariate statistical method, canonical correlation analysis, is used to relate the reference traits and traits of interest to identify gene expression correlates. We evaluate power and sample size requirements of this methodology, as well as performance relative to other methods, via extensive simulation and analysis of a behavioral genetics experiment in 258 Diversity Outbred mice involving two independent sets of anxiety-related behaviors and hippocampal gene expression.
    [Show full text]
  • Genetics and Human Traits
    Help Me Understand Genetics Genetics and Human Traits Reprinted from MedlinePlus Genetics U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services Table of Contents 1 Are fingerprints determined by genetics? 1 2 Is eye color determined by genetics? 3 3 Is intelligence determined by genetics? 5 4 Is handedness determined by genetics? 7 5 Is the probability of having twins determined by genetics? 9 6 Is hair texture determined by genetics? 11 7 Is hair color determined by genetics? 13 8 Is height determined by genetics? 16 9 Are moles determined by genetics? 18 10 Are facial dimples determined by genetics? 20 11 Is athletic performance determined by genetics? 21 12 Is longevity determined by genetics? 23 13 Is temperament determined by genetics? 26 Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) i Genetics and Human Traits 1 Are fingerprints determined by genetics? Each person’s fingerprints are unique, which is why they have long been used as a way to identify individuals. Surprisingly little is known about the factors that influence a person’s fingerprint patterns. Like many other complex traits, studies suggest that both genetic and environmental factors play a role. A person’s fingerprints are based on the patterns of skin ridges (called dermatoglyphs) on the pads of the fingers. These ridges are also present on the toes, the palms of the hands, and the soles of the feet. Although the basic whorl, arch, and loop patterns may be similar, the details of the patterns are specific to each individual. Dermatoglyphs develop before birth and remain the same throughout life.
    [Show full text]
  • A Model and Test for Coordinated Polygenic Epistasis in Complex Traits
    A model and test for coordinated polygenic epistasis in complex traits Brooke Shepparda,1, Nadav Rappoporta,b,1, Po-Ru Lohc,d, Stephan J. Sandersa, Noah Zaitlena,e,f,1,2, and Andy Dahle,f,g,1,2 aDepartment of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143; bBakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA 94143; cProgram in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; dDivision of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; eDepartment of Neurology, University of California Los Angeles, Los Angeles, CA 90095; fDepartment of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095; and gSection of Genetic Medicine, University of Chicago, Chicago, IL 60637 Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved December 2, 2020 (received for review February 19, 2020) Interactions between genetic variants—epistasis—is pervasive in of epistasis. For example, Zuk et al. describe a limiting pathway model systems and can profoundly impact evolutionary adaption, pop- model of human disease that directly implies negative interactions ulation disease dynamics, genetic mapping, and precision medicine between SNPs contributing to different pathways (29). Also, the efforts. In this work, we develop a model for structured polygenic HSP90 community has discussed the possibility of a polygenic epistasis, called coordinated epistasis (CE), and prove that several re- version of chaperon function (30), which would induce coordi- cent theories of genetic architecture fall under the formal umbrella of nated interactions between HSP90 buffer SNPs and exonic mis- CE.
    [Show full text]
  • Five Fundamental Gaps in Nature-Nurture Science Peter J
    University of Massachusetts Boston ScholarWorks at UMass Boston Working Papers on Science in a Changing World Critical and Creative Thinking Program Spring 3-22-2014 Five Fundamental Gaps In Nature-Nurture Science Peter J. Taylor University of Massachusetts Boston, [email protected] Follow this and additional works at: https://scholarworks.umb.edu/cct_sicw Part of the Biostatistics Commons, and the Genetics Commons Recommended Citation Taylor, Peter J., "Five Fundamental Gaps In Nature-Nurture Science" (2014). Working Papers on Science in a Changing World. 3. https://scholarworks.umb.edu/cct_sicw/3 This Article is brought to you for free and open access by the Critical and Creative Thinking Program at ScholarWorks at UMass Boston. It has been accepted for inclusion in Working Papers on Science in a Changing World by an authorized administrator of ScholarWorks at UMass Boston. For more information, please contact [email protected]. Paper # 3-2014 Five Fundamental Gaps in Nature-Nurture Science PETER J. TAYLOR http://scholarworks.umb.edu/cct_sicw/3 Five Fundamental Gaps In Nature-Nurture Science Peter J. Taylor Science in a Changing World graduate track University of Massachusetts, Boston, MA 02125, USA [email protected] Abstract Difficulties identifying causally relevant genetic variants underlying patterns of human variation have been given competing interpretations. The debate is illuminated in this article by drawing attention to the issue of underlying heterogeneity—the possibility that genetic and environmental factors or
    [Show full text]
  • Inferring Relevant Cell Types for Complex Traits by Integrating Genome-Wide Association Studies and Single-Cell RNA Sequencing
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447805; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. EPIC: inferring relevant cell types for complex traits by integrating genome-wide association studies and single-cell RNA sequencing Rujin Wang1, Dan-Yu Lin1,2, Yuchao Jiang1,2,3,* 1 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA. 2 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. 3 Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA. To whom correspondence should be addressed: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447805; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Abstract 2 More than a decade of genome-wide association studies (GWASs) have identified genetic 3 risk variants that are significantly associated with complex traits. Emerging evidence 4 suggests that the function of trait-associated variants likely acts in a tissue- or cell-type- 5 specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types 6 to elucidate disease etiology.
    [Show full text]
  • 8. Pritchardj.Omnigenic Architecture of Human Complex Traits.05012018
    Omnigenic architecture of human complex traits Jonathan Pritchard Departments of Genetics & Biology, & HHMI Stanford University Joint work with Evan Boyle, Yang Li, Xuanyao Liu ok Missing Heritability Workshop, NIH,Henry May 2018Stewart Talks Questions: 1. Why do the lead hits for any given trait contribute so little heritability? 2. Why does so much of the genome contribute to heritability? Example #1: Schizophrenia 108 genome-wide significant loci so far (Ripke 2014) Responsible for ~10% of explained variance (Shi…Pasaniuc 2016) We have estimated that ~half of all SNPs -log(p) have non-zero association effect sizes (unpub) chromosome See key work on polygenic models and heritability by Visscher, Yang, Pasaniuc, Price, and many others Example #2: What about a potentially simpler trait: lipid levels? (LDL, HDL and triglycerides) Monogenic lipid disorders ~2 dozen major effect loci Modified from Dron et al 2016 Common Variation: GWAS of Lipid Levels 57 genome-wide significant loci (Willer et al 2013) Monogenic genes for LDL HDL cHolesterol Total cHolesterol The significant loci only explain ~20% of Heritability of LDL All loci togetHer explain about ~80% (SHi…Pasaniuc 2016) Triglycerides LDL cHolesterol Modified from: Willer et al 2013, Dron et al 2016 For a wide variety of traits and diseases: • Heritability is spread extremely widely across the genome • Genes with trait-relevant functions only contribute a small fraction of the total disease risk • Low frequency-large effect variants often have clearer enrichment in relevant gene sets
    [Show full text]
  • Polygenic Prediction of Complex Human Traits Arxiv:2101.05870V1
    From Genotype to Phenotype: polygenic prediction of complex human traits Timothy G. Raben1, Louis Lello1,2, Erik Widen1, and Stephen D.H. Hsu1,2 1Michigan State University, East Lansing, Michigan, 48824 2Genomic Prediction, North Brunswick, New Jersey, 08902 Abstract Decoding the genome confers the capability to predict characteristics of the organism (phenotype) from DNA (genotype). We describe the present status and future prospects of genomic prediction of complex traits in humans. Some highly heritable complex phenotypes such as height and other quantitative traits can already be predicted with reasonable accuracy from DNA alone. For many diseases, including important common conditions such as coro- nary artery disease, breast cancer, type I and II diabetes, individuals with outlier polygenic scores (e.g., top few percent) have been shown to have 5 or even 10 times higher risk than average. Several psychiatric conditions such as schizophrenia and autism also fall into this arXiv:2101.05870v1 [q-bio.GN] 14 Jan 2021 category. We discuss related topics such as the genetic architecture of complex traits, sibling validation of polygenic scores, and applications to adult health, in vitro fertilization (embryo selection), and genetic engineering. A version of this article was prepared for Genomic Prediction of Complex Traits, Springer Nature book series Methods in Molecular Biology. Keywords: genomics, complex trait prediction, PRS, in vitro fertilization, genetic engineering 1 1 Introduction I, on the other hand, knew nothing, except ... physics and mathematics and an ability to turn my hand to new things. — Francis Crick The challenge of decoding the genome has loomed large over biology since the time of Wat- son and Crick.
    [Show full text]
  • Heritability Jointly Explained by Host Genotype and Microbiome:Will Improve Traits Prediction?
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061226; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Heritability jointly Explained by Host Genotype and Microbiome:Will Improve Traits Prediction? Denis Awany 1, and Emile R. Chimusa 1,? 1Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. ? Correspondence to Emile R. Chimusa: [email protected] Abstract As we observe the 70th anniversary of the publication by Robertson that formalized the notion of ‘her- itability’, geneticists remain puzzled by the problem of missing/hidden heritability, where heritability estimates from genome-wide association studies (GWAS) fall short of that from twin-based studies. Many possible explanations have been offered for this discrepancy, including existence of genetic vari- ants poorly captured by existing arrays, dominance, epistasis, and unaccounted-for environmental factors; albeit these remain controversial. We believe a substantial part of this problem could be solved or better understood by incorporating the host’s microbiota information in the GWAS model for heritability estimation; ultimately also increasing human traits prediction for clinical utility. This is because, despite empirical observations such as (i) the intimate role of the microbiome in many com- plex human phenotypes, (ii) the overlap between genetic variants associated with both microbiome attributes and complex diseases, and (iii) the existence of heritable bacterial taxa, current GWAS models for heritability estimate do not take into account the contributory role of the microbiome.
    [Show full text]