(Phthiraptera: Menoponidae, Philopteridae) on Feral Pigeons (Aves: Columbiformes: Columbidae) Terry D

Total Page:16

File Type:pdf, Size:1020Kb

(Phthiraptera: Menoponidae, Philopteridae) on Feral Pigeons (Aves: Columbiformes: Columbidae) Terry D 712 Seasonal population dynamics of four species of chewing lice (Phthiraptera: Menoponidae, Philopteridae) on feral pigeons (Aves: Columbiformes: Columbidae) Terry D. Galloway,1 Robert J. Lamb Abstract—Seasonal dynamics of louse (Phthiraptera) populations on feral pigeons, Columba livia Gmelin (Aves: Columbiformes: Columbidae) were investigated from 2003 to 2012 in southern Manitoba, Canada. Pigeons were infested with: Philopteridae – Campanulotes compar (Burmeister), Columbicola columbae (Linnaeus), and Coloceras tovornikae Tendeiro; Menoponidae – Hohorstiella lata (Piaget). We consider the hypothesis that four species living on the same host show similar seasonal dynamics, coordinated by the life history of the host. Adults of both sexes and nymphs of all four species were present on pigeons throughout the year, consistent with continuous feeding and reproduction. Campanulotes compar and C. columbae populations were low in spring and peaked in September, with C. columbae showing greater seasonal changes for all population parameters. Coloceras tovornikae showed two annual peaks in abundance in spring and late summer, and H. lata was most abundant in the cold months of the year. Over 10 years, the four species showed distinct seasonal dynamics, although they live on the same birds. Seasonal patterns provided no evidence that louse reproduction or abundance is coordinated by the long breeding and moulting seasons of the host. Introduction (Galloway and Lamb 2014). Campanulotes compar and C. columbae are abundant and their populations Four species of chewing lice (Phthiraptera) are relatively stable from year to year, whereas infest feral pigeons, Columba livia Gmelin (Aves: C. tovornikae and H. lata are less abundant and less Columbiformes: Columbidae) in Manitoba, stable than the former species. Canada: Philopteridae – Campanulotes compar The habitat of bird lice, the surface of the body (Burmeister), Columbicola columbae (Linnaeus), of the host, has a relatively constant temperature and Coloceras tovornikae Tendeiro; Menoponidae – through the season, in comparison with the Hohorstiella lata (Piaget) (Galloway and Palma changes in ambient air temperature experienced 2008; Galloway and Lamb 2014). These species by the host, particularly in a continental climate occupy the skin or feathers of their host (Nelson and such as that of Manitoba. Seasonal changes in Murray 1971; Singh et al. 2000), often on the same louse populations might be expected to be more bird, and all have chewing mouthparts: three are muted than those of multivoltine insects more feather feeders (Philopteridae) and one feeds on openly exposed to ambient temperatures (Woodman blood (Menoponidae) (Galloway and Palma 2008). and Dicke 1954). On the other hand, many bird Coloceras tovornikae appears to be a relatively recent species exhibit seasonal changes in their life introduction into North America (Galloway and histories associated with migration, moulting, and Palma 2008), compared with the other three species, reproduction, which may affect the seasonal which may have been introduced to North America biology of their ectoparasites. Foster (1969) along with the rock pigeon. Nevertheless, each concluded that the life cycles of a warbler and its species has a characteristic population biology blood-feeding chewing lice (Ricinus picturatus Received 19 May 2014. Accepted 24 September 2014. First published online 20 January 2015. T.D. Galloway,1 R.J. Lamb, Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 1Corresponding author (e-mail: [email protected]). Subject editor: Heather Proctor doi:10.4039/tce.2014.84 Can. Entomol. 147: 712–722 (2015) © 2015 Entomological Society of Canada Galloway and Lamb 713 (Carriker) and Menacanthus Neumann species) Prairie Wildlife Rehabilitation Centre (Winnipeg, were synchronised: oviposition by lice coincided Manitoba, Canada). All came from southern with the short nesting period of its host. She Manitoba, Canada, mostly from Winnipeg. The found no evidence that oviposition occurred when majority of birds were euthanised soon after birds moulted. Hamstra and Badyaev (2009) arrival, immediately placed in sealed plastic bags, hypothesised that ectoparasite populations thrive and frozen for at least 48 hours until they could be at particular points in the life history of their avian processed. Lice were collected by washing hosts, because the energetic requirements of pigeons (Mironov and Galloway 2002), and this moulting or breeding limit immune responses and method removes nearly all lice from the host preening behaviour, the main defences against (Clayton and Drown 2001; T.D.G., personal ectoparasites. Little information is available on observation). The samples of pigeons and lice are the seasonal dynamics of lice on birds to assess described in detail by Galloway and Lamb (2014). these hypotheses. To date, studies of seasonal For the years 2003–2012 the following data dynamics are based on examination of museum were considered for each species of louse and specimens for the presence of eggs (Foster 1969) each pigeon: collection date, number of lice, or collections from birds through one year (e.g., number of adult females and males, and number Boyd 1951; Woodman and Dicke 1954; Kettle of nymphs. Nymphs were not sexed. Eggs were 1983; Spitznagel 1985; Chandra et al. 1988; not removed reliably by washing and so were not Petryszak et al. 2000; Hamstra and Badyaev tallied. The 10 chicks in the sample were excluded 2009), or over a relatively short period of time, from parameter estimates because they came up to three years (Boyd 1951; Bergstrand and from a restricted part of the season, whereas Klimstra 1964; Tuleshkov 1965; Baum 1968; the 49 juveniles and larger sample of adults Eveleigh and Threlfall 1976). were distributed throughout the year. Data for Feral pigeons in Winnipeg, Manitoba are 11 pigeons were excluded because they were abundant and non-migratory, with high winter considered outliers with extremely high infesta- counts compared to many other locations in North tions of one louse species (>10 times mean American (Taylor 2003). Pigeons alternate intensity) (Galloway and Lamb 2014). If they had between phases of roosting communally and a been included, the high louse numbers would long breeding season. In Manitoba, pigeon eggs have biased estimates of peak seasonal abun- have been observed in nests between 16 April and dance, assuring that the month of peak seasonal 29 July, and at least two broods may be produced abundance was determined by the collection date each year (Taylor 2003). In one previous study of of a single, heavily infested bird. The excluded seasonality of louse populations on pigeons in birds comprised 2% of the total, leaving 542 birds. Poland, Petryszak et al. (2000) found the greatest The number of pigeons available in each year abundance of C. compar in July and C. columbae ranged from 26 to 126, and in seven of the years in autumn. 41 or more birds were assessed each year. We investigate the seasonal population Data for the 10 years were first partitioned into dynamics of four species of lice on feral pigeons samples for each month, providing a mean of to assess whether differences in seasonality 45 ± 9 (SD) pigeons per month. Abundance, contribute to the species-specificity of population prevalence, intensity, ratio of males to females, processes of these lice and whether louse season- and ratio of nymphs to females were estimated for ality is coordinated by pigeon life history. each month and louse species. Prevalence is the proportion of birds infested by a louse species, intensity is the number of lice of that species on an Materials and methods infested pigeon, and louse abundance equals prevalence multiplied by intensity (Rózsa et al. Ten years of data are used to describe seasonal 2000). This monthly partition provided an overall patterns in the abundance of lice on pigeons picture of the dynamics of each louse species over salvaged from rehabilitation hospitals at the the year, but no indication of how uniform any Wildlife Haven (Manitoba Wildlife Rehabilitation seasonal patterns were from year to year. In some Organization, Winnipeg, Manitoba, Canada) and years, the number of pigeons available some © 2015 Entomological Society of Canada 714 Can. Entomol. Vol. 147, 2015 months was inadequate to effectively compare the same month or season ranked lowest or monthly estimates among years, in part because of highest was determined. If the same month or the large difference in louse abundance among season always, or nearly always, ranked lowest pigeons. Many pigeons had no lice, particularly or highest, this result provided evidence for the less common louse species, assuring that seasonal patterns in parameter values. abundance was not normally distributed (Galloway The degree of seasonality, or degree to which a and Lamb 2014). parameter value changed over the year, was To help assess year-to-year variation in season- quantified for each louse species in two ways. ality, data also were partitioned into four seasons: First, the coefficient of variation (CV) and its 95% winter (December, January, and February), spring confidence interval (corrected following Sokal (March, April, and May), summer (June, July, and and Rohlf (1981)) was calculated for the August), and autumn (September, October, and 12 monthly estimates. The confidence intervals November). For each of seven years of the study allowed apparent differences among louse species (2004,
Recommended publications
  • Hastings Slide Collection3
    HASTINGS NATURAL HISTORY RESERVATION SLIDE COLLECTION 1 ORDER FAMILY GENUS SPECIES SUBSPECIES AUTHOR DATE # SLIDES COMMENTS/CORRECTIONS Siphonaptera Ceratophyllidae Diamanus montanus Baker 1895 221 currently Oropsylla (Diamanus) montana Siphonaptera Ceratophyllidae Diamanus spp. 1 currently Oropsylla (Diamanus) spp. Siphonaptera Ceratophyllidae Foxella ignota acuta Stewart 1940 402 syn. of F. ignota franciscana (Roths.) Siphonaptera Ceratophyllidae Foxella ignota (Baker) 1895 2 Siphonaptera Ceratophyllidae Foxella spp. 15 Siphonaptera Ceratophyllidae Malaraeus spp. 1 Siphonaptera Ceratophyllidae Malaraeus telchinum Rothschild 1905 491 M. telchinus Siphonaptera Ceratophyllidae Monopsyllus fornacis Jordan 1937 57 currently Eumolpianus fornacis Siphonaptera Ceratophyllidae Monopsyllus wagneri (Baker) 1904 131 currently Aetheca wagneri Siphonaptera Ceratophyllidae Monopsyllus wagneri ophidius Jordan 1929 2 syn. of Aetheca wagneri Siphonaptera Ceratophyllidae Opisodasys nesiotus Augustson 1941 2 Siphonaptera Ceratophyllidae Orchopeas sexdentatus (Baker) 1904 134 Siphonaptera Ceratophyllidae Orchopeas sexdentatus nevadensis (Jordan) 1929 15 syn. of Orchopeas agilis (Baker) Siphonaptera Ceratophyllidae Orchopeas spp. 8 Siphonaptera Ceratophyllidae Orchopeas latens (Jordan) 1925 2 Siphonaptera Ceratophyllidae Orchopeas leucopus (Baker) 1904 2 Siphonaptera Ctenophthalmidae Anomiopsyllus falsicalifornicus C. Fox 1919 3 Siphonaptera Ctenophthalmidae Anomiopsyllus congruens Stewart 1940 96 incl. 38 Paratypes; syn. of A. falsicalifornicus Siphonaptera
    [Show full text]
  • Insecta: Psocodea: 'Psocoptera'
    Molecular systematics of the suborder Trogiomorpha (Insecta: Title Psocodea: 'Psocoptera') Author(s) Yoshizawa, Kazunori; Lienhard, Charles; Johnson, Kevin P. Citation Zoological Journal of the Linnean Society, 146(2): 287-299 Issue Date 2006-02 DOI Doc URL http://hdl.handle.net/2115/43134 The definitive version is available at www.blackwell- Right synergy.com Type article (author version) Additional Information File Information 2006zjls-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder.
    [Show full text]
  • Insecta: Phthiraptera) on Canada Geese (Branta Canadensis
    Taxonomic, Ecological and Quantitative Examination of Chewing Lice (Insecta: Phthiraptera) on Canada Geese (Branta canadensis) and Mallards (Anas platyrhynchos) in Manitoba, Canada By Alexandra A. Grossi A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Masters of Science Department of Entomology University of Manitoba Winnipeg, Manitoba Copyright © 2013 by Alexandra A. Grossi 0 Abstract Over 19 years chewing lice data from Canada geese and mallards were collected. From Canada geese (n=300) 48,669 lice were collected, including Anaticola anseris, Anatoecus dentatus, Anatoecus penicillatus, Ciconiphilus pectiniventris, Ornithobius goniopleurus, and Trinoton anserinum. The prevalence of all lice on Canada geese was 92.3% and the mean intensity was 175.6 lice per bird. From mallards (n=269) 6,986 lice were collected which included: Anaticola crassicornis, A. dentatus, Holomenopon leucoxanthum, Holomenopon maxbeieri and Trinoton querquedulae. The prevalence of lice on mallards was 55.4% and the mean intensity was 42.0 lice per bird. Based on CO1, A. dentatus and Anatoecus icterodes were synonymised as A. dentatus. Anatoecus was found exclusively on the head, Anaticola was found predominantly on the wings, Ciconiphilus, Holomenopon and Ornithobius were observed in several body regions and Trinoton was found most often on the wings of mallards. i Acknowledgments I express my sincere thanks to my supervisor Dr. Terry Galloway for introducing me to the fascinating and complex world of chewing lice, and for his continued support and guidance throughout my thesis. I also like to thank my committee member Dr.
    [Show full text]
  • Co-Extinct and Critically Co-Endangered Species of Parasitic Lice, and Conservation-Induced Extinction: Should Lice Be Reintroduced to Their Hosts?
    Short Communication Co-extinct and critically co-endangered species of parasitic lice, and conservation-induced extinction: should lice be reintroduced to their hosts? L AJOS R ÓZSA and Z OLTÁN V AS Abstract The co-extinction of parasitic taxa and their host These problems highlight the need to develop reliable species is considered a common phenomenon in the current taxonomical knowledge about threatened and extinct global extinction crisis. However, information about the parasites. Although the co-extinction of host-specific conservation status of parasitic taxa is scarce. We present a dependent taxa (mutualists and parasites) and their hosts global list of co-extinct and critically co-endangered is known to be a feature of the ongoing wave of global parasitic lice (Phthiraptera), based on published data on extinctions (Stork & Lyal, 1993; Koh et al., 2004; Dunn et al., their host-specificity and their hosts’ conservation status 2009), the magnitude of this threat is difficult to assess. according to the IUCN Red List. We list six co-extinct Published lists of threatened animal parasites only cover and 40 (possibly 41) critically co-endangered species. ixodid ticks (Durden & Keirans, 1996; Mihalca et al., 2011), Additionally, we recognize 2–4 species that went extinct oestrid flies (Colwell et al., 2009), helminths of Brazilian as a result of conservation efforts to save their hosts. vertebrates (Muñiz-Pereira et al., 2009) and New Zealand Conservationists should consider preserving host-specific mites and lice (Buckley et al., 2012). Our aim here is to lice as part of their efforts to save species. provide a critical overview of the conservation status of parasitic lice.
    [Show full text]
  • Infesting Rock Pigeons and Mourning Doves (Aves: Columbiformes: Columbidae) in Manitoba, with New Records for North America and Canada
    208 Serendipity with chewing lice (Phthiraptera: Menoponidae, Philopteridae) infesting rock pigeons and mourning doves (Aves: Columbiformes: Columbidae) in Manitoba, with new records for North America and Canada Terry D. Galloway1 Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 Ricardo L. Palma Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand Abstract—An extensive survey of chewing lice from rock pigeon, Columba livia Gmelin, and mourning dove, Zenaida macroura (L.), carried out from 1994 to 2000 and from 2003 to 2006 in Manitoba, Canada, produced the following new records: Coloceras tovornikae Tendeiro for North America; Columbicola macrourae (Wilson), Hohorstiella lata (Piaget), H. paladinella Hill and Tuff, and Physconelloides zenaidurae (McGregor) for Canada; and Bonomiella columbae Emerson, Campanulotes compar (Burmeister), Columbicola baculoides (Paine), and C. columbae (L.) for Manitoba. We collected 25 418 lice of four species (C. compar, C. columbae, H. lata, and C. tovornikae) from 322 rock pigeons. The overall prevalence of infestation was 78.9%, 52.5%, and 23.3% for C. compar, C. columbae, and H. lata, respectively. Coloceras tovornikae was not discovered until 2003, after which its prevalence was 39.9% on 114 pigeons. We col- lected 1116 lice of five species (P. zenaidurae, C. baculoides, C. macrourae, H. paladinella, and B. columbae) from 117 mourning doves. Physconelloides zenaidurae was encountered most often (prevalence was 36.7%), while the prevalence of the other four species was 26.3%, 18.4%, 3.5%, and 2.6%, respectively. Galloway218 and Palma Résumé—Une étude approfondie de poux mâcheurs sur des pigeons bisets, Colomba livia Gme- lin, et des tourterelles tristes, Zenaida macroura (L.), effectuée de 1994 à 2000 et de 2003 à 2006 au Manitoba, Canada, a produit les nouvelles mentions suivantes : Coloceras tovornikae Tendeiro pour l’Amérique du Nord; Columbicola macrourae (Wilson), Hohorstiella lata (Piaget), H.
    [Show full text]
  • Parasitic Helminths and Arthropods of Fulvous Whistling-Ducks (Dendrocygna Bicolor) in Southern Florida
    J. Helminthol. Soc. Wash. 61(1), 1994, pp. 84-88 Parasitic Helminths and Arthropods of Fulvous Whistling-Ducks (Dendrocygna bicolor) in Southern Florida DONALD J. FORRESTER,' JOHN M. KINSELLA,' JAMES W. MERTiNS,2 ROGER D. PRICE,3 AND RICHARD E. TuRNBULL4 5 1 Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, 2 U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, P.O. Box 844, Ames, Iowa 50010, 1 Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, and 4 Florida Game and Fresh Water Fish Commission, Okeechobee, Florida 34974 ABSTRACT: Thirty fulvous whistling-ducks (Dendrocygna bicolor) collected during 1984-1985 from the Ever- glades Agricultural Area of southern Florida were examined for parasites. Twenty-eight species were identified and included 8 trematodes, 6 cestodes, 1 nematode, 4 chewing lice, and 9 mites. All parasites except the 4 species of lice and 1 of the mites are new host records for fulvous whistling-ducks. None of the ducks were infected with blood parasites. Every duck was infected with at least 2 species of helminths (mean 4.2; range 2- 8 species). The most common helminths were the trematodes Echinostoma trivolvis and Typhlocoelum cucu- merinum and 2 undescribed cestodes of the genus Diorchis, which occurred in prevalences of 67, 63, 50, and 50%, respectively. Only 1 duck was free of parasitic arthropods; each of the other 29 ducks was infested with at least 3 species of arthropods (mean 5.3; range 3-9 species). The most common arthropods included an undescribed feather mite (Ingrassia sp.) and the chewing louse Holomenopon leucoxanthum, both of which occurred in 97% of the ducks.
    [Show full text]
  • The Mallophaga of New England Birds James Edward Keirans Jr
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1966 THE MALLOPHAGA OF NEW ENGLAND BIRDS JAMES EDWARD KEIRANS JR. Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation KEIRANS, JAMES EDWARD JR., "THE MALLOPHAGA OF NEW ENGLAND BIRDS" (1966). Doctoral Dissertations. 834. https://scholars.unh.edu/dissertation/834 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67—163 KEIRANS, Jr., James Edward, 1935— THE MALLOPHAGA OF NEW ENGLAND BIRDS. University of New Hampshire, Ph.D., 1966 E n tom ology University Microfilms, Inc., Ann Arbor, Michigan THE MALLOPHAGA OF NEW ENGLAND BIRDS BY JAMES E.° KEIRANS, -TK - A. B,, Boston University, i960 A. M., Boston University, 19^3 A THESIS Submitted to The University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1966 This thesis has been examined and approved. May 12i 1966 Date ACKNOWLEDGEMENT I wish to express my thanks to Dr. James G. Conklin, Chairman, Department of Entomology and chairman of my doctoral committee, for his guidance during the course of these studies and for permission to use the facilities of the Entomology Department. My grateful thanks go to Dr. Robert L.
    [Show full text]
  • Insecta: Phthiraptera) Q
    International Journal for Parasitology 47 (2017) 347–356 Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara Comparative cophylogenetics of Australian phabine pigeons and doves (Aves: Columbidae) and their feather lice (Insecta: Phthiraptera) q a, b a Andrew D. Sweet ⇑, R. Terry Chesser , Kevin P. Johnson a Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL 61820, USA b USGS Patuxent Wildlife Research Center, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, USA article info abstract Article history: Host–parasite coevolutionary histories can differ among multiple groups of parasites associated with the Received 26 October 2016 same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World Received in revised form 16 December 2016 pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting Accepted 22 December 2016 higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and Available online 10 February 2017 body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular Keywords: sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three Wing lice groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both par- Body lice Australia asite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New Hippoboscid flies World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence.
    [Show full text]
  • Current Knowledge of Turkey's Louse Fauna
    212 Review / Derleme Current Knowledge of Turkey’s Louse Fauna Türkiye’deki Bit Faunasının Mevcut Durumu Abdullah İNCİ1, Alparslan YILDIRIM1, Bilal DİK2, Önder DÜZLÜ1 1 Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 2 Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye ABSTRACT The current knowledge on the louse fauna of birds and mammals in Turkey has not yet been completed. Up to the present, a total of 109 species belonging to 50 genera of lice have been recorded from animals and humans, according to the morphological identifi cation. Among the avian lice, a total of 43 species belonging to 22 genera were identifi ed in Ischnocera (Philopteridae). 35 species belonging to 14 genera in Menoponidae were detected and only 1 species was found in Laemobothriidae in Amblycera. Among the mammalian lice, a total of 20 species belonging to 8 genera were identifi ed in Anoplura. 8 species belonging to 3 genera in Ischnocera were determined and 2 species belonging to 2 genera were detected in Amblycera in the mammalian lice. (Turkiye Parazitol Derg 2010; 34: 212-20) Key Words: Avian lice, mammalian lice, Turkey Received: 07.09.2010 Accepted: 01.12.2010 ÖZET Türkiye’deki kuşlarda ve memelilerde bulunan bit türlerinin mevcut durumu henüz daha tamamlanmamıştır. Bugüne kadar insan ve hay- vanlarda morfolojik olarak teşhis edilen 50 cinste 109 bit türü bildirilmiştir. Kanatlı bitleri arasında, 22 cinse ait toplam 43 tür Ischnocera’da tespit edilmiştir. Amblycera’da ise Menoponidae familyasında 14 cinste 35 tür saptanırken, Laemobothriidae familyasında yalnızca bir tür bulunmuştur. Memeli bitleri arasında Anoplura’da 8 cinste 20 tür tespit edilmiştir.
    [Show full text]
  • Chewing and Sucking Lice As Parasites of Iviammals and Birds
    c.^,y ^r-^ 1 Ag84te DA Chewing and Sucking United States Lice as Parasites of Department of Agriculture IVIammals and Birds Agricultural Research Service Technical Bulletin Number 1849 July 1997 0 jc: United States Department of Agriculture Chewing and Sucking Agricultural Research Service Lice as Parasites of Technical Bulletin Number IVIammals and Birds 1849 July 1997 Manning A. Price and O.H. Graham U3DA, National Agrioultur«! Libmry NAL BIdg 10301 Baltimore Blvd Beltsvjlle, MD 20705-2351 Price (deceased) was professor of entomoiogy, Department of Ento- moiogy, Texas A&iVI University, College Station. Graham (retired) was research leader, USDA-ARS Screwworm Research Laboratory, Tuxtia Gutiérrez, Chiapas, Mexico. ABSTRACT Price, Manning A., and O.H. Graham. 1996. Chewing This publication reports research involving pesticides. It and Sucking Lice as Parasites of Mammals and Birds. does not recommend their use or imply that the uses U.S. Department of Agriculture, Technical Bulletin No. discussed here have been registered. All uses of pesti- 1849, 309 pp. cides must be registered by appropriate state or Federal agencies or both before they can be recommended. In all stages of their development, about 2,500 species of chewing lice are parasites of mammals or birds. While supplies last, single copies of this publication More than 500 species of blood-sucking lice attack may be obtained at no cost from Dr. O.H. Graham, only mammals. This publication emphasizes the most USDA-ARS, P.O. Box 969, Mission, TX 78572. Copies frequently seen genera and species of these lice, of this publication may be purchased from the National including geographic distribution, life history, habitats, Technical Information Service, 5285 Port Royal Road, ecology, host-parasite relationships, and economic Springfield, VA 22161.
    [Show full text]
  • Paradigms for Parasite Conservation
    Paradigms for parasite conservation Running Head: Parasite conservation Keywords: parasitology; disease ecology; food webs; economic valuation; ex situ conservation; population viability analysis 1*† 1† 2 2 Eric R. Dougherty , Colin J. Carlson , Veronica M. Bueno , Kevin R. Burgio , Carrie A. Cizauskas3, Christopher F. Clements4, Dana P. Seidel1, Nyeema C. Harris5 1Department of Environmental Science, Policy, and Management, University of California, Berkeley; 130 Mulford Hall, Berkeley, CA, 94720, USA. 2Department of Ecology and Evolutionary Biology, University of Connecticut; 75 N. Eagleville Rd, Storrs, CT, 06269, USA. 3Department of Ecology and Evolutionary Biology, Princeton University; 106A Guyton Hall, Princeton, NJ, 08544, USA. 4Institute of Evolutionary Biology and Environmental Studies, University of Zurich; Winterthurerstrasse 190 CH-8057, Zurich, Switzerland. 5Luc Hoffmann Institute, WWF International 1196, Gland, Switzerland. *email [email protected] † These authors share lead author status This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/cobi.12634. This article is protected by copyright. All rights reserved. Page 2 of 28 Abstract Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth’s biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us further from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated.
    [Show full text]
  • How Birds Combat Ectoparasites
    The Open Ornithology Journal, 2010, 3, 41-71 41 Open Access How Birds Combat Ectoparasites Dale H. Clayton*,1, Jennifer A. H. Koop1, Christopher W. Harbison1,2, Brett R. Moyer1,3 and Sarah E. Bush1,4 1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; 2Current address: Biology Department, Siena College, Loudonville, NY, 12211, USA; 3Current address: Providence Day School, Charlotte, NC, 28270, USA; 4Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045, USA Abstract: Birds are plagued by an impressive diversity of ectoparasites, ranging from feather-feeding lice, to feather- degrading bacteria. Many of these ectoparasites have severe negative effects on host fitness. It is therefore not surprising that selection on birds has favored a variety of possible adaptations for dealing with ectoparasites. The functional signifi- cance of some of these defenses has been well documented. Others have barely been studied, much less tested rigorously. In this article we review the evidence - or lack thereof - for many of the purported mechanisms birds have for dealing with ectoparasites. We concentrate on features of the plumage and its components, as well as anti-parasite behaviors. In some cases, we present original data from our own recent work. We make recommendations for future studies that could im- prove our understanding of this poorly known aspect of avian biology. Keywords: Grooming, preening, dusting, sunning, molt, oil, anting, fumigation. INTRODUCTION 2) Mites and ticks (Acari): many families [6-9]. As a class, birds (Aves) are the most thoroughly studied 3) Leeches: four families [10]. group of organisms on earth.
    [Show full text]