Summary Report Technology Working Group Meeting on future DNA synthesis technologies (September 14, 2017, Arlington, VA) Bryan Bishop,
[email protected] Nathan Mccorkle,
[email protected] Victor Zhirnov,
[email protected] 2017-10-22 1 Participants: 1. Bryan Bishop / LedgerX 2. Brian Bramlett /Twist BioSciences 3. Sachin Chalapati / Helix Works 4. George Church / Harvard 5. Bill Efcavitch / Molecular Assemblies 6. Fahim Farzadfard / MIT 7. Randall Hughes / UT Austin 8. Devin Leake / Ginkgo Bioworks 9. Henry Lee / Harvard U 10. Qinghuang Lin/IBM 11. Andrew Magyar / Draper Lab 12. David Markowitz / IARPA 13. Nathan Mccorkle / Intel 14. Hyunjun Park / Catalog DNA 15. Bill Peck / Twist Biosciences 16. Michel Perbost /QIAGEN 17. Nimesh Pinnamaneni / Helix Works 18. Marc Pelletier/ DoDo Omnidata 19. Kettner Griswold / Harvard 20. Hua Wang / Georgia Tech 21. Victor Zhirnov /SRC 22. Howon Lee / Harvard Table of Content Executive Summary 3 1. DNA as ultimate information storage 4 2. IARPA’s perspective on molecular information storage 7 3. DNA Synthesis: Current Status and Future Trends 12 4. New technical approaches for future DNA synthesis 18 5. Implementation strategies 24 Appendix A1. Implementation Strategies Discussion 27 A2. Numerical estimates on DNA storage capabilities 37 2 Executive Summary This document summarizes the paths to the development of practical DNA data storage technology that were identified by participants in a recent IARPA/SRC workshop on DNA synthesis technology development. The consensus of the workshop attendees was that DNA synthesis can be scaled up to significantly higher throughput and densities. The fundamental research questions of the synthesis based on phosphoramidite chemistry have been solved for more than 30 years.