Nano-Fest Destiny 3.0: Beings, Nature, and Machines

Total Page:16

File Type:pdf, Size:1020Kb

Nano-Fest Destiny 3.0: Beings, Nature, and Machines "In the game of life and evolution there are three players at the table: human Nano-fest Destiny 3.0: beings, nature, and machines. I am firmly on the side of nature. But nature, I suspect, Fragments from the Post- is on the side of the Biotech Era machines." -George Dyson, Darwin Among the Machines MNT("Molecular Nanotech- Recombinant society falls quickly few decades. While Biotech is car - nology") device designs before nano-fest destiny. bon-based, Nanotech is focusing on should incorporate provisions Biotechnology, like digital networks, carbon atoms. Life is carbon-based. for built-in safety mechanisms, becomes a side event before the next The atoms that make the molecules such as: state of command-and-control society. that structure DNA are carbon. Thus, 1) absolute dependence on a Each of us will rapidly become the by- Nanotech has the potential to encom- single artificial fuel source or product of artificial Molecular Nano- pass the entire Table of Elements. artificial "vitamins" that don't technology "vitamins," interdependent Biotech is just a backwater town com- exist in any natural environ- molecular subassembly engines, and pared to the command and control ment; inter-linked "termination dates." that Nanotech will be able to exploit 2) making devices that are We will become more than replicants for its own profit. Already several dependent on broadcast trans- and less than nothing. The cross-roads important connections between nano- missions for replication or in between the imaginary and all too real biology and nano-engineering are some cases operation; construction of MNT is perhaps already being installed in the hybrid venture 3) routing control signal paths behind us. capital market. Nanotech develop- throughout a device, so that ment is now about where biotech was subassemblies do not function Tactical media, bio-interventionist and a quarter century ago. This does not independently; critical theory sectors should have mean it will take 25 years before it 4) programming termination already been involved in disturbing starts to attract the kind of capital dates into devices, and nanotechnology by the late 1980s investment enjoyed by the Genome 5) other innovations in laboratory when it was first being defined for the market. Advances in other scientific or device safety technology de- engineering sectors as a sign moving fields, especially informatics, means veloped specifically to address from a speculative model to a sanc- that the acceleration of MNT will be the potential dangers of MNT. tioned exploratory zone. At this point rapid. in time, not even Bill Joy's (cofounder - Foresight Guidelines on and Chief Scientist of Sun Microsys- A Note About Post- Molecular Nanotechnology, tems) rant -- "Why the Future Doesn't Genomic Profits Today: (Revised Draft Version 3.7: Need Us," which appeared in Wired June 4, 2000). in 2001 -- about the ramifications of The Empire's New Genes molecular nanotechnology will do [Start Video Now] little more than alter a few micro- points of revised MNT Guidelines "In, 1492, Christopher Columbus was by the Foresight Institute. The term "Molecular blundering about the Caribbean in Nanotechnology" (MNT) refers search of India - he wrote home to to the ability to program matter Gone Nano say that the ancient mariners had with molecular precision and, erred in thinking the earth was round. at some point in the future, As the Biotech sectors gain command Rather, he said, it was shaped like a scale it to three-dimensional and control over 40 percent of the woman's breast, with a protuberance products of arbitrary size. world economy in the next few years, upon its summit in the unmistakable Nanotechnolgy is to inanimate the MNT or Nanotech sectors will seek shape of a nipple - towards which he matter what biotech is to ani- to grab hold of the rest of the 60 percent was slowly sailing." mate matter. of the material world during the next - Anne McClintock, Imperial Leather Objectivity, for the native is established by Columbus. The value Dr. Stuart Newman, Professor of Cell always against him. of the New World is still bound by the Biology and Anatomy at New York -Frantz Fanon, "A Dying same dream of the Old World -- to Medical College notes, "Although Colonialism" carve out spaces for profit for the Old there are potentially beneficial uses World by mining the dark bodies and for the information gathered in the The conquest of woman and repro- lands for that new genetic gold. The Human Genome Project, there is also duction is at the core of the old difference -- between the old flag with the great threat that this information Empire -- the new land was to be its prayer to God and the new flag of will be used to persuade people that taken, raped, and made to give birth Genomics -- is that this new flag is they are not good enough, biological- to a new economy. The new Empire being planted on the bio-beach with a ly. This will be justified by promised of bio-colonialism is replaying the prayer to the Therapeutic State and improvements to human health, but same tale. Only this time Christopher its call for "Health for All." unless carefully monitored and regu- Columbus has not planted his flag on Dr. Jonathan King, Professor of lated, this emphasis on genetics will the beach of the Indigenous lands he Biology at MIT and a member of the have a divisive effect, whereby those accidentally discovered but on their board of directors of the Council for categories and groups of people that genes. Now the flag waves deep in Responsible Genetics in Cambridge, have traditionally been marginalized the pleats of matter. The fast-forward MA, states "We are concerned that will now learn that their genes are future is now a rewinding of the past the emphasis on gene sequences will inferior and need to be improved." In into the present of post-genomic prof- be used to imply that genes are at the each instance, those who have cross- its. The Human Genome Project and basis of a variety of human disease ed the unknown seas dreaming of genetic research in general "raises and conditions, when in fact the great new lands for the Empire fall back on serious issues of concern to indige- body of evidence, establishes that the the "genomic space" of the dark Other nous peoples," states Debra Harry, majority of human ill health is not as the reason for life itself as con- Executive Director of the Indigenous inherited but is due to external insult quest. Peoples Council on including pollution, Bio-colonial- Another infection, As it was the case in the days after ism. She link between the Old Empire inade- Columbus, so it unfolds in the days says, and the New Empire is the vision that after the Human Genome Project -- the slave ships and their gold are now the New World is full of animal people -- dark beginning to cross back into the treas- people who have been breeding with the native uries of the New Empire. Each day, the genetic wealth of the New World creatures since the time began. This belief allows is being added to the coffers as new the New Empire, as was the case with Old biological "truths" to be patented in Empire, to rape and reconfigure the dark the name of Empire's historically given rights to scientific research. As native as animals -- first in the name of we all know, the human Genome can "Now God and now in the name of quate be privatized, not to benefit people's that the or in- health for corporate profits. Already, sequencing pro- Genomics. appropriate patents have been filed, and then ject is complete, more sci- diet, physical accident, or later abandoned, on the DNA of entists will turn their attention to excess stress or social disruption indigenous peoples from the Solomon human genetic diversity, which such as wars." King further adds, Islands and Panama. The U.S. Patent includes the collection and study of "We note that preventing damage to and Trademarks Office (PTO) actually the DNA of indigenous peoples. This human genes from carcinogens is a approved a patent on the cell lines of is likely to result in patents on the far more effective public health strate- a Hagahai man from Papua, New genetic inheritance of indigenous peo- gy than allowing the disease to devel- Guinea. The patent was granted to ples, and possible manipulations of op and then attempting gene therapy." the U.S. Department of Health and their DNA, which violate the natural Human Services and the National genetic integrity of their ancestry." Institutes of Health in March 1994. In Both colonialism and bio-colonialism late 1996, the NIH abandoned the The Indigenous are the first markers pray for the poor dark ones. One patent. However, the Hagahai cell line of the complex territories of what will prayed for their souls and that the is now available to the public at the become the growing question of bio- power of the Empire would be able to American Type Culture Collection as rights for all. Bio-colonialism breaks save them from themselves. The ATCC Number: CRL-10528 Organism: down the walls between the outside other prays that they will be able to Homo Sapiens (human) for $216 per and inside, blood and soil, micro- save the natives from the poor genes sample. This trend is likely to continue ecologies and global economies - but, they have been born with and that the as new potentially profitable genes the flag of the recombinant Empire power of the Empire will be able to are identified in indigenous popula- still waves between the two worlds save them from themselves.
Recommended publications
  • A Framework for Web Science
    Foundations and TrendsR in Web Science Vol. 1, No 1 (2006) 1–130 c 2006 T. Berners-Lee, W. Hall, J.A. Hendler, K. O’Hara, N. Shadbolt and D.J. Weitzner DOI: 10.1561/1800000001 A Framework for Web Science Tim Berners-Lee1, Wendy Hall2, James A. Hendler3, Kieron O’Hara4, Nigel Shadbolt4 and Daniel J. Weitzner5 1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology 2 School of Electronics and Computer Science, University of Southampton 3 Department of Computer Science, Rensselaer Polytechnic Institute 4 School of Electronics and Computer Science, University of Southampton 5 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Abstract This text sets out a series of approaches to the analysis and synthesis of the World Wide Web, and other web-like information structures. A comprehensive set of research questions is outlined, together with a sub-disciplinary breakdown, emphasising the multi-faceted nature of the Web, and the multi-disciplinary nature of its study and develop- ment. These questions and approaches together set out an agenda for Web Science, the science of decentralised information systems. Web Science is required both as a way to understand the Web, and as a way to focus its development on key communicational and representational requirements. The text surveys central engineering issues, such as the development of the Semantic Web, Web services and P2P. Analytic approaches to discover the Web’s topology, or its graph-like structures, are examined. Finally, the Web as a technology is essentially socially embedded; therefore various issues and requirements for Web use and governance are also reviewed.
    [Show full text]
  • Sustainable Development, Technological Singularity and Ethics
    European Research Studies Journal Volume XXI, Issue 4, 2018 pp. 714- 725 Sustainable Development, Technological Singularity and Ethics Vyacheslav Mantatov1, Vitaly Tutubalin2 Abstract: The development of modern convergent technologies opens the prospect of a new technological order. Its image as a “technological singularity”, i.e. such “transhuman” stage of scientific and technical progress, on which the superintelligence will be practically implemented, seems to be quite realistic. The determination of the basic philosophical coordinates of this future reality in the movement along the path of sustainable development of mankind is the most important task of modern science. The article is devoted to the study of the basic ontological, epistemological and moral aspects in the reception of the coming technological singularity. The method of this study is integrating dialectical and system approach. The authors come to the conclusion: the technological singularity in the form of a “computronium” (superintelligence) opens up broad prospects for the sustainable development of mankind in the cosmic dimension. This superintelligence will become an ally of man in the process of cosmic evolution. Keywords: Technological Singularity, Superintelligence, Convergent Technologies, Cosmocentrism, Human and Universe JEL code: Q01, Q56. 1East Siberia State University of Technology and Management, Ulan-Ude, Russia [email protected] 2East Siberia State University of Technology and Management, Ulan-Ude, Russia, [email protected] V. Mantatov, V. Tutubalin 715 1. Introduction Intelligence organizes the world by organizing itself. J. Piaget Technological singularity is defined as a certain moment or stage in the development of mankind, when scientific and technological progress will become so fast and complex that it will be unpredictable.
    [Show full text]
  • Breakthrough Technologies
    21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA BREAKTHROUGH TECHNOLOGIES: PRINCIPLE FEASIBILITY DEBATES Hein, Andreas Makoto (1); Jankovic, Marija (1); Condat, Hélène (2) 1: CentraleSupélec, Université Paris Saclay, France; 2: Initiative for Interstellar Studies, United Kingdom Abstract Designing new technologies involves creating something that did not exist before. In particular, designing technologies with a low degree of maturity usually involves an assessment of its feasibility or infeasibility. Assessing the feasibility of a technology is of vital importance in many domains such as technology management and policy. Despite its importance, few publications actually deal with the fundamentals of technological feasibility such as feasibility proofs or proposing different feasibility categories. This paper addresses this gap by reviewing the existing literature on the feasibility of low- maturity technologies, proposes a framework for assessing feasibility issues, and reconstructs past and ongoing feasibility debates of four exemplary technologies. For the four technologies analysed, we conclude that sufficient expected performance is a key feasibility criteria to all cases, whereas physical effects and working principles were issues for more speculative technologies. For future work, we propose the further development of feasibility categories for different technologies of different degrees of maturity. Keywords: Systems Engineering (SE), Technology, Conceptual design, Early design phases, Uncertainty Contact: Andreas Makoto Hein CentraleSupélec, Université Paris-Saclay Laboratoire Génie Industriel France [email protected] Please cite this paper as: Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17), Vol. 2: Design Processes | Design Organisation and Management, Vancouver, Canada, 21.-25.08.2017.
    [Show full text]
  • Hanover Middle School
    Hanover Middle School Program of Studies Revised Spring 2018 Hanover Middle School Principal Daniel Birolini Assistant Principal Joel Barrett Assistant Principal Anna Hughes Special Education Administrator Bernard McNamara Superintendent Matthew A. Ferron Assistant Superintendent Debbie St. Ives Director of Student Services Keith Guyette Business Manager Dr. Thomas R. Raab School Committee Leah Miller, Chairperson Kim Mills-Booker, Vice Chairperson Elizabeth Corbo John Geary Ruth Lynch 1 Working Draft 2 Working Draft Mission Statement The mission of Hanover Middle School is to establish a safe learning environment that fosters respect, responsibility, perseverance, and support for all learners. General Expectations The Hanover Middle School Student: 1. Reads actively and critically 2. Writes effectively to construct and convey meaning 3. Listens attentively and speaks effectively 4. Applies concepts to interpret information, to solve problems, and to justify solutions 5. Respects and honors school policies Message From The Administration On behalf of the Administration, Faculty, and Staff of the Hanover Middle School, I am excited to share the Program of Studies for the 2018-2019 school year. The Middle School faculty is pleased to present a comprehensive program of studies that highlights the many different educational experiences offered to our students. We are confident that when our students leave Hanover Middle School, each one has been able to take advantage of a variety of opportunities that have allowed them to not only grow, but excel, in their academics. In addition, we offer a number of unique experiences that extend and enrich students beyond the classroom environment. After their years at Hanover Middle School, they are well prepared for high school and beyond.
    [Show full text]
  • Exploratory Engineering in AI
    MIRI MACHINE INTELLIGENCE RESEARCH INSTITUTE Exploratory Engineering in AI Luke Muehlhauser Machine Intelligence Research Institute Bill Hibbard University of Wisconsin Madison Space Science and Engineering Center Muehlhauser, Luke and Bill Hibbard. 2013. “Exploratory Engineering in AI” Communications of the ACM, Vol. 57 No. 9, Pages 32–34. doi:10.1145/2644257 This version contains minor changes. Luke Muehlhauser, Bill Hibbard We regularly see examples of new artificial intelligence (AI) capabilities. Google’s self- driving car has safely traversed thousands of miles. Watson beat the Jeopardy! cham- pions, and Deep Blue beat the chess champion. Boston Dynamics’ Big Dog can walk over uneven terrain and right itself when it falls over. From many angles, software can recognize faces as well as people can. As their capabilities improve, AI systems will become increasingly independent of humans. We will be no more able to monitor their decisions than we are now able to check all the math done by today’s computers. No doubt such automation will produce tremendous economic value, but will we be able to trust these advanced autonomous systems with so much capability? For example, consider the autonomous trading programs which lost Knight Capital $440 million (pre-tax) on August 1st, 2012, requiring the firm to quickly raise $400 mil- lion to avoid bankruptcy (Valetkevitch and Mikolajczak 2012). This event undermines a common view that AI systems cannot cause much harm because they will only ever be tools of human masters. Autonomous trading programs make millions of trading decisions per day, and they were given sufficient capability to nearly bankrupt one of the largest traders in U.S.
    [Show full text]
  • 2018-2019 Valley STEM + ME2 Academy-Coursework
    2018-2019 Valley STEM + ME2 Academy-Coursework Mission: To prepare students with skills necessary to compete in the global economy while nurturing the characteristics of discovery, invention, application, and entrepreneurship. The curriculum in Valley STEM + ME2 Academy was chosen to guide students in the mission of the program. Data from the current job market, student interests, and college/career readiness guides curriculum choices. Valley STEM + ME2 incorporates STEM Principles as the foundation for the curriculum. Advanced Career/Clean Energy Technology will be taught throughout the program. Specific course sequencing is below. Freshmen Coursework 2018-2019 (descriptions below) ● FANUC/Motoman (RAMTEC Lab ) ○ Students may have opportunity to earn 12-points in Industry Credentials ● Clean Energy Technology 1 & 2 ○ Clean Energy Technology 1 & 2 Course Description ● Robotics 1 with Computer Programming ○ Utilizing Start Up Tech Curriculum that incorporates Entrepreneurship and App Development ● Exploratory Engineering ● 21st Century Communications ● English Language Arts 9, or English Language Arts 9 Honors ● Math ○ Course depends on 8th grade math credit; per Ohio Department of Education Graduation Requirements) ● World History or Honors World History ● Biology or Honors Biology ● PE and Health: Taken online semester 2, unless transcripted credit given at the middle school level per ODE Graduation Requirements (½ unit Health, ½ unit PE). Students have the option to take summer school prior to attending, or take the online coursework
    [Show full text]
  • Defense 2045: Assessing the Future Security Environment And
    NOVEMBER 2015 1616 Rhode Island Avenue NW Washington, DC 20036 202-887-0200 | www.csis.org Defense 2045 Lanham • Boulder • New York • London 4501 Forbes Boulevard Assessing the Future Security Environment and Implications Lanham, MD 20706 301- 459- 3366 | www.rowman.com for Defense Policymakers Cover photo: Shutterstock.com A Report of the CSIS International Security Program AUTHOR ISBN 978-1-4422-5888-4 David T. Miller 1616 Rhode Island Avenue NW FOREWORD Washington,Ë|xHSLEOCy258884z DC 20036v*:+:!:+:! Joseph S. Nye Jr. 202-887-0200 | www.csis.org Blank Defense 2045 Assessing the Future Security Environment and Implications for Defense Policymakers AUTHOR David T. Miller FOREWORD Joseph S. Nye Jr. A Report of the CSIS International Security Program November 2015 Lanham • Boulder • New York • London 594-62791_ch00_3P.indd 1 11/6/15 7:13 AM hn hk io il sy SY ek eh About CSIS hn hk io il sy SY ek eh For over 50 years, the Center for Strategic and International Studies (CSIS) has worked to hn hk io il sy SY ek eh develop solutions to the world’s greatest policy challenges. ­Today, CSIS scholars are hn hk io il sy SY ek eh providing strategic insights and bipartisan policy solutions to help decisionmakers chart hn hk io il sy SY ek eh a course toward a better world. hn hk io il sy SY ek eh CSIS is a nonprofit organ ization headquartered in Washington, D.C. The Center’s 220 full- time staff and large network of affiliated scholars conduct research and analy sis and hn hk io il sy SY ek eh develop policy initiatives that look into the future and anticipate change.
    [Show full text]
  • Utility Value of an Introductory Engineering Design Course: an Evaluation Among Course Participants
    Paper ID #30527 Utility value of an introductory engineering design course: an evaluation among course participants. Dr. Lilianny Virguez, University of Florida Lilianny Virguez is a Lecturer at the Engineering Education Department at University of Florida. She holds a Masters’ degree in Management Systems Engineering and a Ph.D. in Engineering Education from Virginia Tech. She has work experience in telecommunications engineering and has taught undergraduate engineering courses such as engineering design at the first-year level and elements of electrical engi- neering. Her research interests include motivation to succeed in engineering with a focus on first-year students. Dr. Pamela L Dickrell, University of Florida Dr. Pamela Dickrell is the Associate Chair of Academics of the Department of Engineering Education, in the UF Herbert Wertheim College of Engineering. Her research focuses on effective teaching methods and hands-on learning opportunities for undergraduate student engagement and retention. Dr. Dickrell received her B.S., M.S., and Ph.D. in Mechanical Engineering from the University of Florida, specializing in Tribology. Andrea Goncher, University of Florida Andrea Goncher is a Lecturer in Engineering Education at the University of Florida. She earned her PhD in Engineering Education from Virginia Tech and focuses on teaching and learning projects in human cen- tred design. Her research interests include text analytics, international higher education, and engineering design education. c American Society for Engineering Education, 2020 Utility value of an introductory engineering design course: an evaluation among course participants. Abstract This paper describes an assessment of the implementation of an engineering design class by exploring how valuable students perceive the course in subsequent years in their college experience.
    [Show full text]
  • Green Goo: Nanobiotechnology Comes Alive!
    Communiqué January/February 2003 Issue # 77 Green Goo: Nanobiotechnology Comes Alive! Issue: If the word registers in the public consciousness at all, "nanotechnology" conjures up visions of itty- bitty mechanical robots building BMWs, burgers or brick walls. For a few, nanotech inspires fear that invisible nanobots will go haywire and multiply uncontrollably until they suffocate the planet – a scenario known as "Gray Goo." Still others, recalling Orwell’s 1984, see nanotech as the path to Big Brother’s military-industrial dominance, a kind of “gray governance.” Gray Goo or gray governance – both are plausible outcomes of nanotechnology – the manipulation of matter at the scale of the nanometer (one billionth of a meter) – but possibly diversionary images of our techno-future. The first and greatest impact of nano-scale technologies may come with the merger of nanotech and biotech – a newly recognized discipline called nanobiotechnology. While Gray Goo has grabbed the headlines, self- replicating nanobots are not yet possible. The more likely future scenario is that the merger of living and non- living matter will result in hybrid organisms and products that end up behaving in unpredictable and uncontrollable ways – get ready for “Green Goo!” Impact: Roughly one-fifth (21%) of nanotech businesses in the USA are currently focusing on nanobiotechnology for the development of pharmaceutical products, drug delivery systems and other healthcare-related products.1 The US National Science Foundation predicts that the market for nano-scale products will reach $1 trillion per annum by 2015. As with biotech before it, nanotech is also expected to have a major impact on food and agriculture.
    [Show full text]
  • Ray Kurzweil Reader Pdf 6-20-03
    Acknowledgements The essays in this collection were published on KurzweilAI.net during 2001-2003, and have benefited from the devoted efforts of the KurzweilAI.net editorial team. Our team includes Amara D. Angelica, editor; Nanda Barker-Hook, editorial projects manager; Sarah Black, associate editor; Emily Brown, editorial assistant; and Celia Black-Brooks, graphics design manager and vice president of business development. Also providing technical and administrative support to KurzweilAI.net are Ken Linde, systems manager; Matt Bridges, lead software developer; Aaron Kleiner, chief operating and financial officer; Zoux, sound engineer and music consultant; Toshi Hoo, video engineering and videography consultant; Denise Scutellaro, accounting manager; Joan Walsh, accounting supervisor; Maria Ellis, accounting assistant; and Don Gonson, strategic advisor. —Ray Kurzweil, Editor-in-Chief TABLE OF CONTENTS LIVING FOREVER 1 Is immortality coming in your lifetime? Medical Advances, genetic engineering, cell and tissue engineering, rational drug design and other advances offer tantalizing promises. This section will look at the possibilities. Human Body Version 2.0 3 In the coming decades, a radical upgrading of our body's physical and mental systems, already underway, will use nanobots to augment and ultimately replace our organs. We already know how to prevent most degenerative disease through nutrition and supplementation; this will be a bridge to the emerging biotechnology revolution, which in turn will be a bridge to the nanotechnology revolution. By 2030, reverse-engineering of the human brain will have been completed and nonbiological intelligence will merge with our biological brains. Human Cloning is the Least Interesting Application of Cloning Technology 14 Cloning is an extremely important technology—not for cloning humans but for life extension: therapeutic cloning of one's own organs, creating new tissues to replace defective tissues or organs, or replacing one's organs and tissues with their "young" telomere-extended replacements without surgery.
    [Show full text]
  • Critique of Nanotechnology
    i I _ CRITIQUE OF HE WORD "nanotechnology" means very nanor different things to different people. While long-t NANOTECHNOLOGY: most would agree that Nanotechnology techni is technology performed on the scale of day's, nanometers - one nanometer being about the size A DEBATE IN FOUR of four zinc atoms laid side-by-side - that is where The b the agreement often ends. sembli byK. E PARTS To Howard Craighead, director of the National Nano- Manife fabrication Facility at Cornell University, Nanotech- asseml nology is a science that uses the chip-making tech- single . niques of the microelectronics revolution to produce made 1. Chemistry devices of increasingly smaller dimensions. chines robotic says it can't happen. To Rick L. Danheiser, a professor of chemistry at the struct ( Massachusetts BY SIMSON GARFINKEL Institute of Technology, Nanotech- vices a nology is a word that describes synthetic organic produce chemistry - a science whlic it woulc seeks to place atoms in precise a single and complex arrangements in order assemb) to accomplish exacting goals. Althoug To K. Eric Drexler, an author and single a, visiting scholar in the Computer thing la: Science department at Stanford lions of University, Nanotechnology de- gether c scribes a technology of the future You coul - a technology based upon self- the task replicating microscopic robots con- job with trolled by tiny mechanical com- diamond puters, capable of manipulating a time by matter atom by atom. from cart Who is right? Everybody and no- the surrc body, really, because "nanotech- rust and nology" isn't a scientific term. could res Nanotechnology is a mind set, an ance of th ideology, a way of solving big prob- ozone in lems by thinking small - think- They cou ing very small.
    [Show full text]
  • Nanotech Ideas in Science-Fiction-Literature
    Nanotech Ideas in Science-Fiction-Literature Nanotech Ideas in Science-Fiction-Literature Text: Thomas Le Blanc Research: Svenja Partheil and Verena Knorpp Translation: Klaudia Seibel Phantastische Bibliothek Wetzlar Special thanks to the authors Karl-Ulrich Burgdorf and Friedhelm Schneidewind for the kind permission to publish and translate their two short stories Imprint Nanotech Ideas in Science-Fiction-Literature German original: Vol. 24 of the Hessen-Nanotech series by the Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Compiled and written by Thomas Le Blanc Svenja Partheil, Verena Knorpp (research) Phantastische Bibliothek Wetzlar Turmstrasse 20 35578 Wetzlar, Germany Edited by Sebastian Hummel, Ulrike Niedner-Kalthoff (Ministry of Economics, Energy, Transport and Regional Development, State of Hessen) Dr. David Eckensberger, Nicole Holderbaum (Hessen Trade & Invest GmbH, Hessen-Nanotech) Editor For NANORA, the Nano Regions Alliance: Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany Phone: +49 (0) 611 815 2471 Fax: +49 (0) 611 815 49 2471 www.wirtschaft.hessen.de The editor is not responsible for the truthfulness, accuracy and completeness of this information nor for observing the individual rights of third parties. The views and opinions rendered herein do not necessarily reflect the opinion of the editor. © Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany wirtschaft.hessen.de All rights reserved. No part of this brochure may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without prior permission in writing from the publisher.
    [Show full text]