Androgen-Regulation of the Protein Tyrosine Phosphatase PTPRR Activates ERK1/2 Signalling in Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Androgen-Regulation of the Protein Tyrosine Phosphatase PTPRR Activates ERK1/2 Signalling in Prostate Cancer Munkley J, Lafferty NP, Kalna G, Robson CN, Leung HY, Rajan P, Elliott DJ. Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer. BMC Cancer 2015, 15, 9 Copyright: © 2015 Munkley et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. DOI link to article: http://dx.doi.org/10.1186/s12885-015-1012-8 Date deposited: 30/04/2015 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk Munkley et al. BMC Cancer (2015) 15:9 DOI 10.1186/s12885-015-1012-8 RESEARCH ARTICLE Open Access Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells Jennifer Munkley1*, Nicholas P Lafferty1, Gabriela Kalna2, Craig N Robson4, Hing Y Leung2,3, Prabhakar Rajan2,3 and David J Elliott1 Abstract Background: Androgens drive the onset and progression of prostate cancer (PCa) via androgen receptor (AR) signalling. The principal treatment for PCa is androgen deprivation therapy, although the majority of patients eventually develop a lethal castrate-resistant form of the disease, where despite low serum testosterone levels AR signalling persists. Advanced PCa often has hyper-activated RAS/ERK1/2 signalling thought to be due to loss of function of key negative regulators of the pathway, the details of which are not fully understood. Methods: We recently carried out a genome-wide study and identified a subset of 226 novel androgen-regulated genes (PLOS ONE 6:e29088, 2011). In this study we have meta-analysed this dataset with genes and pathways frequently mutated in PCa to identify androgen-responsive regulators of the RAS/ERK1/2 pathway. Results: We find the PTGER4 and TSPYL2 genes are up-regulated by androgen stimulation and the ADCY1, OPKR1, TRIB1, SPRY1 and PTPRR are down-regulated by androgens. Further characterisation of PTPRR protein in LNCaP cells revealed it is an early and direct target of the androgen receptor which negatively regulates the RAS/ERK1/2 pathway and reduces cell proliferation in response to androgens. Conclusion: Our data suggest that loss of PTPRR in clinical PCa is one factor that might contribute to activation of the RAS/ERK1/2 pathway. Keywords: PTPRR, RAS/ERK1/2, MAP Kinase, Androgens, Prostate cancer Background signatures between these different cancer types is a key Prostate cancer (PCa) is the most commonly-diagnosed goal. Androgen deprivation therapy (ADT) is the principal malignancy in men [1], and is driven by androgen hor- treatment for advanced PCa, although, over time, the mones acting via their cognate nuclear androgen receptor disease becomes castration-resistant (CRPCa) with limited (AR) transcription factor. The AR exerts its transcriptional treatment options [3]. Persistence of AR signalling and effects by binding to DNA sequences termed androgen reprogramming of the AR transcriptional landscape may response elements (AREs) within promoter regions of a underlie progression to CRPCa [4,5], and highlights the number of androgen-regulated genes, including genes importance of AR biology in advanced PCa. Hence, encoding cell cycle regulators and regulators of central increasing our understanding of the AR signalling in PCa metabolism and biosynthesis [2]. An important feature of cells should lead to more effective treatment strategies for PCa is prognostic heterogeneity: while some prostate advanced PCa. cancers can remain indolent for many years others can Recently, reciprocal cross-talk between the PI3K become much more rapidly aggressive. Distinguishing key pathway and AR signalling has been highlighted as a potential mechanism underlying CRPCa [6]. Alterations in PI3K signalling in advanced PCa are predominantly * Correspondence: [email protected] 1Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne driven by loss of the tumour suppressor gene PTEN NE1 3BZ, UK which contributes to the progression to invasive disease Full list of author information is available at the end of the article © 2015 Munkley et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Munkley et al. BMC Cancer (2015) 15:9 Page 2 of 11 [7-9]. Another common feature of advanced PCa is hyper- using NotIandXhoI for creation of the Flp-In™-293 stable activation of the RAS/ERK1/2 pathway [10-12] thought to cell line. be driven by loss of function of key negative regulators of the pathway [13]. Although RAS/ERK1/2 activation alone Cell culture cannot initiate PCa development, it can serve as a Cell culture and androgen treatment of cells was as de- potentiating second hit to loss of PTEN to accelerate PCa scribed previously [14,15]. All cells were grown at 37°C progression [13]. in 5% CO2. LNCaP cells (CRL-1740, ATCC) were main- Because of its established importance in clinical prostate tained in RPMI-1640 with L-Glutamine (PAA Laborator- cancer, the identification of new mechanisms through ies, R15-802) supplemented with 10% Fetal Bovine which the RAS/RAF/MAPK/ERK pathway is regulated is Serum (FBS) (PAA Laboratories, A15-101). For andro- of great interest. We recently carried out genome-wide gen treatment of LNCaP cells, medium was supple- exon-specific profiling of PCa cells to identify novel mented with 10% dextran charcoal stripped FBS (PAA androgen-regulated transcriptional events [14]. As well Laboratories, A15-119) to produce a steroid-deplete me- as identifying a number of alternative mRNA isoforms dium. Following culture for 72 hours, 10 nM synthetic [15], we also identified a subset of 226 novel androgen- androgen analogue methyltrienolone (R1881) (Perkin– regulated genes [14]. In the light of evidence implica- Elmer, NLP005005MG) was added (Androgen +) or ting cross-talk with AR, we searched this dataset for absent (Steroid deplete) for the times indicated. Where novel androgen-regulated genes associated with RAS/ indicated, LNCaP cells were pre-treated for 1 hour with ERK1/2 signalling. vehicle (dimethylsulfoxide; DMSO) (Sigma, C1988) or 1 μg/ml cycloheximide (Sigma, D2438) prior to addition Methods of 10 nM R1881 for 24 hours as previously described IPA Pathway analysis [16]. Similarly, LNCaP cells were pre-treated with with μ Gene lists from Rajan et al. [14] were uploaded to the 10 M bicalutamide (Casodex, AstraZeneca) or ethanol web-based Ingenuity Pathway Analysis (IPA; Ingenuity (vehicle) for 2 hours prior to addition of 10 nM R1881 Systems) software programme, and the “Core Analysis” for 24 hours. function was used to study direct and indirect regulatory PC-3 (CRL-1435, ATCC), PC-3 M [17], CWR22Rv1 relationships between genes and their known biological (CRL-2505, ATCC), DU145 (HTB-81, ATCC), and functions. BPH-1 cells [18] were maintained in RPMI-1640 with L-Glutamine supplemented with 10% FBS. LNCaP-AI and LNCaP-cdxR were derived from LNCaP parental Antibodies cells and maintained as previously described [19,20]. The following antibodies were used in the study: anti- Stable LNCaP cell lines were generated by transfecting PTPRR rabbit polyclonal (17937 Proteintech), anti- cells using Lipofectamine 2000 (11668-027, Invitrogen), phospho-p44/42 MAPK mouse monoclonal (Erk1/2 followed by selection with 300 μg/ml Geneticin (Invitrogen, Thr202/Tyr204) (Cell signalling 9106), anti-ERK2 mouse 10131019) (reduced to 150 μg/ml following the death of monoclonal (1647 Santa Cruz), anti-actin rabbit polyclonal untransfected cells) for at least four weeks. Flp-In™-293 (A2668, Sigma), anti-AR mouse antibody (BD Bioscience, cells (R750-07, Invitrogen) were maintained in DMEM 554226), anti-FLAG mouse monoclonal (F3165, Sigma), GlutaMax (Invitrogen, 10566-040), supplemented with anti-PTEN rabbit polyclonal (Cell Signalling 138G6), anti- 10% FBS (PAA Laboratories, A15-101) and stable cell lines α-Tubulin mouse monoclonal (Sigma T5168), normal generated using the Flp-In T-Rex Core Kit (K6500-01, rabbit IgG (711-035-152 Jackson labs) and normal mouse Invitrogen) according to the manufacturer’s instructions. IgG (715-036-150 Jackson labs). The specificity of the Protein expression was induced using 1 μg/ml tetracycline PTPRR antibody was confirmed by blocking with the (T7660, Sigma) for 72 hours. immunising peptide (ag12145 Proteintech) (Additional file 1: Figure S2). RT-qPCR Cells were harvested and total RNA extracted using TRI- esiRNA zol (Invitrogen, 15596-026), according to manufacturer’s esiRNAs PTPRR and AR were obtained from Sigma- instructions. RNA was treated with DNase 1 (Ambion) Aldrich (EHU078991 and EHU025951). and cDNA was generated by reverse transcription of 1 μg of total RNA using the Superscript VILO cDNA DNA constructs synthesis kit (Invitrogen, 11754-050). Quantitative PCR PTPRR cloned into pCDNA3.1 was a kind gift from (qPCR) was performed in triplicate on cDNA using SYBR® Mirco Menigatti, University of Zurich. The PTPRR open Green PCR Master Mix (Invitrogen, 4309155) using reading frame was subsequently cloned into pCDNA5 Applied Biosystems 7900HT. Samples were normalised Munkley et al. BMC Cancer (2015) 15:9 Page 3 of 11 using the average of three reference genes: GAPDH, Figure S1). To test whether the PTPRR gene might be β –tubulin and actin. All primer sequences are listed in under direct control of androgens through AR regulation, Additional file 2: Table S2.
Recommended publications
  • Genes Retina/RPE Choroid Sclera
    Supplementary Materials: Genes Retina/RPE Choroid Sclera Fold Change p-value Fold Change p-value Fold Change p-value PPFIA2 NS NS 2.35 1.3X10-3 1.5 1.6X10-3 PTPRF 1.24 2.65X10-5 6.42 7X10-4 1.11 1X10-4 1.19 2.65X10-5 NS NS 1.11 3.3X10-3 PTPRR 1.44 2.65X10-5 3.04 4.7X10-3 NS NS Supplementary Table S1. Genes Differentially Expressed Related to Candidate Genes from Association. Genes selected for follow up validation by real time quantitative PCR. Multiple values for each gene indicate multiple probes within the same gene. NS indicates the fold change was not statistically significant. Gene/SNP Assay ID rs4764971 C__30866249_10 rs7134216 C__30023434_10 rs17306116 C__33218892_10 rs3803036 C__25749934_20 rs824311 C___8342112_10 PPFIA2 Hs00170308_m1 PTPRF Hs00160858_m1 PTPRR Hs00373136_m1 18S Hs03003631_g1 GAPDH Hs02758991_g1 Supplementary Table S2. Taqman® Genotyping and Gene Expression Assay Identification Numbers. SNP Chimp Orangutan Rhesus Marmoset Mouse Rat Cow Pig Guinea Pig Dog Elephant Opossum Chicken rs3803036 X X X X X X X X X X X X X rs1520562 X X X X X X rs1358228 X X X X X X X X X X X rs17306116 X X X X X X rs790436 X X X X X X X rs1558726 X X X X X X X X rs741525 X X X X X X X X rs7134216 X X X X X X rs4764971 X X X X X X X Supplementary Table S3. Conservation of Top SNPs from Association. X indicates SNP is conserved.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Protein Phosphatases Cat. no. 330231 PAHS-045ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Protein Phosphatases RT² Profiler PCR Array profiles the gene expression of the 84 most important and well-studied phosphatases in the mammalian genome. By reversing the phosphorylation of key regulatory proteins mediated by protein kinases, phosphatases serve as a very important complement to kinases and attenuate activated signal transduction pathways. The gene classes on this array include both receptor and non-receptor tyrosine phosphatases, catalytic subunits of the three major protein phosphatase gene families, the dual specificity phosphatases, as well as cell cycle regulatory and other protein phosphatases.
    [Show full text]
  • Table S1 List of 159 Deafness Genes ACTG1 ADGRV1 ALX3 BSND
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Med Genet Table S1 List of 159 deafness genes ACTG1 ADGRV1 ALX3 BSND CABP2 CCDC50 CDH23 CEACAM16 CHD7 CIB2 CLDN14 CLPP CLRN1 COCH COL11A1 COL11A2 COL1A1 COL1A2 COL2A1 COL4A3 COL4A4 COL4A5 COL4A6 COL9A1 COL9A2 CRYM DFNA5 WHRN DFNB59 DIABLO DIAPH1 DIAPH3 DSPP ECM1 EDN3 EDNRB ELMOD3 ESPN ESRRB EYA1 EYA4 FGF3 FGF8 FGFR1 FGFR3 FLNA FOXI1 FREM1 FXN GATA3 GIPC3 GJB1 GJB2 GJB3 GJB6 GLYAT GPSM2 GRHL2 GRXCR1 HARS HARS2 HGF HMX1 HOXA2 HSD17B4 IL13 ILDR1 KARS KCNE1 KCNJ10 KCNQ1 KCNQ4 KITLG KRT9 LAMA3 LARS2 LHFPL5 LOXHD1 LRTOMT MARVELD2 MIR96 MITF MPZ MSRB3 MYH14 MYH9 MYO15A MYO1A MYO1E MYO3A MYO6 MYO7A NDP NDRG1 NEFL NELL2 NF2 OPA1 OTOA OTOF OTOG OTOGL P2RX2 PABPN1 PAX3 PCDH15 PCDH9 PDZD7 PMP22 PNPT1 POLR1C POLR1D POU3F4 POU4F3 PROK2 PROKR2 PRPS1 PTPN11 PTPRQ PTPRR RDX RPGR SALL1 SALL4 SEC23A SEMA3E SERPINB6 SIX1 SIX5 SLC17A8 SLC19A2 SLC26A4 SLC26A5 SMAD4 SMPX SNAI2 SOX10 STRC TBC1D24 TCIRG1 TCOF1 TECTA TIMM8A TJP2 TMC1 TMEM126A TMIE TMPRSS3 TMPRSS4 TNC TPRN TRIOBP TRMU TSPEAR TYR USH1C USH1G USH2A WFS1 Table S2 Six mitochondrial deafness-related regions Locus Location (RefSeq: NC_012920.1) MT-RNR1 chrM:648-1601 MT-TL1 chrM:3230-3304 MT-CO1 chrM:5904-7445 MT-TS1 chrM:7446-7514 MT-TK chrM:8295-8364 MT-TE chrM:14674-14742 Table S3 Three deafness-related miRNAs Name Chromosome Position (hg19) miR-96 chr7: 129414532-129414609 miR-182 chr7: 129410223-129410332 miR-183 chr7: 129414745-129414854 Gao X, et al.
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Specific Inhibitors of the Protein Tyrosine Phosphatase Shp2 Identified by High-Throughput Docking
    Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking Klaus Hellmuth*, Stefanie Grosskopf†, Ching Tung Lum*, Martin Wu¨ rtele*‡, Nadine Ro¨ der*§, Jens Peter von Kries†, Marta Rosario*, Jo¨ rg Rademann†¶, and Walter Birchmeier*ʈ *Max Delbru¨ck Center for Molecular Medicine, Robert Ro¨ssle Strasse 10, D-13125 Berlin, Germany; †Leibniz Institute for Molecular Pharmacology, Robert Ro¨ssle Strasse 10, D-13125 Berlin, Germany; and ¶Institute for Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, D-14195 Berlin, Germany Edited by Axel Ullrich, Max Planck Institute, Martinsried, Germany, and accepted by the Editorial Board February 20, 2008 (received for review November 2, 2007) The protein tyrosine phosphatase Shp2 is a positive regulator of and is both essential and sufficient for Met function (18, 19). growth factor signaling. Gain-of-function mutations in several types Signaling through Met and its ligand, HGF/SF, has been implicated of leukemia define Shp2 as a bona fide oncogene. We performed a in high frequency in human cancer. Dysregulated Met signaling, high-throughput in silico screen for small-molecular-weight com- through mutation or up-regulation of Met, has been associated with pounds that bind the catalytic site of Shp2. We have identified the tumor progression, metastasis, and poor prognosis of survival (20). phenylhydrazonopyrazolone sulfonate PHPS1 as a potent and cell- Inhibitors of Shp2 may thus be useful for the treatment of these permeable inhibitor, which is specific for Shp2 over the closely human cancers and in limiting metastasis. related tyrosine phosphatases Shp1 and PTP1B. PHPS1 inhibits Shp2- The identification of specific small-molecular-weight inhibi- dependent cellular events such as hepatocyte growth factor/scatter tors of tyrosine phosphatases is a challenging endeavor, because factor (HGF/SF)-induced epithelial cell scattering and branching mor- the base of the catalytic cleft, the signature motif, is highly phogenesis.
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]
  • Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’S Disease
    SAGE-Hindawi Access to Research International Journal of Alzheimer’s Disease Volume 2010, Article ID 604792, 56 pages doi:10.4061/2010/604792 Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’s Disease Wayne Chadwick, 1 Randall Brenneman,1, 2 Bronwen Martin,3 and Stuart Maudsley1 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA 2 Miller School of Medicine, University of Miami, Miami, FL 33124, USA 3 Metabolism Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA Correspondence should be addressed to Stuart Maudsley, [email protected] Received 17 May 2010; Accepted 27 July 2010 Academic Editor: Gemma Casadesus Copyright © 2010 Wayne Chadwick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Various animal models of Alzheimer’s disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins.
    [Show full text]
  • Phosphatases Page 1
    Phosphatases esiRNA ID Gene Name Gene Description Ensembl ID HU-05948-1 ACP1 acid phosphatase 1, soluble ENSG00000143727 HU-01870-1 ACP2 acid phosphatase 2, lysosomal ENSG00000134575 HU-05292-1 ACP5 acid phosphatase 5, tartrate resistant ENSG00000102575 HU-02655-1 ACP6 acid phosphatase 6, lysophosphatidic ENSG00000162836 HU-13465-1 ACPL2 acid phosphatase-like 2 ENSG00000155893 HU-06716-1 ACPP acid phosphatase, prostate ENSG00000014257 HU-15218-1 ACPT acid phosphatase, testicular ENSG00000142513 HU-09496-1 ACYP1 acylphosphatase 1, erythrocyte (common) type ENSG00000119640 HU-04746-1 ALPL alkaline phosphatase, liver ENSG00000162551 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPPL2 alkaline phosphatase, placental-like 2 ENSG00000163286 HU-07767-1 BPGM 2,3-bisphosphoglycerate mutase ENSG00000172331 HU-06476-1 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 ENSG00000162813 HU-09086-1 CANT1 calcium activated nucleotidase 1 ENSG00000171302 HU-03115-1 CCDC155 coiled-coil domain containing 155 ENSG00000161609 HU-09022-1 CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) ENSG00000079335 HU-11533-1 CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) ENSG00000081377 HU-06323-1 CDC25A cell division cycle 25 homolog A (S. pombe) ENSG00000164045 HU-07288-1 CDC25B cell division cycle 25 homolog B (S. pombe) ENSG00000101224 HU-06033-1 CDKN3 cyclin-dependent kinase inhibitor 3 ENSG00000100526 HU-02274-1 CTDSP1 CTD (carboxy-terminal domain,
    [Show full text]
  • Dual Specificity MAPK Phosphatases in Control of the Inflammatory Response
    DUSP Meet Immunology: Dual Specificity MAPK Phosphatases in Control of the Inflammatory Response This information is current as Roland Lang, Michael Hammer and Jörg Mages of September 29, 2021. J Immunol 2006; 177:7497-7504; ; doi: 10.4049/jimmunol.177.11.7497 http://www.jimmunol.org/content/177/11/7497 Downloaded from References This article cites 82 articles, 53 of which you can access for free at: http://www.jimmunol.org/content/177/11/7497.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS DUSP Meet Immunology: Dual Specificity MAPK Phosphatases in Control of the Inflammatory Response1 Roland Lang,2 Michael Hammer, and Jo¨rg Mages The MAPK family members p38, JNK, and ERK are all promoters of e.g., Il6, Tnfa, and many other genes that are up- activated downstream of innate immunity’s TLR to in- regulated in response to TLR ligation.
    [Show full text]
  • Murine Perinatal Beta Cell Proliferation and the Differentiation of Human Stem Cell Derived Insulin Expressing Cells Require NEUROD1
    Page 1 of 105 Diabetes Murine perinatal beta cell proliferation and the differentiation of human stem cell derived insulin expressing cells require NEUROD1 Anthony I. Romer,1,2 Ruth A. Singer1,3, Lina Sui2, Dieter Egli,2* and Lori Sussel1,4* 1Department of Genetics and Development, Columbia University, New York, NY 10032, USA 2Department of Pediatrics, Columbia University, New York, NY 10032, USA 3Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA 4Department of Pediatrics, University of Colorado Denver School of Medicine, Denver, CO 80045, USA *Co-Corresponding Authors Dieter Egli 1150 St. Nicholas Avenue New York, NY 10032 [email protected] Lori Sussel 1775 Aurora Ct. Aurora, CO 80045 [email protected] Word Count: Abstract= 149; Body= 4773 Total Paper Figures= 7, Total Supplemental Tables= 4, Total Supplemental Figures= 5 Diabetes Publish Ahead of Print, published online September 13, 2019 Diabetes Page 2 of 105 Abstract Inactivation of the β cell transcription factor NEUROD1 causes diabetes in mice and humans. In this study, we uncovered novel functions of Neurod1 during murine islet cell development and during the differentiation of human embryonic stem cells (HESCs) into insulin-producing cells. In mice, we determined that Neurod1 is required for perinatal proliferation of alpha and beta cells. Surprisingly, apoptosis only makes a minor contribution to beta cell loss when Neurod1 is deleted. Inactivation of NEUROD1 in HESCs severely impaired their differentiation from pancreatic progenitors into insulin expressing (HESC-beta) cells; however survival or proliferation was not affected at the time points analyzed. NEUROD1 was also required in HESC-beta cells for the full activation of an essential beta cell transcription factor network.
    [Show full text]