Role of Receptor Protein Tyrosine Phosphatases (Rptps) in Insulin Signaling and Secretion

Total Page:16

File Type:pdf, Size:1020Kb

Role of Receptor Protein Tyrosine Phosphatases (Rptps) in Insulin Signaling and Secretion International Journal of Molecular Sciences Review Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion Julio Sevillano , María Gracia Sánchez-Alonso , Javier Pizarro-Delgado and María del Pilar Ramos-Álvarez * Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Madrid, Spain; [email protected] (J.S.); [email protected] (M.G.S.-A.); [email protected] (J.P.-D.) * Correspondence: [email protected] Abstract: Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM. Citation: Sevillano, J.; Sánchez- Keywords: receptor protein tyrosine phosphatases (RPTP); insulin signaling; insulin secretion; T2DM Alonso, M.G.; Pizarro-Delgado, J.; Ramos-Álvarez, M.d.P. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin 1. Introduction Signaling and Secretion. Int. J. Mol. 1.1. Metabolic Diseases Associated with Insulin Resistance and Chronic Low-Grade Inflammation Sci. 2021, 22, 5812. https://doi.org/ Type 2 diabetes mellitus (T2DM) and obesity are two major medical challenges of 10.3390/ijms22115812 the 21st century with increasing prevalence during the last decades, reaching pandemic Academic Editor: Jean-François Tanti proportions [1]. Both metabolic diseases are associated to insulin resistance, and although only a subset of obese people develops T2DM, obesity is a major risk factor for T2DM, and Received: 1 May 2021 rates of T2DM prevalence have paralleled those of obesity. Consequently, these metabolic Accepted: 24 May 2021 diseases, and the morbidity associated with them, accounts for enormous costs for the Published: 28 May 2021 health systems. Insulin resistance is a condition in which tissues are unable to respond to normal Publisher’s Note: MDPI stays neutral plasma insulin level, with tissue-specific functional consequences. The integrated physiol- with regard to jurisdictional claims in ogy of insulin resistance owes to defective insulin action at target cells. Thus, the research published maps and institutional affil- on insulin resistance has usually been focused on the critical nodes of the signaling path- iations. way (insulin receptor, insulin receptor substrates (IRS) proteins, protein kinase B (AKT)) described with detail in Figure1. Both obesity and T2DM [2] are also associated with the development of a chronic low-grade inflammation in adipose tissue, with local production of proinflammatory Copyright: © 2021 by the authors. cytokines [3], such as tumor necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6) [4] that Licensee MDPI, Basel, Switzerland. can interfere with insulin receptor signaling (see Figure1) and cause insulin resistance [ 5]. This article is an open access article Many of these obesity/T2DM-generated inflammatory signals converge to activate serine distributed under the terms and kinases promoting Ser phosphorylation of IRS1 (pSerIRS1), that directly interferes with conditions of the Creative Commons insulin action in adipose tissue both in pathological [6] and physiological conditions [7]. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Int. J. Mol. Sci. 2021, 22, 5812. https://doi.org/10.3390/ijms22115812 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, 5812 2 of 11 Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 12 Figure 1. Insulin signaling cascade.Figure 1. Insulin signaling cascade. Insulin signalingInsulin begins signaling with its begins binding with to its the binding cell surface to the cellinsulin surface receptor insulin (IR), receptor a (IR), a het- heterotetrametricerotetrametric protein (two protein α extracellular (two α extracellular subunits and subunits two transmembrane and two transmembrane β-subu- β-subunits) nits) which is whicha tyrosine is a tyrosinekinase [8]. kinase The binding [8]. The of binding insulin of to insulin its receptor to its receptorleads to leadsthe acti- to the activation vation of IR tyrosineof IR tyrosine kinase; kinase;the receptor the receptor is autophosphorylated is autophosphorylated in key tyrosine in key (pY) tyrosine resi- (pY) residues dues of the β-subunits,of the β-subunits, which function which as function a docking as asite docking for tyrosine site for phosphorylated tyrosine phosphorylated adap- adaptor tor proteins suchproteins as insulin such as receptor insulin receptorsubstrates substrates 1 and 2 (IRS-1/2) 1 and 2 (IRS-1/2) that are thatsubsequently are subsequently phos- phosphorylated.phorylated. The recruitment The recruitment of phosphotyrosine of phosphotyrosine IRS-1/2 to IRS-1/2IR leads toto IRthe leads activation to the activation of of the two majorthe downstream two major downstream pathways, the pathways, phosphatidylinos the phosphatidylinositol-3-kinaseitol-3-kinase (PI3K) and the (PI 3K) and the mitogen-activatedmitogen-activated protein kinase protein (MAPK) kinase pathway (MAPK) initiated pathway by growth initiated factor by growth receptor factor receptor bound proteinbound 2 (GRB2) protein and 2the (GRB2) Src homology and the Srcand homology collagen (SHC). and collagen First, activation (SHC). First, of the activation of the PI3K leads to PI3-phosphoinositide-dependent3K leads to 3-phosphoinositide-dependent protein kinase protein 1 (PDK1)-dependent kinase 1 (PDK1)-dependent phos- phospho- phorylation andrylation the subsequent and the subsequent activation activation of the protein of the kinase protein B (PKB kinase or B AKT), (PKB orwhich AKT), in which in turn turn phosphorylatesphosphorylates various key various downstream key downstream effectors effectors involved involved in the metabolic in the metabolic effects effects of the of the insulin,insulin, including including glycogen glycogen synthase synthase kinase kinase (GSK)-3, (GSK)-3, Forkhead Forkhead box box protein protein O O (FOXO), and (FOXO), and mechanisticmechanistic target target of rapamycin (mTOR).(mTOR). Secondly,Secondly, activation activation of of the the MAPK MAPK cascade, which cascade, whichincludes includes rat rat sarcoma sarcoma (RAS), (RAS), rapidly rapidly accelerated accelerated fibrosarcoma fibrosarcoma (RAF), (RAF), mitogen-activated mi- togen-activatedprotein/extracellular protein/extracellular signal-regulated signal-regulated kinase kinase (MEK1/2), (MEK1/2), and and extracellular extracellular signal-regulated kinase (ERK1/2), plays a critical role for mitogenic effects of insulin, including prolif- signal-regulated kinase (ERK1/2), plays a critical role for mitogenic effects of insulin, in- eration, differentiation and survival [9]. Insulin signaling is negatively regulated by a cluding proliferation, differentiation and survival [9]. Insulin signaling is negatively reg- number of mechanisms, such as a) the binding of GRB10 to the kinase domain of IR; b) ulated by a number of mechanisms, such as a) the binding of GRB10 to the kinase domain the serine/theonine phosphorylation (pS) of IRS1 by various serine/threonine kinases of IR; b) the serine/theonine phosphorylation (pS) of IRS1 by various serine/threonine ki- (STK), including IκB kinase β (IKKβ), c-Jun N-terminal kinase (JNK), S6K and mTOR3 [6]; nases (STK), including IκB kinase β (IKKβ), c-Jun N-terminal kinase (JNK), S6K and c) dephosphorylation of IR and IRS1/2 by protein tyrosine phosphatases (PTPs) such as mTOR3 [6]; c) dephosphorylation of IR and IRS1/2 by protein tyrosine phosphatases phosphatase-1B (PTP-1B) [10], and d) dephosphorylation of phosphatidylinositol 3,4,5- (PTPs) such as phosphatase-1B (PTP-1B) [10], and d) dephosphorylation of phosphatidyl- trisphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2) by the phosphatase inositol 3,4,5-trisphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2) by and tensin homolog (PTEN). the phosphatase and tensin homolog (PTEN). 1.2. Role of Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Antagonism 1.2. Role of Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Antagonism Impaired insulin signaling is a common feature of the pathophysiology of human Impairedobesity insulin and signaling T2DM. is Although, a common several feature studies of the have pathophysiology increased the knowledge of human regarding the obesity and T2DM.role of Although, reversible tyrosineseveral phosphorylationstudies have increased of the insulin the knowledge receptor and regarding its substrate proteins the role of reversiblein the mechanism tyrosine phosphorylat of insulin actionion (Figureof the insulin1), it is stillreceptor necessary and toits furthersubstrate investigate how Int. J. Mol.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Identification of Chebulinic Acid As a Dual Targeting Inhibitor of Protein
    Bioorganic Chemistry 90 (2019) 103087 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Short communication Identification of chebulinic acid as a dual targeting inhibitor of protein T tyrosine phosphatases relevant to insulin resistance Sun-Young Yoona,1, Hyo Jin Kangb,1, Dohee Ahna, Ji Young Hwanga, Se Jeong Kwona, ⁎ Sang J. Chunga, a School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea b Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the Protein tyrosine phosphatases (PTPs) protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as Chebulinic acid potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 Type 2 diabetes increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could Glucose-uptake be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 PTPN9 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding toPTPN9 PTPN11 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
    [Show full text]
  • Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Defi Cient Prostate Cancer
    Published OnlineFirst May 8, 2020; DOI: 10.1158/2159-8290.CD-19-1352 RESEARCH ARTICLE Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Defi cient Prostate Cancer Di Zhao 1 , 2 , Li Cai 1 , Xin Lu 1 , 3 , Xin Liang 1 , 4 , Jiexi Li 1 , Peiwen Chen 1 , Michael Ittmann 5 , Xiaoying Shang 1 , Shan Jiang6 , Haoyan Li 2 , Chenling Meng 2 , Ivonne Flores 6 , Jian H. Song 4 , James W. Horner 6 , Zhengdao Lan 1 , Chang-Jiun Wu6 , Jun Li 6 , Qing Chang 7 , Ko-Chien Chen 1 , Guocan Wang 1 , 4 , Pingna Deng 1 , Denise J. Spring 1 , Y. Alan Wang1 , and Ronald A. DePinho 1 Downloaded from cancerdiscovery.aacrjournals.org on September 28, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst May 8, 2020; DOI: 10.1158/2159-8290.CD-19-1352 ABSTRACT Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identifi edCHD1 as an essential gene in PTEN- defi cient cancer cells. Here, we sought defi nitivein vivo genetic evidence for, and mechanistic under- standing of, the essential role of CHD1 in PTEN-defi cient prostate cancer. In Pten and Pten /Smad4 genetically engineered mouse models, prostate-specifi c deletion ofChd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identifi ed IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs.
    [Show full text]
  • (PDE 1 B 1) Correlates with Brain Regions Having Extensive Dopaminergic Innervation
    The Journal of Neuroscience, March 1994, 14(3): 1251-l 261 Expression of a Calmodulin-dependent Phosphodiesterase lsoform (PDE 1 B 1) Correlates with Brain Regions Having Extensive Dopaminergic Innervation Joseph W. Polli and Randall L. Kincaid Section on Immunology, Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852 Cyclic nucleotide-dependent protein phosphorylation plays PDE implies an important physiological role for Ca2+-regu- a central role in neuronal signal transduction. Neurotrans- lated attenuation of CAMP-dependent signaling pathways mitter-elicited increases in cAMP/cGMP brought about by following dopaminergic stimulation. activation of adenylyl and guanylyl cyclases are downre- [Key words: CAMP, cyclase, striatum, dopamine, basal gulated by multiple phosphodiesterase (PDE) enzymes. In ganglia, DARPP-321 brain, the calmodulin (CaM)-dependent isozymes are the major degradative activities and represent a unique point of Cyclic nucleotides, acting as “second messengers”or via direct intersection between the cyclic nucleotide- and calcium effects, regulate a diverse array of neuronal functions, from ion (Ca*+)-mediated second messenger systems. Here we de- channel conductance to gene expression. Hydrolysis of 3’,5’- scribe the distribution of the PDEl Bl (63 kDa) CaM-depen- cyclic nucleotidesto 5’-nucleosidemonophosphates is the major dent PDE in mouse brain. An anti-peptide antiserum to this mechanismfor decreasingintracellular cyclic nucleotide levels. isoform immunoprecipitated -3O-40% of cytosolic PDE ac- This reaction is catalyzed by cyclic nucleotide phosphodiester- tivity, whereas antiserum to PDElA2 (61 kDa isoform) re- ase (PDE) enzymes that constitute a large superfamily (Beavo moved 60-70%, demonstrating that these isoforms are the and Reifsynder, 1990).
    [Show full text]
  • 9. Atypical Dusps: 19 Phosphatases in Search of a Role
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Transworld Research Network 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Emerging Signaling Pathways in Tumor Biology, 2010: 185-208 ISBN: 978-81-7895-477-6 Editor: Pedro A. Lazo 9. Atypical DUSPs: 19 phosphatases in search of a role Yolanda Bayón and Andrés Alonso Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid c/ Sanz y Forés s/n, 47003 Valladolid, Spain Abstract. Atypical Dual Specificity Phosphatases (A-DUSPs) are a group of 19 phosphatases poorly characterized. They are included among the Class I Cys-based PTPs and contain the active site motif HCXXGXXR conserved in the Class I PTPs. These enzymes present a phosphatase domain similar to MKPs, but lack any substrate targeting domain similar to the CH2 present in this group. Although most of these phosphatases have no more than 250 amino acids, their size ranges from the 150 residues of the smallest A-DUSP, VHZ/DUSP23, to the 1158 residues of the putative PTP DUSP27. The substrates of this family include MAPK, but, in general terms, it does not look that MAPK are the general substrates for the whole group. In fact, other substrates have been described for some of these phosphatases, like the 5’CAP structure of mRNA, glycogen, or STATs and still the substrates of many A-DUSPs have not been identified. In addition to the PTP domain, most of these enzymes present no additional recognizable domains in their sequence, with the exception of CBM-20 in laforin, GTase in HCE1 and a Zn binding domain in DUSP12.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Serum 5-Nucleotidase by Theodore F
    J Clin Pathol: first published as 10.1136/jcp.7.4.341 on 1 November 1954. Downloaded from J. clin. Path. (1954), 7, 341. SERUM 5-NUCLEOTIDASE BY THEODORE F. DIXON AND MARY PURDOM t0o From the Biochemistry Department, the Institute of Orthopaedics, Stanmore, Middlesex (RECEIVED FOR PUBLICATION DECEMBER 8. 1953) Reis (1934, 1940, 1951) has demonstrated the add the molybdate solution, and dilute with washings to presence of alkaline phosphatase in various tissues 1 litre with water. specifically hydrolysing 5-nucleotidase such as Standard Phosphate Solution.-KH2PO4 0.02195 g., adenosine and inosine-5-phosphoric acids. The and 50 g. trichloracetic acid, made up to 1 litre. This enzyme has its optimum action at pH 7.8 and in all solution contains 0.02 mg. P in 4 ml. human tissues except intestinal mucosa its activity, at the physiological pH range, is much more Methods pronounced than that of the non-specific alkaline Non-specific alkaline phosphatase activity is high at phosphatase. Thus ossifying cartilage, one of the pH 9 towards phenylphosphate adenosine phosphate classical sites of high alkaline phosphatase activity, and glycerophosphate, in this decreasing order (cf. Reis, although very active against say phenyl phosphoric 1951). At pH 7.5, however, the total phosphatase acids at pH 9, is more active against adenosine-5- activity is equally low towards phenyl- or glycero-phos- phosphoric at pH 7.5. This finding suggested to phate -nd the higher activity towards adenosine-5- phosphate at this reaction is reasonably inferred to be Reis that the enzyme might play a part in calcifica- due to the specific 5-nucleotidase.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • CD45) 6 7 8 9 10 11 12 13 Melissa L
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318709; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 The roseoloviruses downregulate the protein tyrosine phosphatase PTPRC (CD45) 6 7 8 9 10 11 12 13 Melissa L. Whyte1, Kelsey Smith1, Amanda Buchberger2,4, Linda Berg Luecke 4, Lidya 14 Handayani Tjan3, Yasuko Mori3, Rebekah L Gundry2,4, and Amy W. Hudson1# 15 16 17 18 19 20 21 22 23 24 25 26 27 1: Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 28 2. Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 29 3. Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan 30 4: Current address: CardiOmics Program, Center for Heart and Vascular Research; Division of 31 Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of 32 Nebraska Medical Center, Omaha, NE 33 34 35 36 #To whom correspondence should be addressed: [email protected] 37 38 39 40 Runnning title: Roseolovirus downregulation of CD45 41 42 43 44 45 46 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318709; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 47 Abstract 48 Like all herpesviruses, the roseoloviruses (HHV6A, -6B, and -7) establish lifelong 49 infection within their host, requiring these viruses to evade host anti-viral responses.
    [Show full text]
  • Regulation of Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase (PDE1): Review
    95-105 5/6/06 13:44 Page 95 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 18: 95-105, 2006 95 Regulation of calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1): Review RAJENDRA K. SHARMA, SHANKAR B. DAS, ASHAKUMARY LAKSHMIKUTTYAMMA, PONNIAH SELVAKUMAR and ANURAAG SHRIVASTAV Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Cancer Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon SK S7N 4H4, Canada Received January 16, 2006; Accepted March 13, 2006 Abstract. The response of living cells to change in cell 6. Differential inhibition of PDE1 isozymes and its environment depends on the action of second messenger therapeutic applications molecules. The two second messenger molecules cAMP and 7. Role of proteolysis in regulating PDE1A2 Ca2+ regulate a large number of eukaryotic cellular events. 8. Role of PDE1A1 in ischemic-reperfused heart Calmodulin-stimulated cyclic nucleotide phosphodiesterase 9. Conclusion (PDE1) is one of the key enzymes involved in the complex interaction between cAMP and Ca2+ second messenger systems. Some PDE1 isozymes have similar kinetic and 1. Introduction immunological properties but are differentially regulated by Ca2+ and calmodulin. Accumulating evidence suggests that the A variety of cellular activities are regulated through mech- activity of PDE1 is selectively regulated by cross-talk between anisms controlling the level of cyclic nucleotides. These Ca2+ and cAMP signalling pathways. These isozymes are mechanisms include synthesis, degradation, efflux and seque- also further distinguished by various pharmacological agents. stration of cyclic adenosine 3':5'-monophosphate (cAMP) and We have demonstrated a potentially novel regulation of PDE1 cyclic guanosine 3':5'- monophosphate (cGMP) within the by calpain.
    [Show full text]
  • The Proteintyrosine Phosphatase Receptor Type J Is Regulated by The
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 The Protein-Tyrosine Phosphatase Receptor Type J is regulated by the pVHL-HIF axis in Clear Cell Renal Cell Carcinoma Casagrande, Silvia ; Ruf, Melanie ; Rechsteiner, Markus ; Morra, Laura ; Brun-Schmid, Sonja ; von Teichman, Adriana ; Krek, Wilhelm ; Schraml, Peter ; Moch, Holger Abstract: Mass spectrometry analysis of renal cancer cell lines recently suggested that the Protein- Tyrosine Phosphatase Receptor Type J (PTPRJ), an important regulator of tyrosine kinase receptors, is tightly linked to the von-Hippel Lindau protein (pVHL). Therefore, we aimed to characterize the biological relevance of PTPRJ for clear cell renal cell carcinoma (ccRCC). In pVHL negative ccRCC cell lines both RNA and protein expression levels of PTPRJ were lower than those in the corresponding pVHL reconstituted cells. Quantitative RT-PCR and Western blot analysis of ccRCC with known VHL mutation status and normal matched tissues as well as RNA in situ hybridization on a Tissue Microarray (TMA) confirmed a decrease of PTPRJ expression in more than 80 % of ccRCCs, but inonly12%of papillary RCCs. ccRCC patients with no or reduced PTPRJ mRNA expression had a less favourable outcome than those with a normal expression status (p = 0.05). Sequence analysis of 32 PTPRJ mRNA negative ccRCC samples showed five known polymorphisms, but no mutations implying other mechanisms leading to PTPRJ’s down-regulation. Selective silencing of HIF-฀ by siRNA and reporter gene assays demonstrated that pVHL inactivation reduces PTPRJ expression through a HIF-dependent mechanism, which is mainly driven by HIF-2฀ stabilization.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]