<<

Source identification of trichloroacetic acid with preparative capillary gas and accelerator mass spectrometry

For Paweł

Acknowledgements

S S S S S SS

Contents O S S S S S S O

S S S O S O O S S SS S O S

O O S S S

List of abbreviations

S

S

N,N’

SSS

O

S

S

S

S

S

SS

SSS

S

S

S

t

S

O

O

O

o

S S

S S

S S

S S

SO

O

O OS

Introduction

1. Introduction …den Menschen und die Umwelt vor schädlichen Einwirkungen gefährlicher Stoffe und Zubereitungen zu schützen, insbesondere sie erkennbar zu ma- chen, sie abzuwenden und ihrem Entstehen vorzubeugen.“

SS O Introduction

S

µ O

Objectives of the thesis

2. Objectives of the thesis S S

µ

µµ S S

TCA in the environment

3. TCA in the environment 3.1 Application and sources of TCA O S O O

• • • O • O

TCA in the environment

S

3.1.1 Formation of TCA from tetrachloroethene µ µ O O O

TCA in the environment

OO O O O O

O O O O

Fig. 1: Formation of TCA from tetrachloroethene in the atmosphere.

3.1.2 Formation of TCA from 1,1,1-trichloroethane µ O O O O TCA in the environment

O

OO

O O

OO O O O

O O OO O OO O

Fig. 2: Formation of TCA from 1,1,1-trichloroethane in the atmosphere.

3.1.3 Suggested natural formation of TCA

± S Caldariomyces fumago S

TCA in the environment

O

O

O

Fig. 3: Biotic formation of TCA.

O O O O O O O O O O

O O O O O

Fig. 4: Speculative formation of TCA and chloroform from resorcinolic substances (Hoekstra et al., 1999b).

O

O O→ O O

TCA in the environment

Methylocystis S

O O O O O

Fig. 5: Hypothetical pathways of trichloroethene degradation by Methylocystis sp. (Saeki et al., 1999).

S 3.2 Environmental concentrations of TCA O TCA in the environment

O S

Environmental compartment Concentrations

S

µ

µ

SSS µ

µ

S µ

µ

Tab. 1: TCA concentrations in environmental compartments.

TCA in the environment

3.3 Physico-chemical properties of TCA

Property Trichloroacetic acid

S

O

O SSS

O

Tab. 2: Physico-chemical properties of TCA.

TCA in the environment

3.4 Toxicity of TCA 3.4.1 Ecotoxicology S S S S Chlorella pyrenoidosa O µ Pinus sylvestris

µ µ O

TCA in the environment

3.4.2 Mammalian toxicity O O O S S

≥ O

TCA in the environment

O 3.5 Analytical methods for haloacetate analysis in the environ- ment 3.5.1 /electron capture detection (GC/ECD) O

µ

µ o

µ

µ TCA in the environment

O 3.5.2 Gas chromatography/mass spectrometry (GC/MS) S S S

S µ S µ S O S

µS µ S 3.5.3 Capillary electrophoresis (CE) S

TCA in the environment

µ S S t 3.5.4 Liquid chromatography/mass spectrometry (LC/MS) SS SSS

µ S

µ

µ SSS SSS

TCA in the environment

S S 3.5.5 Supported-liquid-membrane micro-extraction/high-performance liquid chromatography/UV detection (SLMME/HPLC/UV) S

µ S 3.5.6 (IC)

µ

µ

S µ

TCA in the environment

S 3.5.7 Sensor based on molecularly imprinted polymer (MIP) membrane

µS 3.6 Derivatization methods 3.6.1 1-Pentafluorophenyl-diazoethane (PFPDE) SO

TCA in the environment

O O O O O O

O O

Fig. 6: Derivatization of haloacetates with PFPDE and fragmentation in GC/NCI/MS (Hofmann et al., 1990). R = X 3C, X 2HC, XH 2C; X = Cl, Br, I.

3.6.2 2,4-Difluoroaniline (DFA) N,N’

µ OO 3.6.3 Acidified methanol O S

TCA in the environment

O

O O O O O O O O O O O O O

O

O O O O O O O O

Fig. 7: Derivatization of haloacetates with acidic methanol (Urbansky, 2000). R = X 3C, X 2HC, XH 2C; X = Cl, Br, I.

3.6.4 Diazomethane S O OS

O O O

O O O O

Fig. 8: Derivatization of trichloroacetate with diazomethane.

TCA in the environment

3.6.5 Dimethylsulfate

O SO

O SO

SO O S

µ 3.6.6 Pentafluorobenzyl bromide (PFBBr)

O S S

O O O

Fig. 9: Derivatization of trichloroacetate with PFBBr (Sinkonnen et al., 2000).

14 C isotope (radiocarbon)

4. 14 C isotope (radiocarbon) 4.1 Origin and distribution of radiocarbon O → O → → γ → O O O → OO ˙ ˙ OO → O S

14 C isotope (radiocarbon)

O

Fig. 10: Long-term atmospheric 14 C observations in the northern (solid lines) and southern (dashed lines) hemispheres (Manning et al., 1990).

→ β

14 C isotope (radiocarbon)

4.2 Environmental science application of the radiocarbon method

• • • • • • 4.3 Equipment used for radiocarbon measurement 4.3.1 Gas proportional counting 14 C isotope (radiocarbon)

S 4.3.2 Liquid scintillation (LS) counting S O

14 C isotope (radiocarbon)

4.3.3 Accelerator mass spectrometry (AMS) S S O

• • • •

SO S

SO OO O O O O O O S S

O

14 C isotope (radiocarbon)

O S

Fig. 11: Schematic diagram of an AMS gas ion source: a) pumping and cryogenic transfer of CO 2 to reservoir; b) measurement; V1, V2: valves, LN: liquid nitrogen (Kretschmer et al. 2004).

O

O

µµ S SS

14 C isotope (radiocarbon)

S

S S

Fig. 12: Scheme of MS and AMS (M-mass, E-energy, q-charge, kV-kilovolt, MV-megavolt) (Tuniz et al., 1998).

S

• • • •

• • SSS S S 14 C isotope (radiocarbon)

S S S S S S SO SO SOSO SS

Kovats retention index

5. Kovats retention index

 log t ' − log t '  I st. ph. (T) = 100 Rs Rz  +100z s  ' − '   log tR(z+ )1 log tRz 

Kovats retention index

 t − t  I st. ph. =100n Rs Rz  +100z TPGC,s  −   tR(z+n) tRz 

O O

Experimental work

6. Experimental work 6.1 Chemicals and equipment 6.1.1 Chemicals

• S • S • ≥ • • S

• ≥ • ≥ • • ≥S • ≥S • • • SS • • • • • ≥ • -tS • •

• ≥ • • S Experimental work

• S • ≥ • S • ≥ • S • ≥ • S • S 6.1.2 Equipment S S S

Experimental work

Fig. 13: Gas chromatograph with large volume injector and cold injection system: 1 - autosampler, 2 - cold injection system, 3 - gas chromatograph, 4 - capillary column, 5 - flame ionization detector, 6 - preparative fraction collector, 7 - analyte traps, 8 - cooling medium (liquid nitrogen), 9 - waste trap.

µ

µ µ

Experimental work

S S SS S S

Fig. 14: Schematic diagram of an AMS facility.

S

Experimental work

O O

• S • S • S • • • S • • S • OS • • S • • S • S 6.2 Sampling site selection OSO

µ Oµ Experimental work

The Netherlands, October 1999 Scandinavia, October/November 1999

0.5 0.7

g/kg] 0.6 µ µ µ µ g/kg] 0.4 Göteborg, Sweden µ µ µ µ 0.5 Utrecht Oslo, Norway 0.3 Rotterdam 0.4 0.3 0.2 0.2 0.1 0.1 TCA-concentration [ [ TCA-concentration 0.0 TCA-concentration [ 0.0 0.1 0.3 1.0 0.1 0.3 0.7 Depth [m] Depth [m]

Italy, November 1999 United Kingdom, November 1999

0.7 1.4

g/kg] 1.2

0.6 g/kg] µ µ µ µ µ µ Venice µ µ 0.5 1.0 Rome Notthingam 0.4 0.8 Glasgow 0.3 0.6 0.2 0.4 0.1 0.2 TCA-concentration[

TCA-concentration[ 0.0 0.0 0.1 0.3 0.7 0.1 0.3 0.8 Depth [m] Depth [m] Germany, October 1999

14

g/kg] 12 µ µ µ µ 10 Freudenstadt 8 Kiel 6 4 2

TCA-concentration [ [ TCA-concentration 0 0.1 0.3 0.6 Depth [m]

Fig. 15: TCA-concentrations in forest soil in different sampling places in Europe: the Netherlands, Scandinavia, Italy, United Kingdom and Germany in 1999 (data from Peters, 2000).

Experimental work

µ µ µ µ

O S SS

Fig. 16: TCA concentrations in spruce needles in LfU-observational network from 1992 to 1995 (Frank et al., 1997).

O

µµ S OO O O

Experimental work

O

µ µ S ⋅ = mC M TCA mB 2 ⋅ cTCA ⋅ M C

S µ

µ

O O

Experimental work

Maria-Bildhausen Oberthulba

Altmugel

Fig. 17: Sampling sites and meteorological station Maria-Bildhausen .

Fig. 18: Rainfall during the month prior to sampling (Maria-Bildhausen, www.stmlf- design2.bayern.de).

Experimental work

6.3 Cleaning of glassware and PP-equipment, removal of con- taminants

OSO

O O 6.4 Quantitative determination of TCA in soil

SS

Experimental work

S

S S O

S

S O

SO

SO

Fig. 19: Sample preparation for GC/NCI/MS analysis.

O S

µ

O S

O S

SO

Experimental work

µ SO

µµ

SO S S

µ

O µ

SO

Experimental work

Gas chromatography

µ SS

µ

Mass spectrometry

µ S SS

Tab. 3: Gas chromatographic and mass spectrometric conditions for quantitative de- termination of TCA in soil.

6.5 Optimization of soil extraction process

6.5.1 Selection of extraction agent

O Experimental work

O

O

O

SO 6.5.2 Optimization of extraction time

O

O O

O

SO

Experimental work

6.5.3 Optimization of the number of extraction steps

O

O

O

SO 6.6 Calculation of Kovats index OS

O O µ µO

Experimental work

Gas chromatography

S

µ S

Tab. 4: Gas chromatographic conditions for Kovats index determination.

µ 6.6.1 Soil sample preparation O

O

O

O SO

O

O

O

SO

Experimental work

O SO

SO

O

O O µ 6.7 Identification of co-eluting compounds O S

Experimental work

Gas chromatography

µ SS

µ

Mass spectrometry

µ S SS O

Tab. 5: Gas chromatographic and mass spectrometric conditions for identification of co-eluting compounds.

6.8 Isolation of TCA from soil 6.8.1 Soil sample preparation O

O

O

Experimental work

S S

OSO

O O

SO O

O

O SO

O

SO

SO

Experimental work

S

S S O

O SO

O SO

O O

O O

SO

O SO

O

O

O

Fig. 20: Sample preparation for preparative gas chromatography.

Experimental work

6.8.2 Blank sample preparation

O 6.9 Preparative capillary-gas chromatography (PC-GC) SO 6.9.1 PC-GC separation O

µ S

µ

O

µ S

O Experimental work

O

Gas chromatography

S

µ S S

µ S

Cold injection system

µ S S S

Preparative fraction collector

Tab. 6: Gas chromatographic conditions for preparative separation. Experimental work

6.9.2 Purification of TCA in soil extracts

OµO

O µ µ

Oµ 6.10 Sample preparation for AMS O O

O

Fig. 21: A modified quartz U-trap with one constriction on the shorter arm and two constrictions on the longer one.

Experimental work

O

O

O

O

OO

O

Fig. 22: High vacuum system used for CO 2 recovery and measurement after combustion: C1 - samlpe trap cracker, DIA - dry ice/acetone slurry, EM - electronic manometer, LN - liquid nitrogen, T1-T3: traps, T4: gas-tight cold-finger, V1-V6: valves (Hasan, 2002). Experimental work

Fig. 23: Sample trap cracker (Hasan, 2002).

O S

O S

Results and discussion

7. Results and discussion 7.1 Quality assurance 7.1.1 Limit of detection, limit of quantification, precision S

µ µµ µ 7.1.2 Total error calculation Results and discussion

7.1.3 Repeatability S

µ S

µ S 7.1.4 Sample trapping efficiency

µ S S

O O µ

Results and discussion

14

12

10

8 y = 0.623x - 0.320 R2 = 0.9989

6 arbitrary units arbitrary

4

2

0 0 5 10 15 20 25 TCA-OMe [ µµµg]

Fig. 24: Calibration curve for TCA-OMe on a semi-polar column coated with 1.0 µm d f 50 %-methyl-50 %-phenyl-polysiloxane, CP-Sil 24 CB, 30 m x 0.53 mm i.d.; 40 °C, 2.3 min isotherm; 10 °C min -1 to 240 °C; 26 min isotherm.

µµ

OO O

µµ Oµµ

µ O µ µ

µ S O

Results and discussion

O 7.1.5 Combustion efficiency

µ O

O O

O

Sample Temperature [°C] Recovery [%]

Tab. 7: Sample recoveries applying a combustion temperature of 600 °C and 900 °C, respectively.

S

Results and discussion

7.2 Quantitative determination of TCA in soil O

TCA concentration Water content Soil pH [ g/kg dw] [%] µµµ mean value, n = 3 O O

Tab. 8: Water content, pH values, and TCA concentration in soil samples taken in Oberthulba and Altmugel on 5 June 2002 and 11 June 2002, respectively; n - number of analyses.

O

µ

Results and discussion

OO OO

Fig. 25: GC/NCI/MS (SIM) chromatogram of a soil extract with a content of 2.6 pg TCA and 6.1 pg 2,3-DCPA in one injection; 60 °C, 1.5 min isotherm; 25 °C min -1 to 240 °C; 1.3 min isotherm.

7.3 Optimization of soil extraction process 7.3.1 Selection of extraction agent

O S

O µ µ 7.3.2 Optimization of extraction time S

Results and discussion

Extraction time TCA concentration [ µµµg/kg] [h] mean value, n = 3

Tab. 9: TCA concentrations in samples extracted for 1, 2, and 3 hours, respectively (n - number of analysis).

7.3.3 Optimization of the number of extraction steps

TCA [ng] in extract Extraction step % of TCA extracted from 20 g soil sample

Tab. 10: TCA content obtained in consecutive extraction steps.

Results and discussion

7.4 Calculation of Kovats index O

O

Fig. 26: Chromatogram of 100 µL of a standard solution of 10.7 mg/L commercial TCA-OMe in Et 2O and 13.0 mg/L commercial n-paraffins C9 - C12, mixed in a ratio 1:1 and separated on an apolar column coated with 1.5 µm d f 95 %- methyl-5 %-phenyl-polysiloxane, CP-Sil 8 CB, 60 m x 0.53 mm i.d.; 80 °C, 70 min isotherm.

µ O

Retention time Retention value ’ Compound ’ log (t R) tR [s] t R = t R – t 0 O

Tab. 11: Retention times, retention values and their logarithms of some n-paraffins ’ and TCA-OMe; t R - retention time, t R - retention value, t 0 - dead time of the column.

O

Results and discussion

 3 − .2 93  I − 80°C =100  +100 ⋅9 TCA OMe ()  .3 25 − .2 93 ° = ITCA−OMe (80 C) 922 O

O

O

Fig. 27: Chromatogram of 100 µL soil sample mixed in a ratio 10:1 with a 1:1 solution of 10.7 mg/L commercial TCA-OMe in Et 2O and 13.0 mg/L commercial n-paraffins C9 - C12 separated on an apolar column coated with 1.5 µm d f 95 %-methyl-5 %-phenyl-polysiloxane, CP-Sil 8 CB, 60 m x 0.53 mm i.d.; 80 °C, 70 min isotherm.

O S 7.5 Identification of co-eluting compounds O S

Results and discussion

Fig. 28: GC/EI/MS (TIC) chromatogram of soil sample; 30 °C, 3 min isotherm; 3 °C min -1 to 100 °C; 10 °C min -1 to 240 °C; 10 min isotherm.

O S O

O

Fig. 29: GC/EI/MS (SIM) chromatogram of soil sample, ions with m/z ratio of 117 and 119 are monitored; 30 °C, 3 min isotherm; 3 °C min -1 to 100 °C; 10 °C min -1 to 240 °C; 10 min isotherm.

O O O Results and discussion

S 7.6 Sample preparation for preparative isolation S

Bag Water content Bag Water content TCA pH TCA [ µµµg/kg] pH number [%] number [%] [µµµg/kg]

Tab. 12: Water content, pH values, and TCA concentration in soil samples taken in Oberthulba on 25 July 2002.

µ S Results and discussion

7.7 Preparative capillary-gas chromatography 7.7.1 PC-GC separation

Fig. 30: Chromatogram of 75 µL of soil extract separated on a column coated with 1.5 µm df 95 %-methyl-5 %-phenyl-polysiloxane, CP-Sil 8 CB, 60 m x 0.53 mm i.d.; 40 °C, 2.3 min isotherm; 7 °C min -1 to 260 °C; 45 min isotherm; fraction between 16.6 and 17.2 minutes is collected for the second preparative separation (figure 31).

O

Results and discussion

O ↓↓↓

Fig. 31: Chromatogram of a fraction containing TCA-OMe collected on an apolar column, re-injected and separated on a semi-polar column coated with 1.0 µm df 50 %-methyl-50 %-phenyl-polysiloxane, CP-Sil 24 CB, 30 m x 0.53 mm i.d.; 40 °C, 2.3 min isotherm; 10 °C min -1 to 240 °C; 26 min isotherm.

O

O

Results and discussion

Fig. 32: Chromatogram of 75 µL of soil extract separated on a column coated with 1.0 µm df 50 %-methyl-50 %-phenyl-polysiloxane, CP-Sil 24 CB, 30 m x 0.53 mm i.d.; 40 °C, 2.3 min isotherm; 10 °C min -1 to 240 °C; 26 min isotherm; fraction between 8.2 and 8.7 minutes is collected for the second preparative separation (figure 33).

O ↓↓↓

Fig. 33: Chromatogram of a fraction containing TCA-OMe collected on a semi-polar column, re-injected and separated on an apolar column coated with 1.5 µm df 95 %-methyl-5 %-phenyl-polysiloxane, CP-Sil 8 CB, 60 m x 0.53 mm i.d.; 40 °C, 2.3 min isotherm; 7 °C min -1 to 260 °C; 45 min isotherm.

Results and discussion

7.7.2 Purification of TCA in soil extracts O ↓↓↓

O ↓↓↓

Fig. 34: a) Chromatogram of 75 µL soil extract injected on 95 %-methyl-5 %-phenyl- polysiloxane, 60 m x 0.53 mm i.d., 1.5 µm df; 40 °C, 2.3 min isotherm; -1 7 °C min to 260 °C; 45 min isotherm; b) Chromatogram of 125 µL of a fraction separated on an apolar column, re-injected on 50 %-methyl-50 %- phenyl-polysiloxane, 30 m x 0.53 mm i.d., 1.0 µm df; 40 °C, 2.3 min isotherm; 10 °C min -1 to 240 °C; 26 min isotherm. In both chromatograms lines indicate the collected fractions.

O

Results and discussion

O

O

O O

µµ

• S

• • •

• • O 7.7.3 Blank sample O

O

Results and discussion

O ↓↓↓

Fig. 35: a) Chromatogram of 75 µL blank sample injected on 95 %-methyl-5 %- phenyl-polysiloxane, 60 m x 0.53 mm i.d., 1.5 µm df; 40 °C, 2.3 min isotherm; -1 7 °C min to 260 °C; 45 min isotherm; b) Chromatogram of 125 µL of a fraction separated on an apolar column, re-injected on 50 %-methyl-50 %- phenyl-polysiloxane, 30 m x 0.53 mm i.d., 1.0 µm df; 40 °C, 2.3 min isotherm; 10 °C min -1 to 240 °C; 26 min isotherm. In both chromatograms lines indicate the collected fractions.

7.8 AMS analysis

O ⋅ pCO V m = .4 951 mg 2 c 104 mbar ⋅ mL

O

Results and discussion

O

 14C   14C   14C    =   −    13   13   13   C Corr  C  Sample / S tan dard  C Graphite

PMC

mass [mg]

Fig. 36: PMC values for 14 C-free carbon depending on the sample mass (Uhl, 2004).

Results and discussion

O δ  13C   13C    −    12   12   C   C  δ 13 Sample PDB 0 CSample = ⋅ 1000 00  13C     12   C  PDB δ O δ δ δ

 14C   14C    =   1− δ 13C + .0 025  13   13  []()Sample  C CorrSample  C  Sample

 14C   14C    = .0 746   1− δ 13C + .0 025  13   13  []()S tan dard  C CorrS tan dard  C  S tan dard O δ Results and discussion

14C/13C PMC = ( )CorrSample ⋅100 0 14C/13C 0 ()CorrS tan dard O

O

Results and discussion

13 Sample name Notes PMC PMC error [%] δδδ C Mass [ µµµg]

O

O

O

S O

O

Tab. 13: PMC values of calibration standards, 14 C-free graphite, and those of sam- ples determined in the present thesis, all obtained by AMS measurement (Ox II - oxalic acid with PMC mean value of 134.06, Ox 50 % - oxalic acid with PMC value of 49.58, IAEA-C5 - International Atomic Energy Agency wood standard).

O O Results and discussion

O S

Results and discussion

S

Conclusions

8. Conclusions

O S S

µ

µ

µ µ S

µµ Conclusions

O S S O O S O O SO O O

Conclusions

O

Summary

9. Summary S S

µ SO

µ S Summary

µ S O S S O O

Zusammenfassung

10. Zusammenfassung S S

µ O S S S S S

µ S Zusammenfassung

µ S S O O S S S S S O O

References

11. References Chemosphere 52 Fresenius Journal of 365 S Journal of Chromatography 101 Soil Biology and Biochemistry 25 S Environmental Science & Technology 37 Journal of Chromatography A1047 SS S O

± Chemical Physics Letters 221 S References

S Water Research 32 SS S Environmental Science & Technology 34 Handbook of derivatives for chromatography S Water, Air, and Soil Pollution 101 Trichloroacetic acid / Sodium trichloroacetate S n Journal of Chromatography A 842 S The Journal of Chemical Physics 66 Atmospheric Environment 32 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123

References

Pestizide im Boden Chromatographia 54 Analytical Chemistry 68 S SS Analytical Chemistry 72 Trichloroacetic acid in the environment: Science dossier S Chemosphere 52 Environmental Pollution 124 Nachrichten aus Chemie, Technik und Laboratorium 36

Atmospheric environment 23

References

O Fresenius Journal of Analytical Chemistry 333

Atmospheric environment 24A S Zeitschrift für Umweltchemie und Ökotoxikologie 2 S Journal of High Resolution Chromatography 13 Ambio 20

Zeitschrift für Umweltchemie und Ökotoxikologie 3 Chemosphere 23 SSS Annales Botanici Fennici 29 S Environmental Science & Pollution Research 1

References

S Journal of High Resolution Chromatography 18 Monitoring des prioritären Altstoffs Trichloressigsäure (TCA) und anderer Halogenessigsäuren in Nadelproben aus dem Standortfichtenmeßnetz des LfU. S Analytical Chemistry 75 SSS S Radiocarbon after four decades, an interdisciplinary perspective SS Bestimmung von Halogenacetaten mittels LC-ESI-MS/MS S Environmental Science & Pollution Research 3 S Chemosphere 33 S Journal of Chromatography 219

References

S Environmental Pollution 130 Radiocarbon analysis of trace environmental chloroacetates by preparative capillary gas chromatography and accelerator mass spectrometry SO Environmental Toxicology and Chemistry 17 SOS Journal of High Resolution Chromatography 21 S Environmental Science & Technology 37 Chemisches Zentralblatt Journal of Chromatography A 997 Method 552:0: Determination of haloacetic acids in drinking water by liquid-liquid extraction, derivatization, and gas chromatography with electron capture detection S Chemosphere 38

References

Chemosphere 38 Chemosphere 52 SO Journal of Chromatography A 508 SS Atmospheric Environment 33 S Chemosphere 30 S The Science of the Total Environment 180 S Atmospheric Environment 32 Environmental Science & Technology 5 Halogenierte Essigsäuren in der Umwelt

References

Ullman’s Encyclopedia of Industrial Chemistry S O Journal of Chromatography 244 SS Journal of Chromatography A 1055 SS Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123 Acta Physica Polonica B 31 SS Investigation of the origin of environmental compounds by AMS Measurements

OO Radiocarbon after four decades, an interdisciplinary perspective SS Analytical Chemistry 74

References

S Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123 in situ Radiocarbon after four decades, an interdisciplinary perspective S S ) Reviews of Geophysics 1 SS Microchemical Journal 75 S Chemosphere 55 S Journal of Chromatography A 1039 Journal of Chromatography A 938 O Journal of Chromatography A 996

References

S Radiocarbon 32 Journal of Chromatography A 827 Chemosphere 44 Chemosphere 47 OS Liebigs Annalen der Chemie 2 O Analytical Chemistry Kirk-Othmer Encyclopedia of Chemical Technology 1S S SO S Environmental Toxicology and Chemistry 15 Method 552.2: Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization, and gas chromatography with electron capture detection S

References

S Journal of Chromatography A 671 S Fresenius Journal of Analytical Chemistry 361 Annales Botanici Fennici 30 S The Science of the Total Environment 160/161 O Screening Information Data Set for High Production Volume Chemicals 6 O Analytical Chemistry 59 O Analyst 115 A study of the presence of di- and trichloroacetic acid in European soils OOS OO Journal of Photochemistry and Photobiology A 112

References

O SS Environmental Science & Technology 38 S Environmental Science & Technology 30 Before civilization Phytotoxische Photooxidationsprodukte leichtflüchtiger organischer Verbindungen O Environmental Science & Technology 35 SSSO Methylocystis Bioanalysis and Biotransformation 17 SSS Journal of Chromatography A 859 SS Analytical Chemistry 72 S The Handbook of Environmental Chemistry 3 S

References

S Chemosphere 52 SS Haloacetic acids in the freshwater and marine environment SS SSS Journal of Chromatography A 718 SSS Analytica Chimica Acta 504 SSS S Journal of Experimental Botany 46 SSSS Annales Botanici Fennici 34 S Chemosphere 39 S Environmental Science & Technology 34

References

S Analyst 125 Radiocarbon after four decades, an interdisciplinary perspective SS Accelerator Mass Spectrometry S S S Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172 Aufbau einer Hybridionenquelle und Entwicklung eines Gashandlingsystems zur Radiocarbondatierung von Mikrogrammproben Journal of Environmental Monitoring 2 O Water Research 37 Monitoring TCA in forest soils and deposition. Phase IIa/b - TCA mass balance study The pesticide manual

References

S Journal of American Water Works Association 90 Water Research 35 S Geophysical Research Letters 7

Appendix 1: Raw data from AMS measurement

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA]

C14 [countingrates] O O O O O O O O O O O O O O O O O Targetname Run

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA] C14 [countingrates] O O O O O O O O O O O O O Targetname Run

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA]

C14 [countingrates] Targetname Run

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA] C14 [countingrates] O O O O O O O O O O O O O O O O O O O O O Targetname Run

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA]

C14 [countingrates] Targetname Run

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA] C14 [countingrates] O O O O O O O Targetname Run

Appendix 1: Raw data from AMS measurement V13/12 V13/12 V14/13 V14/13 C12[nA] C13[nA]

C14 [countingrates] O O Targetname Run