"THE APPLICATION OP COMBINED GAS CHROMATOGRAPHY-MASS SPECTROMETRY to COMPOUNDS OP BIOLOGICAL INTEREST" Subtitled &Quo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
TRP Channel Transient Receptor Potential Channels
TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Inhibitors, Antagonists, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: >98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat. -
Regulation of TRP Channels by Steroids
General and Comparative Endocrinology xxx (2014) xxx–xxx Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review Regulation of TRP channels by steroids: Implications in physiology and diseases ⇑ Ashutosh Kumar, Shikha Kumari, Rakesh Kumar Majhi, Nirlipta Swain, Manoj Yadav, Chandan Goswami School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India article info abstract Article history: While effects of different steroids on the gene expression and regulation are well established, it is proven Available online xxxx that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca2+- and other ions Keywords: suggesting that Ca2+ channels are involved in such effects. Transient Receptor Potential (TRP) ion TRP channels channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca2+- Steroids influx in response to different physical and chemical stimuli. While non-genomic actions of different Non-genomic action of steroids steroids on different ion channels have been established to some extent, involvement of TRPs in such Ca2+-influx functions is largely unexplored. In this review, we critically analyze the literature and summarize how Expression different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercus- sion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. -
9.2.3.7 Retention Parameters in Column Chromatography
9.2.3.7 Retention Parameters in Column Chromatography Retention parameters may be measured in terms of chart distances or times, as well as mobile phase volumes; e.g., tR' (time) is analogous to VR' (volume). If recorder speed is constant, the chart distances are directly proportional to the times; similarly if the flow rate is constant, the volumes are directly proportional to the times. Note: In gas chromatography, or in any chromatography where the mobile phase expands in the column, VM, VR and VR' represent volumes under column outlet pressure. If Fc, the carrier gas flow rate at the column outlet and corrected to column temperature (see Flow Rate), is used in calculating the retention volumes from the retention time values, these correspond to volumes at column temperatures. The various conditions under which retention volumes (times) are expressed are indicated by superscripts: thus, a prime ('; as in VR') refers to correction for the hold-up volume (and time) while a circle (º; as in VRº) refers to correction for mobile-phase compression. In the case of the net retention volume (time) both corrections should be applied: however, in order not to confuse the symbol by the use of a double superscript, a new symbol (VN, tN) is used for the net retention volume (time). Hold-up Volume (Time) (VM, tM ) The volume of the mobile phase (or the corresponding time) required to elute a component the concentration of which in the stationary phase is negligible compared to that in the mobile phase. In other words, this component is not retained at all by the stationary phase. -
Modelo Normalizado De Ficha Para Asignaturas
Subject Guide SEPARATION PROCESSES Academic year: 2018-2019 (Last actualitation 10/01/2019) MODULE CONTENT YEAR TERM CREDITS TYPE Complements of Separation processes 3rd 2nd 6 ECTS Optative Formation LECTURERS CONTACT INFORMATION Department of Physical Chemistry. Faculty of Pharmacy. Campus Universitario de Cartuja. 18071 – Granada. Telephone: 958243829 Email: [email protected] , [email protected] María Eugenia García Rubiño TUTORSHIPS Delia Miguel Álvarez García Rubiño, María Eugenia (Room 194) Monday and Wednesday: 9:30−12:30 Miguel Álvarez, Delia (Room 197) Monday and Wednesday: 9:30−12:30 DEGREE WITHIN THE SUBJECT IS TAUGH Pharmacy PRERREQUISITES and/or RECOMMENDATIONS Proper knowledge about: Instrumentals Techniques General Chemistry Basic Physics and Physical Chemistry Organic Chemistry Inorganic Chemistry Biochemistry DETAILED SUBJECT SYLLABUS THEORETICAL SYLLABUS Página 1 UNIT 1. Introduction to chromatography. History. Concept of chromatography. Classification. Equilibrium distribution. Linear isotherms. Distribution parameters. Linear elution chromatography. Retention parameters. Migration. UNIT 2. Theories of chromatography. Theory of plates. Column efficiency. Kinetic theory. General equation. Differences between c. G. And c. L. Resolution. Retention time. Optimum efficiency conditions of the column. Gradient elution and temperature programming. Applications. The calibration method using standards. Standardization areas. Internal standard. UNIT 3. Plane chromatography. CP and CCF. How the separation is performed. Performance characteristics. Variables affecting the rf. Qualitative and quantitative determinations. UNIT 4. Gas chromatography. Gc retention volume, specific volume. Pharmaceutical applications. Qualitative interpretation of a chromatogram. Relative retention. Oster relationship. Kovats retention index. UNIT 5. Gas chromatography instrumentation. Carrier gas. Sample injection. Columns. Stationary phases. Thermal conductivity detectors, flame ionization, electron capture, atomic emission. Attachment with mass spectrometry. UNIT 6. -
Structural Basis for Human Sterol Isomerase in Cholesterol Biosynthesis and Multidrug Recognition
ARTICLE https://doi.org/10.1038/s41467-019-10279-w OPEN Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition Tao Long 1, Abdirahman Hassan 1, Bonne M Thompson2, Jeffrey G McDonald1,2, Jiawei Wang3 & Xiaochun Li 1,4 3-β-hydroxysteroid-Δ8, Δ7-isomerase, known as Emopamil-Binding Protein (EBP), is an endoplasmic reticulum membrane protein involved in cholesterol biosynthesis, autophagy, 1234567890():,; oligodendrocyte formation. The mutation on EBP can cause Conradi-Hunermann syndrome, an inborn error. Interestingly, EBP binds an abundance of structurally diverse pharmacolo- gically active compounds, causing drug resistance. Here, we report two crystal structures of human EBP, one in complex with the anti-breast cancer drug tamoxifen and the other in complex with the cholesterol biosynthesis inhibitor U18666A. EBP adopts an unreported fold involving five transmembrane-helices (TMs) that creates a membrane cavity presenting a pharmacological binding site that accommodates multiple different ligands. The compounds exploit their positively-charged amine group to mimic the carbocationic sterol intermediate. Mutagenesis studies on specific residues abolish the isomerase activity and decrease the multidrug binding capacity. This work reveals the catalytic mechanism of EBP-mediated isomerization in cholesterol biosynthesis and how this protein may act as a multi-drug binder. 1 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 2 Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 3 State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. 4 Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. -
(12) United States Patent (10) Patent No.: US 7,906,307 B2 S0e Et Al
US007906307B2 (12) United States Patent (10) Patent No.: US 7,906,307 B2 S0e et al. (45) Date of Patent: Mar. 15, 2011 (54) VARIANT LIPIDACYLTRANSFERASES AND 4,683.202 A 7, 1987 Mullis METHODS OF MAKING 4,689,297 A 8, 1987 Good 4,707,291 A 11, 1987 Thom 4,707,364 A 11/1987 Barach (75) Inventors: Jorn Borch Soe, Tilst (DK); Jorn 4,708,876 A 1 1/1987 Yokoyama Dalgaard Mikkelson, Hvidovre (DK); 4,798,793 A 1/1989 Eigtved 4,808,417 A 2f1989 Masuda Arno de Kreij. Geneve (CH) 4,810,414 A 3/1989 Huge-Jensen 4,814,331 A 3, 1989 Kerkenaar (73) Assignee: Danisco A/S, Copenhagen (DK) 4,818,695 A 4/1989 Eigtved 4,826,767 A 5/1989 Hansen 4,865,866 A 9, 1989 Moore (*) Notice: Subject to any disclaimer, the term of this 4,904.483. A 2f1990 Christensen patent is extended or adjusted under 35 4,916,064 A 4, 1990 Derez U.S.C. 154(b) by 0 days. 5,112,624 A 5/1992 Johna 5,213,968 A 5, 1993 Castle 5,219,733 A 6/1993 Myojo (21) Appl. No.: 11/852,274 5,219,744 A 6/1993 Kurashige 5,232,846 A 8, 1993 Takeda (22) Filed: Sep. 7, 2007 5,264,367 A 11/1993 Aalrust (Continued) (65) Prior Publication Data US 2008/OO70287 A1 Mar. 20, 2008 FOREIGN PATENT DOCUMENTS AR 331094 2, 1995 Related U.S. Application Data (Continued) (63) Continuation-in-part of application No. -
(12) United States Patent (10) Patent No.: US 8,642,021 B2 Brautigam Et Al
USOO8642021B2 (12) United States Patent (10) Patent No.: US 8,642,021 B2 Brautigam et al. (45) Date of Patent: *Feb. 4, 2014 (54) CONDITIONING COMPOSITION FOR HAIR FOREIGN PATENT DOCUMENTS (75) Inventors: Ina Brautigam, Darmstadt (DE); Frank DE 2630560 1/1978 ............... A61K 7.48 EP O315541 5, 1989 ............... A61K 7.48 Hermes, Seeheim (DE) FR 241 1001 7, 1979 ............... A61K 700 JP O7327633. A * 12/1995 (73) Assignee: Kao Germany GmbH, Darmstadt (DE) WO WOOO28966 A1 * 5, 2000 WO WOO3,070208 A1 8/2003 ............. A61K 7,134 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 1520 days. Abstract Accession No. 2000:35.1345 from the CaPlus database on This patent is Subject to a terminal dis STN, the bibliography, abstract and indexing data for WO 200028966 claimer. A1, downloaded on Aug. 8, 2007, 2 pages.* Quest International: “Yogurtene” Cosmetic Ingredients (Jun. 2000) (21) Appl. No.: 11/001,840 pp. 1-17.* Machine translation of JP 07327633A dowloaded from the JPO Feb. (22) Filed: Dec. 2, 2004 14, 2012.* thehealthyeating.org website (www.healthyeating.org/Milk-Dairy/ (65) Prior Publication Data Nutrients-in-Milk-Cheese-Yogurt/Yogurt-Nutrition. aspx?Referer-dairycouncilofca (downloaded Feb. 28, 2013).* US 2005/O152863 A1 Jul. 14, 2005 Website: Clairol's Touch of Yoghurt Shampoo (http://brandfailures. (30) Foreign Application Priority Data blogspot.com/2006/12/other-famous-brand-idea-failures.html) downloaded Feb. 28, 2013).* Skin Deep website http://www.ewg.org/skindeepfingredient/ Dec. 5, 2003 (EP) ..................................... O3O27985 702759/GUAR HYDROXYPROPYLTRIMONIUM CHLO RIDE/downloaded Sep. -
(12)UK Patent Application (1S1GB ,„>2577037 ,,3,A 2577037
(12)UK Patent Application (1S1GB ,„>2577037 ,,3,A (43) Date of A Publication 18.03.2020 (21) Application No: 1812997.3 (51) INT CL: C12N 15/52 (2006.01) C12P 33/02 (2006.01) (22) Date of Filing: 09.08.2018 C12R 1/32 (2006.01) C12R 1/365 (2006.01) (56) Documents Cited: GB 2102429 A EP 3112472 A (71) Applicant(s): WO 2001/031050 A US 4345029 A Cambrex Karlskoga AB US 4320195 A (Incorporated in Sweden) Appl Environ Microbiol, published online 4 May 2018, S-691 85 Karlskoga, Sweden Liu et al, "Characterization and engineering of 3- ketosteroid 9a-hydroxylases in Mycobacterium Rijksuniversiteit Groningen neoarum ATCC 25795 for the development of (Incorporated in the Netherlands) androst-1,4- diene3,17-dione and 9a-hydroxy- Broerstraat 5, 9712 CP Groningen, Netherlands androst-4-ene-3,17-dione-producing strains" Appl Environ Microbiol, Vol 77 (2011), Wilbrink et al, (72) Inventor(s): "FadD19 of Rhodococcus rhodochrous DMS43269, a Jonathan Knight steroid-coenzyme A ligase essential for degradation Cecilia Kvarnstrom Branneby of C-24 branched sterol side chains", pp 4455-4464 Lubbert Dijkhuizen FEMS Microbiol Letts, Vol 205 (2001), van der Geize et Janet Maria Petrusma al, "Unmarked gene deletion mutagenesis of kstD, Laura Fernandez De Las Heras encoding 3-ketosteroid deltal-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as a counter-selectable marker", pp 197-202 (74) Agent and/or Address for Service: J Steroid Biochem Mol Biol, Vol 172 (2017), Guevara Potter Clarkson LLP et al, "Functional characterization of 3-ketosteroid 9a- The -
Reproducibility of Retention Indices Examining Column Type
Graduate Theses, Dissertations, and Problem Reports 2013 Reproducibility of Retention Indices Examining Column Type Amanda M. Cadau West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Cadau, Amanda M., "Reproducibility of Retention Indices Examining Column Type" (2013). Graduate Theses, Dissertations, and Problem Reports. 440. https://researchrepository.wvu.edu/etd/440 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Reproducibility of Retention Indices Examining Column Type Amanda M. Cadau Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Forensic and Investigative Science Suzanne Bell, Ph.D., Chair Glen Jackson, Ph.D. Keith Morris, Ph.D. Department of Forensic and Investigative Science Morgantown, West Virginia 2013 Keywords: Retention Index, Kovats Retention Index, GC/MS, Drugs of Abuse ABSTRACT Reproducibility of Retention Indices Examining Column Type Amanda M. -
Generate Metabolic Map Poster
Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical -
SANTOS, GABRIELA TREVISAN DOS.Pdf (5.044Mb)
UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS: BIOQUÍMICA TOXICOLÓGICA CARACTERIZAÇÃO DO ESTERÓIDE α-ESPINASTEROL COMO UM NOVO ANTAGONISTA DO RECEPTOR TRPV1 COM EFEITO ANTINOCICEPTIVO DISSERTAÇÃO DE MESTRADO Gabriela Trevisan dos Santos Santa Maria, RS, Brasil 2011 α CARACTERIZAÇÃO DO ESTERÓIDE -ESPINASTEROL COMO UM NOVO ANTAGONISTA DO RECEPTOR TRPV1 COM EFEITO ANTINOCICEPTIVO Por Gabriela Trevisan dos Santos Dissertação apresentada ao curso de Mestrado do Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Ciências Biológicas: Bioquímica Toxicológica. Orientador: Prof. Dr. Juliano Ferreira Santa Maria, RS, Brasil 2011 Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica A comissão examinadora, abaixo assinada, Aprova a Dissertação de Mestrado CARACTERIZAÇÃO DO ESTERÓIDE α-ESPINASTEROL COMO UM NOVO ANTAGONISTA DO RECEPTOR TRPV1 COM EFEITO ANTINOCICEPTIVO elaborada por Gabriela Trevisan dos Santos Como requisito parcial para obtenção do grau de Mestre em Ciências Biológicas: Bioquímica Toxicológica COMISSÃO EXAMINADORA ___________________________________ Juliano Ferreira, Dr. (Orientador) ________________________________ Maria Rosa Chitolina Schetinger, Dra. (UFSM) ___________________________________ Roselei Fachinetto, Dra. (UFSM) Santa Maria, 1 de Setembro de 2011 AGRADECIMENTOS Agradeço a Deus por iluminar meu caminho e me dar forças para seguir sempre em frente. Aos meus familiares, em especial, a meus pais Joaquim e Claudia, e ao meu irmão Guilherme, pelo apoio incondicional, o que contribuiu para que todos os momentos difíceis se tornassem passageiros. Ao meu orientador, Juliano Ferreira, pela oportunidade oferecida, pelos conselhos, ensinamentos e principalmente pelo bom convívio em todos estes anos de trabalho.