Modern Practice of Gas Chromatography Modern Practice of Gas Chromatography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gas Chromatography-Mass Spectroscopy
Gas Chromatography-Mass Spectroscopy Introduction Gas chromatography-mass spectroscopy (GC-MS) is one of the so-called hyphenated analytical techniques. As the name implies, it is actually two techniques that are combined to form a single method of analyzing mixtures of chemicals. Gas chromatography separates the components of a mixture and mass spectroscopy characterizes each of the components individually. By combining the two techniques, an analytical chemist can both qualitatively and quantitatively evaluate a solution containing a number of chemicals. Gas Chromatography In general, chromatography is used to separate mixtures of chemicals into individual components. Once isolated, the components can be evaluated individually. In all chromatography, separation occurs when the sample mixture is introduced (injected) into a mobile phase. In liquid chromatography (LC), the mobile phase is a solvent. In gas chromatography (GC), the mobile phase is an inert gas such as helium. The mobile phase carries the sample mixture through what is referred to as a stationary phase. The stationary phase is usually a chemical that can selectively attract components in a sample mixture. The stationary phase is usually contained in a tube of some sort called a column. Columns can be glass or stainless steel of various dimensions. The mixture of compounds in the mobile phase interacts with the stationary phase. Each compound in the mixture interacts at a different rate. Those that interact the fastest will exit (elute from) the column first. Those that interact slowest will exit the column last. By changing characteristics of the mobile phase and the stationary phase, different mixtures of chemicals can be separated. -
Coupling Gas Chromatography to Mass Spectrometry
Coupling Gas Chromatography to Mass Spectrometry Introduction The suite of gas chromatographic detectors includes (roughly in order from most common to the least): the flame ionization detector (FID), thermal conductivity detector (TCD or hot wire detector), electron capture detector (ECD), photoionization detector (PID), flame photometric detector (FPD), thermionic detector, and a few more unusual or VERY expensive choices like the atomic emission detector (AED) and the ozone- or fluorine-induce chemiluminescence detectors. All of these except the AED produce an electrical signal that varies with the amount of analyte exiting the chromatographic column. The AED does that AND yields the emission spectrum of selected elements in the analytes as well. Another GC detector that is also very expensive but very powerful is a scaled down version of the mass spectrometer. When coupled to a GC the detection system itself is often referred to as the mass selective detector or more simply the mass detector. This powerful analytical technique belongs to the class of hyphenated analytical instrumentation (since each part had a different beginning and can exist independently) and is called gas chromatograhy/mass spectrometry (GC/MS). Placed at the end of a capillary column in a manner similar to the other GC detectors, the mass detector is more complicated than, for instance, the FID because of the mass spectrometer's complex requirements for the process of creation, separation, and detection of gas phase ions. A capillary column is required in the chromatograph because the entire MS process must be carried out at very low pressures (~10-5 torr) and in order to meet this requirement a vacuum is maintained via constant pumping using a vacuum pump. -
Quality-Control Analytical Methods: Gas Chromatography
QUALITY CONTROL Quality-Control Analytical Methods: Gas Chromatography Tom Kupiec, PhD Since GC is a gas-based separation technique, it is limited to Analytical Research Laboratories components that have sufficient volatility and thermal stability. Oklahoma City, Oklahoma Practical Aspects of Gas Chromatography Theory Introduction To understand GC and effectively use its practical applica- Chromatography is an analytical technique based on the tions, a grasp of some basic concepts of general chromato- separation of molecules due to differences in their structure graphic theory is necessary. Chromatographic principles, and/or composition. Chromatography involves moving a sam- including retention, resolution, sensitivity and other factors, ple through the system to be separated into its various compo- are important for all types of chromatographic separation, and nents over a stationary phase. The molecules in the sample will were discussed in volume 8, issue 3 (May/June 2004) of the have different interactions with the stationary support, leading International Journal of Pharmaceutical Compounding.1 to separation of similar molecules. Chromatographic separa- The GC section of United States Pharmacopeia (USP) 27 tions can be divided into several categories based on the Chapter <621> outlines the basic theory and separation tech- mobile and stationary phases used, including thin-layer chro- nique of GC. A compound is vaporized, introduced into the matography, gas chromatography (GC), paper chromatography carrier gas and then carried onto the column. The sample is and high-performance liquid chromatography (HPLC). then partitioned between the gas and the stationary phase. The GC is a physical separation technique in which components compounds in a sample are slowed down to varying degrees of a mixture are separated using a mobile phase of inert carrier due to the sorption and desorption on the stationary phase. -
Experiment 4 Analysis by Gas Chromatography
Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has. In this lab you will watch and listen to a video presentation about GC, look at a research-level GC instrument, and learn how to do a qualitative and quantitative GC analysis. A schematic outline of a typical instrument is shown below. When a sample is injected into the correct column, a carrier gas sweeps the sample through the column. If necessary, an oven heats the system to vaporize the sample and speed its passage through the column. The different components of the sample will be separated by the column because each of the components “sticks” to the liquid coating that on the column packing differently. The greater the “stickiness,” the longer it takes for a substance to pass through the column. When a substance leaves the column, it is sensed by a detector. The detector generates a voltage that is proportional to the amount of the substance. The signal from the detector is then displayed by a chart recorder and/or fed into a computer. Modern gas chromatographs are connected to a computer which displays the peaks of all the substances in the sample. This is called the chromatogram. Software can perform all the calculations you will do in this experiment. An example of an analysis for cholesterol esters is shown above. If it could be done at all, this separation would take weeks by traditional wet chemistry. -
9.2.3.7 Retention Parameters in Column Chromatography
9.2.3.7 Retention Parameters in Column Chromatography Retention parameters may be measured in terms of chart distances or times, as well as mobile phase volumes; e.g., tR' (time) is analogous to VR' (volume). If recorder speed is constant, the chart distances are directly proportional to the times; similarly if the flow rate is constant, the volumes are directly proportional to the times. Note: In gas chromatography, or in any chromatography where the mobile phase expands in the column, VM, VR and VR' represent volumes under column outlet pressure. If Fc, the carrier gas flow rate at the column outlet and corrected to column temperature (see Flow Rate), is used in calculating the retention volumes from the retention time values, these correspond to volumes at column temperatures. The various conditions under which retention volumes (times) are expressed are indicated by superscripts: thus, a prime ('; as in VR') refers to correction for the hold-up volume (and time) while a circle (º; as in VRº) refers to correction for mobile-phase compression. In the case of the net retention volume (time) both corrections should be applied: however, in order not to confuse the symbol by the use of a double superscript, a new symbol (VN, tN) is used for the net retention volume (time). Hold-up Volume (Time) (VM, tM ) The volume of the mobile phase (or the corresponding time) required to elute a component the concentration of which in the stationary phase is negligible compared to that in the mobile phase. In other words, this component is not retained at all by the stationary phase. -
The Determination of Water Utilizing Headspace Gas
THE DETERMINATION OF WATER UTILIZING HEADSPACE GAS CHROMATOGRAPHY AND IONIC LIQUID STATIONARY PHASES by LILLIAN A. FRINK Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August, 2016 Copyright © by Lillian A. Frink 2016 All Rights Reserved ii Acknowledgments This work would not have been possible without the help and support of many people. I would like to express my gratitude to my advisor, Professor Daniel W. Armstrong for his guidance, patience and support during my graduate studies. I consider myself fortunate to have the opportunity to pursue my Ph. D under his supervision. I would also like to thank my graduate committee members: Professor Kevin Schug and Professor Carl Lovely for their advice, guidance and times spent on my behalf during my graduate studies. I greatly appreciate the assistance of all faculty and staff in the Department of Chemistry and Biochemistry at the University of Texas at Arlington, especially Mrs. Barbara Smith. She has been helpful getting all the materials required for my research even when they were unconventional, and her friendliness and kind words were always appreciated. I would also like to thank Dr. Brian Edwards for his assistance in numerous ways. I would like to thank the support of Jeffrey Werner and Ryo Takechi at Shimadzu Scientific Instruments for their support and interest of my research. I appreciated Jeff for helping me to maintain the BID, introducing me to a pressure-loop headspace autosampler and teaching me about the electrons of a GC. -
Modelo Normalizado De Ficha Para Asignaturas
Subject Guide SEPARATION PROCESSES Academic year: 2018-2019 (Last actualitation 10/01/2019) MODULE CONTENT YEAR TERM CREDITS TYPE Complements of Separation processes 3rd 2nd 6 ECTS Optative Formation LECTURERS CONTACT INFORMATION Department of Physical Chemistry. Faculty of Pharmacy. Campus Universitario de Cartuja. 18071 – Granada. Telephone: 958243829 Email: [email protected] , [email protected] María Eugenia García Rubiño TUTORSHIPS Delia Miguel Álvarez García Rubiño, María Eugenia (Room 194) Monday and Wednesday: 9:30−12:30 Miguel Álvarez, Delia (Room 197) Monday and Wednesday: 9:30−12:30 DEGREE WITHIN THE SUBJECT IS TAUGH Pharmacy PRERREQUISITES and/or RECOMMENDATIONS Proper knowledge about: Instrumentals Techniques General Chemistry Basic Physics and Physical Chemistry Organic Chemistry Inorganic Chemistry Biochemistry DETAILED SUBJECT SYLLABUS THEORETICAL SYLLABUS Página 1 UNIT 1. Introduction to chromatography. History. Concept of chromatography. Classification. Equilibrium distribution. Linear isotherms. Distribution parameters. Linear elution chromatography. Retention parameters. Migration. UNIT 2. Theories of chromatography. Theory of plates. Column efficiency. Kinetic theory. General equation. Differences between c. G. And c. L. Resolution. Retention time. Optimum efficiency conditions of the column. Gradient elution and temperature programming. Applications. The calibration method using standards. Standardization areas. Internal standard. UNIT 3. Plane chromatography. CP and CCF. How the separation is performed. Performance characteristics. Variables affecting the rf. Qualitative and quantitative determinations. UNIT 4. Gas chromatography. Gc retention volume, specific volume. Pharmaceutical applications. Qualitative interpretation of a chromatogram. Relative retention. Oster relationship. Kovats retention index. UNIT 5. Gas chromatography instrumentation. Carrier gas. Sample injection. Columns. Stationary phases. Thermal conductivity detectors, flame ionization, electron capture, atomic emission. Attachment with mass spectrometry. UNIT 6. -
Separation Science - Chromatography Unit Thomas Wenzel Department of Chemistry Bates College, Lewiston ME 04240 [email protected]
Separation Science - Chromatography Unit Thomas Wenzel Department of Chemistry Bates College, Lewiston ME 04240 [email protected] LIQUID-LIQUID EXTRACTION Before examining chromatographic separations, it is useful to consider the separation process in a liquid-liquid extraction. Certain features of this process closely parallel aspects of chromatographic separations. The basic procedure for performing a liquid-liquid extraction is to take two immiscible phases, one of which is usually water and the other of which is usually an organic solvent. The two phases are put into a device called a separatory funnel, and compounds in the system will distribute between the two phases. There are two terms used for describing this distribution, one of which is called the distribution coefficient (DC), the other of which is called the partition coefficient (DM). The distribution coefficient is the ratio of the concentration of solute in the organic phase over the concentration of solute in the aqueous phase (the V-terms are the volume of the phases). This is essentially an equilibration process whereby we start with the solute in the aqueous phase and allow it to distribute into the organic phase. soluteaq = soluteorg [solute]org molorg/Vorg molorg x Vaq DC = --------------- = ------------------ = ----------------- [solute]aq molaq/Vaq molaq x Vorg The distribution coefficient represents the equilibrium constant for this process. If our goal is to extract a solute from the aqueous phase into the organic phase, there is one potential problem with using the distribution coefficient as a measure of how well you have accomplished this goal. The problem relates to the relative volumes of the phases. -
Gas Chromatography
Gas Chromatography 1. Introduction 2. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter 2 and 3 in The essence of chromatography) Introduction A. General Information 1. First used in 1951, GC is currently one of the most popular method for separating and analyzing compounds. This is due to its high resolution, low limits of detection, high speed, high accuracy and high reproducibility. 2. GC can be applied to the separation of any compound that is either naturally volatile (i.e. readily goes into the gas phase) or can be converted to a volatile derivative. 3. GC is widely used in the separation of a number of organic and inorganic compounds, Examples of its applications are shown below: a. Petroleum product testing. b. Food testing and analysis c. Drug identification and analysis d. Environmental testing e. Characterization of natural and synthetic polymers B. Instrumentation: 1. The basic system consist of the following: A gas source (with pressure and flow regulators); an injector; a column (with an oven for temperature control); a detector; and a computer or recorder for data acquisition. 2. Advanced systems may contain an auto-injector, two or more columns and multiple detectors. 3. Extra-column band-Broadening a. Extra-column band-broadening refers to broadening of solute peaks that occurs at any place in the system other than the column. b. Band-broadening due to extra-column source is especially important for chromatographic system with small volumes or high efficiencies (small H). (e.g., Capillary GC column) c. -
Reproducibility of Retention Indices Examining Column Type
Graduate Theses, Dissertations, and Problem Reports 2013 Reproducibility of Retention Indices Examining Column Type Amanda M. Cadau West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Cadau, Amanda M., "Reproducibility of Retention Indices Examining Column Type" (2013). Graduate Theses, Dissertations, and Problem Reports. 440. https://researchrepository.wvu.edu/etd/440 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Reproducibility of Retention Indices Examining Column Type Amanda M. Cadau Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Forensic and Investigative Science Suzanne Bell, Ph.D., Chair Glen Jackson, Ph.D. Keith Morris, Ph.D. Department of Forensic and Investigative Science Morgantown, West Virginia 2013 Keywords: Retention Index, Kovats Retention Index, GC/MS, Drugs of Abuse ABSTRACT Reproducibility of Retention Indices Examining Column Type Amanda M. -
Marine Organic Geochemistry
Marine Organic Geochemistry Analytical Methods – I. Extraction and separation methods. Reading list Selected Reading (Sample processing and lipid analysis) • Bidigare R.R. (1991) Analysis of chlorophylls and carotenoids. In Marine Particles: Analysis and Characterization. Geophysical Monograph 63. 119-123. • Wakeham S.G. and Volkman J.K. (1991) Sampling and analysis of lipids in marine particulate matter. In Marine Particles: Analysis and Characterization. Geophysical Monograph 63. 171-179. • Nordback J., Lundberg E. and Christie W.W. (1998) Separation of lipid classes from marine particulate matter by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light scattering detection. Mar. Chem. 60, 165-175. Background Reading • Jennings W. (1978) Gas Chromatography with Glass Capillary Columns. Academic press • Snyder L.R., Kirkland J.J., Glajch J.L. (1997) Practical HPLC method development. 2nd Edition. Wiley. • Christie W.W. (1982) Lipid Analysis. 2nd Edition. Pergamon. • Ikan R. and Cramer B. (1987) Organic chemistry: Compound detection. Encyclopedia of Physical Science and Technology 10, 43-69 Practical considerations regarding sample storage, preparation, and safety (an organic geochemical perspective) Sample storage • Many organic compounds are biologically or chemically labile. • Susceptibility to: Enzymatic hydrolysis (e.g., DNA, Phospholipid Fatty Acids - PLFA) Photolysis (e.g., certain PAH - anthracene). Oxidation (e.g. polyunsaturated lipids) • Ideally, samples should be kept frozen, in the dark and under N2. < -80°C : minimal enzymatic activity - optimal. < -30°C: a good compromise. 4°C (refridgeration): OK for short periods of time room temp – ok once sample has been dried (for many compounds). *total lipid extracts are more stable than purified compounds/fractions Sample preparation • Drying of samples will deactivate enzymes, but can lead to oxidation of selected compounds. -
Biochemistry 12 Gas Liquid Chromatography
Biochemical Techniques Biochemistry 12 Gas Liquid Chromatography Description of Module Subject Name Biochemistry Paper Name 12 Biochemical Techniques Module Name/Title 12 Gas - liquid Chromatography Biochemical Techniques Biochemistry 12 Gas Liquid Chromatography 1. Objectives 1.1 To understand principle of Gas Liquid Chromatography 1.2 To explain the different components of GLC 2.0 Introduction and principle- Introduction and principle- Gas – Liquid chromatography (GLC) is one of the most useful techniques in analytical chemistry. Claesson published one of the first important accounts of gas liquid chromatography in 1946. Gas – liquid chromatography is a form of partition chromatography in which the stationary phase is a film coated on a solid support and the mobile phase is an inert gas like Nitrogen (N2) called as carrier gas flowing over the surface of a liquid film in a controlled fashion. The sample under analysis is vaporized under conditions of high temperature programming. The components of the vaporized sample are fractionated as a result of partitioning between a mobile gaseous phase and a liquid stationary phase held in a column. Principle: When the vapours of sample mixture move between the stationary phase (liquid) and mobile phase (gas) the different components of a sample mixture will separate according to their partition coefficient between the gas and liquid stationary phase. Concn. of solute in liquid (w/cc) Partition coeff.(Kg) = -------------------------------------------- Concn of solute in gas (w/cc) It is general assumption that if partition coefficient is low the emergence of the component is fast and vice versa. The substances having low boiling point (B.P) i.e.