Autism, Pain, and the NMDA Receptor

Total Page:16

File Type:pdf, Size:1020Kb

Autism, Pain, and the NMDA Receptor Residents’ Voices Autism, pain, and the NMDA receptor Natalie Lares, DO s. G, a 36-year-old woman, pre- blood count, lipid panel, thyroid studies, sented to the emergency depart- urine drug screening, and urinalysis, were Mment (ED) requesting a neurologic unremarkable. Her blood pressure was evaluation. She told clinicians she had mildly elevated (141/82 mm Hg). “NMDA receptor encephalitis.” Ms. G’s eventual diagnosis was substance- Ms. G reported successful self-treatment induced mania (DXM). The DXM-containing of “life-long” body pain that was precipi- cough syrup and magnesium were discon- tated by multiple external stimuli (food, tinued in the hospital. She was stabilized on Dr. Lares is PGY-4 Psychiatry Resident, Department of Psychiatry, St. Mary social encounters, interpersonal conflict, lithium extended-release, 900 mg/d (blood Mercy Hospital, Livonia, Michigan. etc.). Through her own research, she had level 0.8 mmol/L), and olanzapine, 10 mg/d Disclosure learned that both ketamine and magne- at bedtime. However, after discharge, Ms. G The author reports no financial sium could alter nociception in rats through resumed using Delsym, which resulted in 3 relationships with any companies whose products are mentioned in N-methyl-d-aspartic acid (NMDA) recep- subsequent psychiatric hospitalizations for this article, or with manufacturers of tor antagonism, and so she decided to try mania during the next year. competing products. treating her pain with Delsym, an over-the- I first treated Ms. G as an outpatient after counter cough syrup containing dextro- her second hospitalization. At that point, methorphan polistirex (DXM), which at high she was stable. Her mental status was doses acts as an NMDA receptor antagonist. calm and cooperative, and she had a lin- She said she was taking Delsym, 120 mg/d, ear thought process. At her baseline, in the and magnesium oxide, 600 mg/d. absence of mania, she had a blunted affect. In the ED, Ms. G had a labile affect, pres- She understood that DXM caused her to sured speech, and flight of ideas. She denied have manic symptoms, but she continued any history of psychiatric treatment, suicide to believe that Delsym and magnesium attempts, or substance abuse. Ms. G’s fam- cured her physical suffering and social inhi- ily reported she had been unusually social, bition. I noticed Ms. G would use figurative talkative, and impulsive. She was admitted language inappropriately. I later learned to the inpatient psychiatric unit with a diag- she had sensitivities to food textures and a nosis of mania. specialized interest in electronics. Because On psychiatric evaluation, Ms. G was of this, I suspected Ms. G was on the autism grandiose, irritable, and perseverative spectrum; she met several DSM-5 criteria about her aberrant symptoms. She felt she did not experience the world as other peo- ple did, but found relief from her chronic LET YOUR VOICE BE HEARD pain after taking Delsym. She was not tak- CURRENT PSYCHIATRY invites psychiatry residents ing other medications. Ms. G did not report to share their views on professional or clinical a family history of bipolar disorder or psy- topics for publication in Residents’ Voices. E-mail [email protected] for author chosis. Her laboratory results, including a guidelines. Current Psychiatry comprehensive metabolic panel, complete Vol. 18, No. 10 e3 Residents’ Voices for autism spectrum disorder (ASD), par- researchers have found that suppression or ticularly deficits in social-emotional reci- excitation of the NMDA receptor can ame- procity, highly restricted interests, and liorate ASD symptoms, including social hyperreactivity to sensory input. withdrawal and repetitive behaviors.3 Upon routine lab screening, Ms. G Many individuals with ASD suffer from was found to have hypothyroidism, with sensory abnormalities, including a reduced a thyroid-stimulating hormone level of sensitivity to pain or a crippling sensitiv- 6.67 mcIU/mL. This resolved after discon- ity to various stimuli. Patients with ASD tinuing lithium. Olanzapine caused adverse may have difficulty describing these abnor- metabolic effects and also was discontin- malities, and as a result, they may be mis- ued. Ms. G remained euthymic without any diagnosed. One case report described a mood-stabilizing medication, except during 15-year-old girl diagnosed with social anxi- Clinical Point periods when she abused DXM, when she ety and chronic generalized pain when in 4 Ms. G’s case illustrates would again become manic. Eventually, her social situations. Pediatric rheumatologists motivation to avoid hospitalization would had diagnosed her with “amplified pain the importance promote her abstinence. syndrome.” When she presented to a men- of listening to our tal health clinic for a neurodevelopmental patients for more evaluation, she explained to clinicians how precise diagnostic Implications of NMDA receptor she simply “did not ‘get’ people; they are antagonism just empty shells” and subsequently was formulations The use of ketamine as an NMDA recep- given a diagnosis of ASD.4 tor antagonist for treating depression In psychiatric patients who have comor- and other psychiatric illnesses has gained bid substance use disorders, it is vital for momentum. Esketamine, the S-enantiomer clinicians to not only detect the presence of of racemic ketamine, is now available as an substance misuse, but also to understand FDA-approved intranasal formulation for what drives the patient toward abuse. treatment-resistant depression. Ketamine Ms. G’s case, with its combination of sub- stops afferent nociception to the brain and is stance abuse and ASD, illustrates the used as an analgesic (at low concentrations) importance of listening to our patients and anesthetic (at high concentrations).1 for more precise diagnostic formula- Dextromethorphan is abused as a recre- tions, which then shape our treatment ational drug because at high doses it works recommendations. similarly to both ketamine and phen- cyclidine. Individuals who abuse DXM References 1. Vadivelu N, Schermer E, Kodumudi V, et al. Role of ketamine can develop psychosis, motor/cognitive for analgesia in adults and children. J Anaesthesiol Clin impairment, agitation, fevers, hyperten- Pharmacol. 2016;32(3):298-306. 2. Martinak B, Bolis R, Black J, et al. Dextromethorphan in cough sion, tachycardia, and death.2 In patients syrup: the poor man’s psychosis. Psychopharmacol Bull. with ASD, researchers have identified 2017;47(4):59-63. 3. Lee E, Choi S, Kim E. NMDA receptor dysfunction in autism genetic variations of NMDA receptors that spectrum disorders. Curr Opin Pharmacol. 2015;20:8-13. are linked to dysfunction of these receptors.3 4. Clarke C. Autism spectrum disorder and amplified pain. Case Rep Psychiatry. 2015;2015:930874. doi: 10.1155/2015/ In animal models, as well as in humans, 930874. Discuss this article at www.facebook.com/ MDedgePsychiatry Current Psychiatry e4 October 2019.
Recommended publications
  • Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
    International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL.
    [Show full text]
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Hallucinogens
    Hallucinogens What Are Hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and others are synthetic (human-made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes. Hallucinogens are a Types of Hallucinogens diverse group of drugs Classic Hallucinogens that alter perception, LSD (D-lysergic acid diethylamide) is one of the most powerful mind- thoughts, and feelings. altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other Hallucinogens are split grains. into two categories: Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) comes from certain classic hallucinogens and types of mushrooms found in tropical and subtropical regions of South dissociative drugs. America, Mexico, and the United States. Peyote (mescaline) is a small, spineless cactus with mescaline as its main People use hallucinogens ingredient. Peyote can also be synthetic. in a wide variety of ways DMT (N,N-dimethyltryptamine) is a powerful chemical found naturally in some Amazonian plants. People can also make DMT in a lab.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • (NMDA) Receptor Encephalitis Is an Autoimmune Seizures and Autonomic Dysfunction
    Nonprofit Organization U.S. Postage PAID Twin Cities, MN VOLUME 23, NUMBER 4 200 University Ave. E. Permit No. 5388 St. Paul, MN 55101 651-291-2848 ADDRESSwww.gillettechildrens.org SERVICE REQUESTED VOLUME 23, NUMBER 4 2014 A Pediatric Perspective focuses on specialized topics in pediatrics, orthopedics, neurology, neurosurgery and rehabilitation medicine. Diagnosing and Treating Anti- KEY INSIGHTS To subscribe to or unsubscribe from A Pediatric Perspective, please send an email to [email protected]. N-Methyl-D-Aspartate (NMDA) ■ Anti-NMDA receptor encephalitis Editor-in-Chief – Steven Koop, M.D. is a relatively common and treatable Editor – Ellen Shriner Receptor Encephalitis cause of encephalitis in pediatric Designers – Becky Wright, Kim Goodness patients. Photographers – Anna Bittner, Amanda Moen, M.D., pediatric neurologist Paul DeMarchi ■ Common symptoms include person- Copyright 2014. Gillette Children’s Specialty ality change, abnormal movements, Amanda Moen, M.D. Healthcare. All rights reserved. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune seizures and autonomic dysfunction. condition in which the body produces antibodies that act against receptors in ■ If these symptoms are present, an the brain, resulting in both neurologic and psychiatric symptoms. Common urgent child neurology evaluation is symptoms include personality change, psychosis, abnormal movements, indicated and an evaluation for anti- To make a referral, call 651-325-2200 or seizures and autonomic dysfunction. The antibodies associated with this NMDA receptor encephalitis should Pediatric neurologist Amanda Moen, M.D., treats children 855-325-2200 (toll-free). condition were first identified in 2005, and since then it has become recognized be initiated. who have epilepsy and other neurological conditions.
    [Show full text]
  • From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
    REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia.
    [Show full text]
  • Presence of Methoxetamine in Drug Samples Delivered As Ketamine for Substance Analysis
    Is this really ketamine? Presence of methoxetamine in drug samples delivered as ketamine for substance analysis P. Quintana2, Á. Palma1,5, M. Grifell1,2, J. Tirado3,5, C. Gil2, M. Ventura2, I. Fornís3, S. López2, V. Perez1,5, M. Torrens1,3,5, M. Farré3,4,5, L. Galindo1,3,5 1Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, Barcelona, Spain 2Asocicación Bienestar y Desarrollo, Energy Control, Barcelona, Spain 3IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain 4Hospital Germans Trías i Pujol, Servei de Farmacología Clínica, Barcelona, Spain 5Departament de Psiquiatria, Universitat Autònoma de Barcelona, Barcelona, Spain Introduction New psychoactive substances (NPS) are drugs that have recently become available, and are not world-wide regulated. They often intend to mimic the effect of controlled drugs (1), becoming a public health concern. In 2014, 101 new substances were reported for the first time in the EU (2). Methoxetamine, an NPS, is a dissociative hallucinogenic acting as a NMDA receptor antagonist, clinically and pharmacologically similar to Ketamine (3). It differs from ketamine on its higher potency and duration as well as on its possible serotonergic activity, probably leading to more severe side effects. It has been one of the 6 substances requiring risk assessment by EMCDDA during 2014(3), and several case reports have described fatal outcomes related with its use(4). Objective Material and methods The aim of this study was 1) to explore the presence of methoxetamine from the All samples analyzed from January 2010 to March 2015 in which methoxetamine was samples handled to, and analyzed by Energy Control and 2) to determine whether found were studied.
    [Show full text]
  • Hallucinogens
    Hallucinogens What are hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their own thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and some are synthetic (human- made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes, including to have fun, deal with stress, have spiritual experiences, or just to feel different. Common classic hallucinogens include the following: • LSD (D-lysergic acid diethylamide) is one of the most powerful mind-altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other grains. LSD has many other street names, including acid, blotter acid, dots, and mellow yellow. • Psilocybin (4-phosphoryloxy-N,N- dimethyltryptamine) comes from certain types of mushrooms found in tropical and subtropical regions of South America, Mexico, and the United States. Some common names for Blotter sheet of LSD-soaked paper squares that users psilocybin include little smoke, magic put in their mouths. mushrooms, and shrooms. Photo by © DEA • Peyote (mescaline) is a small, spineless cactus with mescaline as its main ingredient. Peyote can also be synthetic.
    [Show full text]
  • Antidepressant & Psychedelic Drug Interaction Chart
    Copyright Psychedelic School 8/2020 Antidepressant & Psychedelic Drug Interaction Chart This chart is not intended to be used to make medical decisions and is for informational purposes only. It was constructed using data whenever possible, although extrapolation from known information was also used to inform risk. Any decision to start, stop, or taper medication and/or use psychedelic drugs should be made in conjunction with your healthcare provider(s). It is recommended to not perform any illicit activity. This chart the intellectual property of psychedelic school and is for personal use only. Please do not copy or distribute this chart. Antidepressant Phenethylamines Tryptamines MAOI-containing Ketamine Ibogaine -MDMA, mescaline -Psilocybin, LSD -Ayahuasca, Syrian Rue SSRIs Taper & discontinue at least 2 Consider taper & Taper & discontinue at least 2 Has been studied and Taper & discontinue at · Paroxetine (Paxil) weeks prior (all except discontinuation at least 2 weeks weeks prior (all except found effective both with least 2 weeks prior (all · Sertraline (Zoloft) fluoxetine) or 6 weeks prior prior (all except fluoxetine) or 6 fluoxetine) or 6 weeks prior and without concurrent except fluoxetine) or 6 · Citalopram (Celexa) (fluoxetine only) due to loss of weeks prior (fluoxetine only) (fluoxetine only) due to use of antidepressants weeks prior (fluoxetine · Escitalopram (Lexapro) psychedelic effect due to potential loss of potential risk of serotonin only) due to risk of · Fluxoetine (Prozac) psychedelic effect syndrome additive QTc interval · Fluvoxamine (Luvox) MDMA is unable to cause Recommended prolongation, release of serotonin when the Chronic antidepressant use may Life threatening toxicities can to be used in conjunction arrhythmias, or SPARI serotonin reuptake pump is result in down-regulation of occur with these with oral antidepressants cardiotoxicity · Vibryyd (Vilazodone) blocked.
    [Show full text]
  • Janssen Research & Development, LLC Advisory Committee Briefing
    Janssen Research & Development, LLC Advisory Committee Briefing Document Esketamine Nasal Spray for Patients with Treatment-resistant Depression JNJ-54135419 (esketamine) Status: Approved Date: 16 January 2019 Prepared by: Janssen Research & Development, LLC EDMS number: EDMS-ERI-171521650, 1.0 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE 1 Status: Approved, Date: 16 January 2019 JNJ-54135419 (esketamine) Treatment-resistant Depression Advisory Committee Briefing Document GUIDE FOR REVIEWERS This briefing document provides 3 levels of review with increasing levels of detail: The Executive Overview (Section 1, starting on page 11) provides a narrative summarizing the disease, need for novel treatments, key development program characteristics for esketamine nasal spray, study results, and conclusions. References are made to the respective supporting sections in the core document. The core document (Section 2 to Section 11, starting on page 30) includes detailed summaries and discussion in support of the Executive Overview. The appendices (starting on page 180) provide additional or more detailed information to complement brief descriptions provided in sections of the core document (e.g., demographic and baseline characteristics of the study populations, additional efficacy analyses in the Phase 3 studies, statistical methods). These appendices are referenced in the core document when relevant. This review structure allows review at varying levels of detail; however, reviewers who read at multiple levels will necessarily
    [Show full text]
  • Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
    Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209
    [Show full text]
  • DXM Fast Facts
    What is DXM? doses—usually at least half an 8-ounce ketamine. While under the influence of bottle—by drinking the liquid very the drug, which can last for as long as DXM (dextromethorphan) is a quickly. (Consumption of large quanti- 6 hours, DXM abusers risk injuring cough suppressant available in a ties of cough syrup induces vomiting. themselves and others because of the variety of over-the-counter cough and Thus, to achieve the desired effects, drug’s effects on visual perception and cold medications. DXM is abused abusers must drink the product quickly cognitive processes. because, when taken in doses that enough to allow the body to absorb the In addition, individuals who ingest dramatically exceed those recom- DXM before vomiting occurs.) mended by physicians and pharma- high doses of DXM risk hyperthermia cists, it produces hallucinations and The availability of powdered extrac- (exceptionally high fever), particularly if a sense of dissociation. tions of DXM has resulted in abusers they use the drug in a hot environment either inhaling the powder (snorting) or or while physically exerting themselves— What does DXM look like? repackaging it in capsules, which are such as at a rave or dance club. Other then swallowed. risks associated with DXM abuse As an over-the-counter medication, include nausea, abdominal pain, vomit- DXM is available in various forms Who abuses DXM? ing, irregular heartbeat, high blood including liquids, lozenges, tablets, pressure, headache, numbness of capsules, and gel caps. In addition, DXM It is difficult to gauge the extent of fingers and toes, loss of consciousness, powder—prepared by extracting the drug DXM abuse in the United States seizures, brain damage, and death.
    [Show full text]