Central Spine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Doctorat De L'université De Toulouse
En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents. -
Dry Forest Trees of Madagascar
The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats. -
Spiny Forest Heterogeneity: Implications for Regeneration and Its Detection
Spiny Forest Heterogeneity: Implications for Regeneration and its Detection Catherine Reuter Advisor: Jules Ramangalahy Academic Director: Jim Hansen Spring 2009 1 Acknowledgements I would like to thank Barry Ferguson for helping me originate the idea for this project and for innumerable resources from compasses to aerial maps. I would also like to thank Christian, translator and invaluable field assistant, without whose innovative thinking and possibly photographic memory this project would not of succeeded. 2 Table of Contents Section Page 88 Acknowledgements ________________________________________________ 2 Abstract __________________________________________________________ 4 Introduction _______________________________________________________ 5 Methods __________________________________________________________ 7 Results ___________________________________________________________ 12 Discussion ________________________________________________________ 17 Conclusion ________________________________________________________ 26 Appendix 1: Comprehensive Species List ________________________________ 27 Appendix 2: FTM 1954 Map of Forest Cover _____________________________ 30 Sources Cited _______________________________________________________ 31 3 ABSTRACT This study sought to verify claims made in a recently published paper by Thomas Elmqvist that certain portions of Madagascar’s spiny forest are rapidly regenerating. The study took place in the forest around the village of Manavy located in Central Antandroy, where historical and current -
Architecture Végétative Et Structures Inflorescentielles Chez Les Didiereaceae De Madagascar
Beitr. Biol. Pflanzen 61, 381 - 400 Architecture végétative et structures inflorescentielles chez les Didiereaceae de Madagascar Par GEORGESCREMERS * et YVES SELL* * (Avec 7 figures) Reçu le 21 Novembre 1985 Zusammenf assuiig Der vegetative Aufbau der Didiereaceen erscheint als sehr mannigfaltig, da sich die 8 untersuchten Arten, 4 Modellen (denen von CORNER,von LEEUWENBERG,von KORmA, und von CHAMPAGNAT)zuordnen lassen, während die komplexe Organisation zweier weiterer Arten nicht einem der zur Zeit beschriebenen Modelle zugeordnet werden konnte. Andererseits ist bei den durch Kurztriebe hervorgebrachten Infloreszenzstrukturen der Thyrsus die fundamentale Blüheinheit. Dieser ist geschlossen (monotel, 4 Arten) oder offen (polytel oder trunkat-monotel? 2 Arten); seine Aggregation in eine dolden- artige, mehr oder weniger bliitenarme Infloreszenz wird bei 5 Arten beobachtet. Das sukzessive Aufblühen, von den ruhenden, ganz an der Basis der Kurztriebe gelegenen Knospen bedingt, wurde bei 7 Arten festgestellt. Abstract The vegetative organization of Didiereaceae seems highly diverse, since of the 8 species studied, 4 models (those of CORNER,LEEUWENBERG, KORIBA and CHAMPAGNAT) were identified, but the complex organization of 2 did not correspond to any of the models so far described. As regards the inflorescence structures established by the short shoots, thyrse is the main flowering unit. It can be either definite (monotelic, 4 species) or indefinite (polytelic or truncate-monotelic?, 2 species), and in 5 species it forms an ombel-like cluster more or less poor in flowers. Gradual flowering, due to rest buds at the very bases of the short shoots, is encountered in 7 species. * Centre ORSTOM, BP 165, 93 323 Cayenne; Guyane Francaise. ** Institut de Botanique, 28 rue Goethe, 67 O00 Strasbourg. -
An Invasive Species Spread by Threatened Diurnal Lemurs Impacts Rainforest Structure in Madagascar
Biol Invasions https://doi.org/10.1007/s10530-020-02293-7 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER An invasive species spread by threatened diurnal lemurs impacts rainforest structure in Madagascar Camille M. M. DeSisto . Daniel S. Park . Charles C. Davis . Veronarindra Ramananjato . Jadelys L. Tonos . Onja H. Razafindratsima Received: 19 December 2019 / Accepted: 5 June 2020 Ó Springer Nature Switzerland AG 2020 Abstract Invasive species are a major threat to unexplored. By surveying multiple sites across Mada- biodiversity and ecosystem function. Thus, under- gascar’s eastern rainforests, we demonstrate that the standing their spread and ecological impacts is critical introduction of P. cattleianum significantly correlates for management and control. Strawberry guava (Psid- with changes in forest structure—namely tree/shrub ium cattleianum Sabine) is an aggressive invader size, taxonomic richness, and taxonomic diversity. across the tropics and has been rapidly spreading Further, at a local scale, the presence of P. cattleianum throughout the eastern rainforests of Madagascar. was associated with an increase in frugivore species However, both the mechanisms of its spread on the richness; its primary dispersers during our study island and the consequences of its invasion on native period were lemurs. Moreover, we identified species- floral and faunal communities remain largely specific effects of lemur gut-passage on the germina- tion of P. cattleianum seeds. Finally, microsatellite analysis of P. cattleianum from a variety of locations Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10530-020-02293-7) con- across Madagascar demonstrated three distinct, highly tains supplementary material, which is available to authorized differentiated, genetic population clusters, each with users. -
Geogenetic Patterns in Mouse Lemurs (Genus Microcebus)
PAPER Geogenetic patterns in mouse lemurs (genus COLLOQUIUM Microcebus) reveal the ghosts of Madagascar’s forests past Anne D. Yodera,b,1, C. Ryan Campbella, Marina B. Blancob, Mario dos Reisc, Jörg U. Ganzhornd, Steven M. Goodmane,f, Kelsie E. Hunnicutta, Peter A. Larsena, Peter M. Kappelerg, Rodin M. Rasoloarisong,h, José M. Ralisonh, David L. Swofforda, and David W. Weisrocki aDepartment of Biology, Duke University, Durham, NC 27708; bDuke Lemur Center, Duke University, Durham, NC 27705; cSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom; dTierökologie und Naturschutz, Universität Hamburg, 20146 Hamburg, Germany; eField Museum of Natural History, Chicago, IL 60605; fAssociation Vahatra, BP 3972, Antananarivo 101, Madagascar; gBehavioral Ecology and Sociobiology Unit, German Primate Centre, 37077 Goettingen, Germany; hDépartement de Biologie Animale, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar; and iDepartment of Biology, University of Kentucky, Lexington, KY 40506 Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved May 4, 2016 (received for review February 18, 2016) Phylogeographic analysis can be described as the study of the geolog- higher elevations (generally above 1,900 m), the montane forest ical and climatological processes that have produced contemporary habitat gives way to an Ericaceae thicket. Along the western half of geographic distributions of populations and species. Here, we attempt the island, below 800 m elevation and to the west of the Central to understand how the dynamic process of landscape change on Highlands, the montane forests shift to dry deciduous forest dom- Madagascar has shaped the distribution of a targeted clade of mouse inated by drought-adapted trees and shrubs. -
Gastrodia Madagascariensis (Gastrodieae, Orchidaceae): from an Historical Designation to a Description of a New Species from Madagascar
Phytotaxa 221 (1): 048–056 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.221.1.4 Gastrodia madagascariensis (Gastrodieae, Orchidaceae): from an historical designation to a description of a new species from Madagascar FLORENT MARTOS, STEVEN D. JOHNSON & BENNY BYTEBIER School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa; e-mail: [email protected] Abstract Gastrodia madagascariensis, a leafless achlorophyllous orchid, is described and illustrated here. The epithet was originally coined by Perrier de la Bâthie in 1939 for fruiting material found on the eastern coastal plain of Madagascar more than a century ago, but the name was never validly published. This new species is closely related to G. similis from Reunion Island, from which it can be distinguished by the perianth tube spreading towards the apex, the shape of the column and stigma, and the flower colour. The achlorophyllous genus Gastrodia currently comprises five species in the tropical parts of the Afro-Madagascan region, one of which, G. africana, is possibly extinct. We provide an artificial key to distinguish them. In addition, there is also an extratropical species in continental Africa, the introduced G. sesamoides (very local near Cape Town, South Africa). Keywords: Didymoplexis; Flora of Madagascar; myco-heterotrophy; Perrier de la Bâthie Résumé Gastrodia madagascariensis, une orchidée aphylle non-chlorophyllienne, est décrite et illustrée ici. L’épithète fut initiale- ment proposé par Perrier de la Bâthie en 1939 pour décrire une plante en fruit trouvée dans la même région côtière de Madagascar il y a plus d’un siècle, mais sa publication était alors invalide. -
Species of Baobab in Madagascar Rajeriarison, 2010 with 6 Endemics : Adansonia Grandidieri, A
FLORA OF MADAGASCAR Pr HERY LISY TIANA RANARIJAONA Doctoral School Naturals Ecosystems University of Mahajanga [email protected] Ranarijaona, 2014 O7/10/2015 CCI IVATO ANTANANARIVO Originality Madagascar = « megabiodiversity », with 5 % of the world biodiversity (CDB, 2014). originality et diversity with high endemism. *one of the 25 hot spots 7/9 species of Baobab in Madagascar Rajeriarison, 2010 with 6 endemics : Adansonia grandidieri, A. rubrostipa, A. za, A. madagascariensis, A. perrieri et A. suarezensis. Ranarijaona, 2013 Endemism Endemism : *species : 85 % - 90 % (CDB, 2014) *families : 02,46 % * genera : 20 à 25 % (SNB, 2012) *tree and shrubs (Schatz, 2001) : - familles : 48,54 % - genres : 32,85 % CDB, 2014 - espèces : 95,54 % RANARIJAONA, 2014 Families Genera Species ASTEROPEIACEAE 1 8 SPHAEROSEPALACEAE PHYSENACEAE 1 1 SARCOLAENACEAE 10 68 BARBEUIACEAE 1 1 PHYSENACEAE 1 2 RAJERIARISON, 2010 Archaism •DIDIEREACEAE in the south many affinities with the CACTACEAE confined in South America : Faucherea laciniata - Callophyllum parviflorum • Real living fossils species : * Phyllarthron madagascariensis : with segmented leaves * species of Dombeya : assymetric petales * genera endemic Polycardia, ex : P. centralis : inflorescences in nervation of the leaf * Takhtajania perrieri : Witness living on the existence of primitive angiosperms of the Cretaceous in Madagascar RAJERIARISON, 2010 Tahina spectabilis (Arecaceae) Only in the west of Madagascar In extinction (UICN, 2008) Metz, 2008) Inflorescence : ~4 m Estimation of the floristic richness (IUCN/UNEP/WWF, 1987; Koechlin et al., 1974; Callmander, 2010) Authors years Families Genera Species Perrier de la 1936 191 1289 7370 Bathie Humbert 1959 207 1280 10000 Leroy 1978 160 - 8200 White 1983 191 1200 8500 Guillaumet 1984 180 1600 12000 Phillipson et al. -
THE STATUS and DISTRIBUTION of Freshwater Biodiversity in Madagascar and the Indian Ocean Islands Hotspot
THE THE STATUs aNd dISTRIBUtION OF STAT U Freshwater biodIversIty in MadagasCar s a N aNd the INdIaN OCeaN IslaNds hOtspOt d d I STR Edited by Laura Máiz-Tomé, Catherine Sayer and William Darwall IUCN Freshwater Biodiversity Unit, Global Species Programme IBU t ION OF F OF ION RESHWATER N ds a BIO I N d I ar ar VERS d C N I TY IN IN sla Madagas I N C ar a ar N ea d the I the d d the I the d C N N d Madagas a O I a N O C ea N I sla N IUCN h ds Rue Mauverney 28 CH-1196 Gland O Switzerland tsp Tel: + 41 22 999 0000 Fax: + 41 22 999 0015 O www.iucn.org/redlist t the IUCN red list of threatened speciestM www.iucnredlist.org THE STATUS AND DISTRIBUTION OF freshwater biodiversity in Madagascar and the Indian Ocean islands hotspot Edited by Laura Máiz-Tomé, Catherine Sayer and William Darwall IUCN Freshwater Biodiversity Unit, Global Species Programme The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, or other participating organisations. This publication has been made possible by funding from The Critical Ecosystem Partnership Fund. Published by: IUCN Cambridge, UK in collaboration with IUCN Gland, Switzerland Copyright: © 2018 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. -
Nyffeler Taxon 2010 V.Pdf
Nyffeler, R; Eggli, U (2010). Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon, 59(1):227-240. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Taxon 2010, 59(1):227-240. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2010 Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data Nyffeler, R; Eggli, U Nyffeler, R; Eggli, U (2010). Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon, 59(1):227-240. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Taxon 2010, 59(1):227-240. Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data Abstract Traditional classifications of the suborder Portulacineae recognize six families: Basellaceae, Cactaceae, Didiereaceae, Halophytaceae, Hectorellaceae, and Portulacaceae. However, phylogenetic analyses based on molecular sequence data indicate that the traditional family Portulacaceae is paraphyletic and consists of three distinct lineages that also include Cactaceae, Didiereaceae, and Hectorellaceae. We use sequence data from the chloroplast genes matK and ndhF representing 64 species of Portulacineae and outgroups to reconstruct their phylogenetic relationships with Bayesian and maximum parsimony inference methods. Evidence from these molecular phylogenetic analyses as well as from comparative morphological investigations allow us to propose a revised familial classification of the suborder Portulacineae. -
The Loranthaceae of Madagascar and of the Neighboring Archipelagos
Balle S. 1964. Les Loranthacées de Madagascar et des archipels voisins. Adansonia nouvelle serie 4:105-141. THE LORANTHACEAE OF MADAGASCAR AND OF THE NEIGHBORING ARCHIPELAGOS by S. BALLE INTRODUCTION The Loranthaceae are represented in Madagascar and in the neighboring Archipelagos by 4 genera, including 2 endemic to Loranthoideae (Bakerella and Socratina) and 2 to Viscoideae with very wide area (Korthalsella and Viscum) (cf. Pl. 1). More than 600 observed specimens are distributed there in 51 species. If, in Madagascar and in the neighboring Archipelagos, there are only 2 genera of Loranthoideae, there are about twenty on the African continent and ten in India. On the other hand, Viscoideae are known only for one more genus (Arceuthobium) in continental Africa than in Madagascar and it is very rare there (only one species, represented by a few specimens only in Ethiopia); in India, we find, in addition to the 3 aforementioned genera of Viscoideae: Ginalloa and Notothixos. The characters of the Loranthaceae from Africa were recently pre-targeted (5) and will be mainly used in the Flora of Madagascar, whose Loranthaceae will appear at the same time as this; they will therefore not be repeated here. A provisional enumeration of the African genera of Loranthoideae was presented in Webbia (3) and somewhat modified thereafter (1b); it will only become final after confirmation, by an ongoing study, of the palynological and anatomical characters; but, whatever the generic classification that will ultimately be adopted, we can already see that the evolution of the Loranthoideae was done in a completely different way, in Madagascar and on the Continent, than that of the Viscoideae1. -
Two Spectacularly Spiny Alluaudias
Open Research Online The Open University’s repository of research publications and other research outputs Two spectacularly spiny alluaudias Journal Item How to cite: Walker, Colin (2019). Two spectacularly spiny alluaudias. New Zealand Cactus & Succulent Journal, 72(3) pp. 5–8. For guidance on citations see FAQs. c [not recorded] https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Two spectacularly spiny alluaudias by Colin C. Walker My plants in the UK are kept in a conservatory and these are Introducing Alluaudia summer growers when I water Alluaudia belongs to the them modestly. In the winter Didiereaceae, a very small family when they are leafless I keep them of succulents encompassing just at least 10oC and give them an 22 species in 7 genera (The Plant occasional water. List, 2019). Until about a decade Flowers are rarely produced in ago this family was considered pot culture since many of the to be endemic to Madagascar. plants need to get quite large However, recent molecular before reaching flowering size. evidence has resulted in So these plants are not grown for expansion of the family to include their outstanding flowers (which three genera from southern are somewhat insignificant if Africa (7 species of Ceraria and 2 flowering is achieved)! species of Portulacaria) and north- east tropical Africa (2 species of There are just 6 species of Calyptrotheca).