Regeneration of Blueberry Cultivars Through Indirect Shoot Organogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Regeneration of Blueberry Cultivars Through Indirect Shoot Organogenesis HORTSCIENCE 53(7):1045–1049. 2018. https://doi.org/10.21273/HORTSCI13059-18 wilt disease incited by Ralstonia solanacea- rum occurred in seven farms in six counties of Florida (Norman et al., 2018). This is Regeneration of Blueberry Cultivars a newly discovered disease causing signifi- cant damage to blueberries. The pathogen is through Indirect Shoot Organogenesis easily spread in water, soil, or through in- 1 fected plant materials. Propagation through Dongliang Qiu and Xiangying Wei in vitro culture has been considered the most College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, effective method for a rapid increase of Fujian Province 350002, China disease-free propagules on a year-round basis (Chen and Henny, 2008; Murashige, 1974). Shufang Fan Blueberries have been micropropagated Jingchu University of Technology, College of Biological Engineering and via shoot culture (Fan et al., 2017; Frett and Institute of Plant Germplasm Resources Exploitation and Utilization, Smagula, 1983; Litwinczuk, 2013; Lyrene, Jingmen, Hubei Province 448000, China 1980, 1981; Ruzic et al., 2012; Tetsumura et al., 2008) and through shoot organogenesis Dawei Jian (Billings et al., 1988; Callow et al., 1989; Cao Jingmen Forestry Bureau, Jingmen, Hubei Province 448000, China and Hammerschlag, 2000; Debnath, 2009; Liu et al., 2010; Rowland and Ogden, 1992). Jianjun Chen1 Shoot culture is the proliferation of existing University of Florida, IFAS, Mid-Florida Research and Education Center, meristems, whereas shoot organogenesis re- fers to regeneration from explants without 2725 South Binion Road, Apopka, FL 32703 preexisting meristems. The latter generally Additional index words. callus, Ericaceae, micropropagation, shoot regeneration, Vaccinium, gives rise to a large number of shoots and is zeatin considered more efficient for plant multipli- cation. However, shoot organogenesis has Abstract. Leaf explants derived from in vitro–grown shoots of blueberry cultivars only been established in a limited number Bluejay, Pink Lemonade, Sunshine Blue, and Top Hat were cultured on woody plant of cultivars. Increasing evidence shows that medium (WPM) supplemented with 9.12 mM 6-(4-hydroxy-3-methylbut-2-enylamino) protocols developed for regenerating blue- purine or zeatin (ZT) in combination with 1.23, 2.46, or 4.92 mM indole-3-butyric acid berries are cultivar specific (Debnath, 2005, (IBA). Calluses were induced from the explants and adventitious shoots were regen- 2009; Liu et al., 2010; Meiners et al., 2007), erated. ‘Sunshine Blue’ and ‘Top Hat’ produced more than four shoots per explant but implying that different cultivars may require shoot numbers were less than one for each ‘Pink Lemonade’ explant and about 0.2 per different protocols for regeneration. Further- ‘Bluejay’ explant. The results indicate that there is significant difference among cultivars more, shoot organogenesis is one of the in indirect shoot organogenesis. The differences may be related to their diverse genetic regeneration pathways for genetic transfor- background as they are polyploid hybrids. Microcuttings derived from adventitious mation (Song and Sink, 2004). Thus far, few shoots of ‘Sunshine Blue’ rooted in vitro in WPM medium supplemented with 9.84 mM cultivars have been genetically transformed IBA and also rooted ex vitro in a peat-based substrate after cuttings were dipped or not (Gao et al., 2016; Song and Sink, 2004); the dipped in IBA solutions. Direct rooting of microcuttings in the peat-based substrate was lack of reliable regeneration systems could be effective, suggesting that in vitro rooting may not be necessarily needed. Survival rate of one of the limiting factors. ex vitro–rooted plants in a shaded greenhouse was high, more than 90%. The established In addition, rooting of microcuttings is an shoot regeneration protocols could be used for rapid propagation of ‘Sunshine Blue’ and important part of micropropagation. How- ‘Top Hat’ and for cultivar improvement through genetic transformation. ever, blueberry microcuttings are largely rooted ex vitro and little information is avail- able about in vitro rooting of blueberries Blueberries (Vaccinium spp.) are small- et al., 2016; Debnath, 2007). Among them, V. (Debnath, 2007; Litwinczuk, 2013). It is fruit crops and have become increasingly angustifolium, V. corymbosum, and V. myr- uncertain if rooted plantlets could have popular with consumers because of their tilloides are tetraploid with the chromosome higher survival rates after being transplanted high nutraceutical and pharmaceutical value number of 2n =4x = 48, whereas V. virgatum into soilless substrates. (Basu et al., 2010; Miller and Shukitt-Hale, is hexaploid with 2n =6x = 72 (Brevis et al., The present study was intended to de- 2012; Vendrame et al., 2016; Whyte and 2008). The highbush blueberries are by far velop protocols for regeneration of four Williams, 2015). There are five main groups the most important commercial crop. World- blueberry cultivars whose protocols for ad- of blueberries: 1) northern highbush (Vacci- wide highbush blueberry production in- ventitious shoot production have been not nium corymbosum L.); 2) southern highbush, creased from 58,400 ha in 2007 to 110,800 reported. As part of the effort, two of the developed from crosses between V. corym- ha in 2014 (Brazelton, 2015). North America four cultivars were successfully regenerated bosum, Vaccinium darrowii Camp, and other represented more than 50% of the production through indirect shoot organogenesis. Micro- blueberry species; 3) lowbush (Vaccinium area and accounted for almost 60% of the cuttings derived from adventitious shoots of angustifolium Ait., Vaccinium myrtilloides global highbush blueberry production in a cultivar were evaluated for both in vitro and Michx., and Vaccinium boreale Hall and 2014 (Brazelton, 2015), of which Florida ex vitro rooting. Results suggest that the Aald.); 4) half-high derived from crosses blueberry production acreage increased by developed protocols could be used for micro- between highbush and lowbush; and 5) rab- 73% from 2007 to 2012 (USDA, 2013). propagation, genetic transformation or both biteye (Vaccinium virgatum Ait.) (Caspersen Blueberries are traditionally propagated of the two cultivars. via stem cuttings (Marino et al., 2014), but not all cultivars can be effectively propagated Materials and Methods through this method (Lyrene, 1981). Stem Received for publication 9 Mar. 2018. Accepted cuttings are also not efficient in increasing Plant materials and culture medium. In for publication 18 May 2018. This work was supported by the Fujian Fumin numbers of starting materials or propagules vitro cultured four cultivars, representing Foundation and New Century Talent Training for commercial introduction of new culti- four of the five groups of blueberries, were Foundation of Fujian Province. vars (Miller et al., 2004). Furthermore, stem used in this study: Bluejay (V. corymbosum 1Corresponding authors. E-mail: qiudongliang@ cuttings may bring or spread pathogens L.) which is a northern highbush cultivar; aliyun.com or jjchen@ufl.edu. (Tzanetakis et al., 2017). Recently, a bacterial Pink Lemonade (a V. virgatum rabbiteye HORTSCIENCE VOL. 53(7) JULY 2018 1045 hybrid derivative); Sunshine Blue (V. cor- root numbers were recorded after 10 weeks of and fertigated with nitrogen at 100 mg·L–1 ymbosum L.), a southern highbush cultivar; culture. every 2 weeks. Survival rate and root num- and Top Hat, a half-high derived from a cross In vitro culture conditions. All culture bers per cutting were recorded 1 month later. between highbush and lowbush. experiments designed for evaluating ex- Experimental design and statistical analysis. Woody plant medium (Lloyd and McCown, plants, cultivars, and in vitro rooting were All experiments were arranged as a com- 1981) with vitamins (Product ID: L154; Phyto- maintained in a culture room under a 12-h pletely randomized design. Each culture ves- Technology, Shawnee Mission, KS) was used photoperiod provided by cool white fluores- sel (petri dish or glass baby food jar) was as a basal medium. After adding 3% sucrose cent lamps with a photon flux density of 50 considered an experimental unit for in vitro and 0.8% agar, the medium pH was adjusted to mmol·m–2·s–1 and temperature of 25 ± 2 °C. culture. For ex vitro rooting, six cell plugs 5.0 and autoclaved at 121 °C for 20 min. When Ex vitro rooting and acclimatization. were considered an experimental unit, and medium temperature dropped to 50 °C, Microcuttings of ‘Sunshine Blue’ were dip- each was repeated five times. Collected data filter-sterilized growth regulator solutions ped in deionized water, 4.92, 9.84, or 24.6 mM were subjected to ANOVA using SPSS 13.0 were added and mixed well before pouring IBA solutions for 10 s. Dipped cuttings were for Windows (SPSS, Chicago, IL). When into either glass baby food jars (150 mL) or rooted singly in cells of 72-plug trays filled significant differences (P < 0.05) occurred, petri dishes. with a peat-based substrate composed of means were separated using Duncan’s mul- The in vitro cultures were initially estab- 90% peat and 10% perlite with a pH of 5.0. tiple range test at P < 0.05 level. lished from stem explants cultured on WPM Meanwhile, plantlets derived from the in supplemented with 9.12 mM 6-(4-hydroxy-3- vitro rooting medium supplemented with Results methylbut-2-enylamino) purine or ZT and 9.84 mM IBA were transplanted into plug 0.025 mM IBAinbabyfoodjars.After trays filled with the same substrate. The
Recommended publications
  • Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
    National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia).
    [Show full text]
  • 1 Travel to Wolfville and Kentville, Nova Scotia, Canada, to Collect
    Travel to Wolfville and Kentville, Nova Scotia, Canada, to collect Vaccinium and Related Ericaceae for USDA Plant Exploration Grant 2012 Acadia University, Wolfville, Nova Scotia AAFC Kentville, Nova Scotia Kim Hummer, Research Leader USDA ARS National Clonal Germplasm Repository, Corvallis, Oregon Location and Dates of Travel Wolfville and Kentville, Nova Scotia, Canada 15 July through 20 July 20102 Objectives: To obtain cuttings/ propagules of the Vaccinium collections of Dr. Sam Vander Kloet, Professor Emeritus at Acadia University, Kentville, Nova Scotia. Executive Summary During 15 through 20 July 2012, I traveled to Nova Scotia to obtain plant material that Dr. Sam Vander Kloet, Emeritus Professor at Acadia University had obtained during his life. Acadia University Conservatory, Wolfville, had about 100 accessions of subtropical Vaccinium (blueberry) and related genera. Agriculture and Agri-Food Canada had about 90 accessions of native North American Vaccinium in their field collections. On Monday 16 July through Wednesday 18 July 2012, I worked at the Herbarium and Conservatory of Acadia University working with Ruth Newell, the Curator. From Wednesday afternoon through Thursday, I worked with Dr. Andrew Jamieson, Small fruit Breeder and Geneticist, Agriculture and Agri- Food Canada. I obtained a total of 654 root and stem cuttings of the following genera: Cavendishia (62), Ceratostemma (7), Costera (1), Diogenesia (9), Disterigma (10), Macleania (25), Pernettya (13), Psammisia (7), Spyrospermum (7), and Vaccinium (513). I also obtained two accessions of seed including Vaccinium boreale (1000 count) and Fragaria vesca subsp. alba (2000 count). I obtained a Canadian phytosanitary certificate and had USDA APHIS permits and letters to bring in the Vaccinium and permissible nurserystock.
    [Show full text]
  • Fournier Uqac 0862N 10666.Pdf
    UNIVERSITÉ DU QUÉBEC À CHICOUTIMI DÉPARTEMENT DES SCIENCES FONDAMENTALES DYNAMIQUE DE LA PHÉNOLOGIE, DE L’ALLOMÉTRIE ET DU RENDEMENT DES BLEUETIERS NAINS SAUVAGES DU QUÉBEC SELON L’ESPÈCE ET DIVERS TRAITEMENTS AGRICOLES PAR MARIE-PIER FOURNIER B. Sc. (BIOLOGIE) MÉMOIRE PRÉSENTÉ À L’UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN RESSOURCES RENOUVELABLES II RÉSUMÉ Le rendement des plants de bleuets sauvages est étroitement lié à plusieurs caractéristiques intrinsèques et extrinsèques. Pour ainsi améliorer la productivité, une meilleure compréhension de l’influence de l’architecture des plants, de la phénologie spécifique aux espèces et des traitements de fertilisation et de fauchage sur la production de fruit serait importante pour faire de meilleur choix de pratiques agricole en zone nordique. Pour ce faire, la première partie de cette étude porte sur la comparaison des traits phénologiques, architecturaux et allométriques entre les deux espèces présentes au Saguenay-Lac-Saint-Jean, soit Vaccinium angustifolium Aiton et Vaccinium myrtilloides Michaux. Dans la seconde partie de l’étude, ce sont les effets combinés sur les traits allométriques et le rendement de deux pratiques agricoles, soit le fauchage et l’application d’engrais, qui sont comparés dans une bleuetière en zone nordique. L’expérience s’est déroulée du printemps 2017 à l’automne 2018 sur une bleuetière commerciale située au nord du Saguenay-Lac-Saint-Jean. La combinaison de fauchage – mécanique ou mécanique et thermique – et d’engrais – minéral, organique ou sans – a été appliquée sur les champs. La phénologie des bourgeons, la croissance en hauteur et en longueur, la masse des fruits par plant et par parcelle ainsi que le nombre d’éléments sur la plante (bourgeon, feuille, fleur, fruit, etc.) ont été notés selon le type de production en cours dans les champs, soit l’année après fauchage (pruning year) ou l’année de récolte (harvesting year).
    [Show full text]
  • And Ex Vitro- Propagated Blueberry Plants At
    CHARACTERISTICS OF IN VITRO- AND EX VITRO- PROPAGATED BLUEBERRY PLANTS AT MORPHOLOGICAL, CHEMICAL AND MOLECULAR LEVELS By © JURAN CHANDRA GOYALI B. Sc. Ag., M. Sc. A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology Memorial University of Newfoundland January 2018 St. John’s Newfoundland and Labrador Canada This work is dedicated to my beloved wife Shikha Roy ii ABSTRACT The lowbush blueberry (Vaccinium angustifolium Ait.), a commercially important fruit crop in Canada and USA, is one of the richest sources of antioxidant metabolites which have highly potential to reduce the incidence of several degenerative diseases. The aim of this study is to investigate the effect of propagation on the morphological, chemical and molecular characteristics of blueberries. The study evaluated the genetic and epigenetic variation in micropropagated plants. A lowbush wild clone ‘QB9C’ and the cultivar ‘Fundy’ were studied after being propagated by conventional softwood cutting (SC), and by tissue culture (TC) using nodal explants. The antioxidant metabolites in leaves and fruits of both genotypes were investigated in different maturity stages. The TC-regenerated plants were grown more vigorously and produced higher number of stems, branches, and larger leaves compared to SC plants. However, TC plants of both genotypes produced less flowers and fruits compared with SC counterparts. Micropropagation influenced the synthesis of phenolic and flavonoid compounds, and their antioxidant activities in blueberry which were genotype specific. ‘QB9C’ plants were highly influenced by micropropagation for their phytochemical content and antioxidant capacity. Leaves contained substantially higher levels of polyphenolics, flavonoids and proanthocyanidins than berries.
    [Show full text]
  • Exploring the Opportunities and Constraints to the Success of Newfoundland’S Wild Lowbush Blueberry (Vaccinium Angustifolium Aiton) Industry
    Exploring the Opportunities and Constraints to the Success of Newfoundland’s Wild Lowbush Blueberry (Vaccinium Angustifolium Aiton) Industry by Chelsea Major A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Arts in Geography, Environment and Geomatics Guelph, Ontario, Canada © Chelsea Major, January, 2021 ABSTRACT EXPLORING THE OPPORTUNITIES AND CONSTRAINTS TO THE SUCCESS OF NEWFOUNDLAND’S WILD LOWBUSH BLUEBERRY INDUSTRY Chelsea Major Advisors: Dr. Evan Fraser University of Guelph, 2021 Dr. Faisal Moola Newfoundland and Labrador’s biophysical environment has not been particularly conducive to crop agriculture. The province’s agricultural industry accounts for only 1% of its GDP. The number of farms, farm operators, farmland, and cropland within Newfoundland and Labrador are all experiencing decline outside of national averages. This has led to great provincial interest in increasing agricultural capacity in the province. A potential avenue for agricultural development is strengthening the province’s wild blueberry industry. Through a mixed methods case study that involved a geographic information system-based multi-criteria land suitability analysis and interviews, this research explores the potential for this industry and the different challenges and values that may impact it. This thesis analyzes the biophysical potential for this industry through the manipulation of various geospatial layers to determine suitability for commercial wild lowbush blueberry farming. This thesis also engages with perceptions of the barriers that impede the wild lowbush blueberry industry in Newfoundland as well as the potential opportunities to strengthen this sector. Finally, it examines the socio-cultural values surrounding wild lowbush blueberries in Newfoundland and cautions that these values may be more important than the potential market value created through blueberry commercialization.
    [Show full text]
  • The Genus Vaccinium in North America
    Agriculture Canada The Genus Vaccinium 630 . 4 C212 P 1828 North America 1988 c.2 Agriculture aid Agri-Food Canada/ ^ Agnculturo ^^In^iikQ Canada V ^njaian Agriculture Library Brbliotheque Canadienno de taricakun otur #<4*4 /EWHE D* V /^ AgricultureandAgri-FoodCanada/ '%' Agrrtur^'AgrntataireCanada ^M'an *> Agriculture Library v^^pttawa, Ontano K1A 0C5 ^- ^^f ^ ^OlfWNE D£ W| The Genus Vaccinium in North America S.P.VanderKloet Biology Department Acadia University Wolfville, Nova Scotia Research Branch Agriculture Canada Publication 1828 1988 'Minister of Suppl) andS Canada ivhh .\\ ailabla in Canada through Authorized Hook nta ami other books! or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada K1A0S9 Catalogue No.: A43-1828/1988E ISBN: 0-660-13037-8 Canadian Cataloguing in Publication Data VanderKloet,S. P. The genus Vaccinium in North America (Publication / Research Branch, Agriculture Canada; 1828) Bibliography: Cat. No.: A43-1828/1988E ISBN: 0-660-13037-8 I. Vaccinium — North America. 2. Vaccinium — North America — Classification. I. Title. II. Canada. Agriculture Canada. Research Branch. III. Series: Publication (Canada. Agriculture Canada). English ; 1828. QK495.E68V3 1988 583'.62 C88-099206-9 Cover illustration Vaccinium oualifolium Smith; watercolor by Lesley R. Bohm. Contract Editor Molly Wolf Staff Editors Sharon Rudnitski Frances Smith ForC.M.Rae Digitized by the Internet Archive in 2011 with funding from Agriculture and Agri-Food Canada - Agriculture et Agroalimentaire Canada http://www.archive.org/details/genusvacciniuminOOvand
    [Show full text]
  • The SP Vander Kloet Vaccinium Collections11 This
    337 REVIEW / SYNTHÈSE Beyond botany to genetic resource preservation: the S.P. Vander Kloet Vaccinium collections1 Kim E. Hummer, Andrew R. Jamieson, and Ruth E. Newell Abstract: Sam P. Vander Kloet, botanist, traveled the world examining and obtaining specimens to redefine infrageneric taxonomic units within Vaccinium L., family Ericaceae. Besides his botanical treatises, his legacy includes herbarium voucher specimens and ex situ genetic resource collections including a seed bank and living plant collections at the Agricul- ture and Agri-Food Canada Research Centre, Kentville, Nova Scotia, Canada; the K.C. Irving Environmental Science Centre and Harriet Irving Botanical Gardens, Acadia University, Wolfville, Nova Scotia, Canada; the Canadian Clonal Genebank, Harrow, Ontario, Canada; and the US Department of Agriculture, Agricultural Research Service, National Clonal Germ- plasm Repository, Corvallis, Oregon, United States. Sam P. Vander Kloet’s collections include representatives of wild Erica- ceae with special emphasis on collections of North American and subtropical endemic Vaccinium species. These reference collections are significant and represent a lifetime of dedicated research. Representatives of his heritage collections have now been deposited not only in American genebanks (in Canada and the United States) but also in the World Genebank in Svalbard, Norway, for long term conservation and future evaluation of Vaccinium for the service of humanity. The bequest of his wild collected germplasm will continue to be available to facilitate utilization of an extended Vaccinium gene pool for development and breeding throughout the world. Key words: germplasm conservation, blueberry, genetics, genebanks, plant exploration. Résumé : Sam P. Vander Kloet, botaniste, a voyagé à travers le monde en examinant et obtenant des spécimens pour redéfi- nir les unités taxonomiques infragénériques au sein des Vaccinium L., famille des Ericaceae.
    [Show full text]
  • Vegetation Classification and Mapping Project Report
    U.S. Geological Survey-National Park Service Vegetation Mapping Program Acadia National Park, Maine Project Report Revised Edition – October 2003 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U. S. Department of the Interior, U. S. Geological Survey. USGS-NPS Vegetation Mapping Program Acadia National Park U.S. Geological Survey-National Park Service Vegetation Mapping Program Acadia National Park, Maine Sara Lubinski and Kevin Hop U.S. Geological Survey Upper Midwest Environmental Sciences Center and Susan Gawler Maine Natural Areas Program This report produced by U.S. Department of the Interior U.S. Geological Survey Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603 and Maine Natural Areas Program Department of Conservation 159 Hospital Street 93 State House Station Augusta, Maine 04333-0093 In conjunction with Mike Story (NPS Vegetation Mapping Coordinator) NPS, Natural Resources Information Division, Inventory and Monitoring Program Karl Brown (USGS Vegetation Mapping Coordinator) USGS, Center for Biological Informatics and Revised Edition - October 2003 USGS-NPS Vegetation Mapping Program Acadia National Park Contacts U.S. Department of Interior United States Geological Survey - Biological Resources Division Website: http://www.usgs.gov U.S. Geological Survey Center for Biological Informatics P.O. Box 25046 Building 810, Room 8000, MS-302 Denver Federal Center Denver, Colorado 80225-0046 Website: http://biology.usgs.gov/cbi Karl Brown USGS Program Coordinator - USGS-NPS Vegetation Mapping Program Phone: (303) 202-4240 E-mail: [email protected] Susan Stitt USGS Remote Sensing and Geospatial Technologies Specialist USGS-NPS Vegetation Mapping Program Phone: (303) 202-4234 E-mail: [email protected] Kevin Hop Principal Investigator U.S.
    [Show full text]
  • Acadian-Appalachian Alpine Tundra
    Acadian-Appalachian Alpine Tundra Macrogroup: Alpine yourStateNatural Heritage Ecologist for more information about this habitat. This is modeledmap a distributiononbased current and is data nota substitute for field inventory. based Contact © Josh Royte (The Nature Conservancy, Maine) Description: A sparsely vegetated system near or above treeline in the Northern Appalachian Mountains, dominated by lichens, dwarf-shrubland, and sedges. At the highest elevations, the dominant plants are dwarf heaths such as alpine bilberry and cushion-plants such as diapensia. Bigelow’s sedge is characteristic. Wetland depressions, such as small alpine bogs and rare sloping fens, may be found within the surrounding upland matrix. In the lower subalpine zone, deciduous shrubs such as nannyberry provide cover in somewhat protected areas; dwarf heaths including crowberry, Labrador tea, sheep laurel, and lowbush blueberry, are typical. Nearer treeline, spruce and fir that State Distribution: ME, NH, NY, VT have become progressively more stunted as exposure increases may form nearly impenetrable krummholz. Total Habitat Acreage: 8,185 Ecological Setting and Natural Processes: Percent Conserved: 98.1% High winds, snow and ice, cloud-cover fog, and intense State State GAP 1&2 GAP 3 Unsecured summer sun exposure are common and control ecosystem State Habitat % Acreage (acres) (acres) (acres) dynamics. Found mostly above 4000' in the northern part of NH 51% 4,160 4,126 0 34 our region, alpine tundra may also occur in small patches on ME 44% 3,624 2,510 1,082 33 lower ridgelines and summits and at lower elevations near the Atlantic coast. NY 3% 285 194 0 91 VT 1% 115 115 0 0 Similar Habitat Types: Acadian-Appalachian Montane Spruce-Fir-Hardwood Forests typically occur downslope.
    [Show full text]
  • ABSTRACT YOUNG, ELISHEBA. Fruit Quality
    ABSTRACT YOUNG, ELISHEBA. Fruit Quality Evaluation of a Mapping Population and Single Nucleotide Polymorphic (SNP) Marker Discovery in Blueberry (Vaccinium) Species. (Under the direction of Hamid Ashrafi). Blueberry breeders at NC State University have released several elite cultivars that have contributed to the estimated ~$70 M statewide farm-gate value. Blueberries belong to the Ericaceae family and the genus Vaccinium with several subgenera or sections. Many commercially important cultivars released today including the parents of the population in the current study are derived from the species in section Cyanococcus. However, these cultivars may include introgressed genetic materials from other species of other sections that yet need to be discovered. Traditionally, selection for desirable traits is accomplished using recurrent selection through subjective field evaluations. Although a successful means of cultivar development, statistically only one in 10,000 seedlings is chosen as a cultivar which requires significant time, land, and labor resources. The task is made more difficult with increased ploidy levels. As such, there is growing interest in the development of genomic tools that blueberry breeders can use to make selections for fruit quality attributes more efficiently. Recently, a genetic linkage map has been used to identify quantitative trait loci (QTL) in a diploid population segregating for chilling requirements and cold-hardiness. However, little is known about the genetic mechanisms responsible for QTLs that control fruit quality traits like firmness, sugar content, acidity, and berry size in a tetraploid population of blueberries. As such, part of the research at the NC State blueberry breeding program involves the genotyping and phenotyping of mapping populations that segregate for fruit quality-related traits.
    [Show full text]
  • Growth and Development of the Wild Blueberry Introduction
    Wild Blueberry Fact Sheet A.2.0 Growth and Development of the Wild Blueberry Introduction The wild blueberry plant is native to North America. This plant belongs to the plant genus Vaccinium. There are 5 species of blueberries which grow in the wild in Canada. The most important are: 1. Sour top (Vaccinium myrtilloides Michx). This is primarily a forest species. The species has more branches, and the leaves and stems tend to be more hairy. The plants are generally 15 to 60 cm (6 to 24 inches) tall. It is reported that its density decreases following continuous pruning. This species tends to be more productive in the third year, compared to the "low sweet", which is most productive in the second year after pruning. The fruit is blue and covered with a waxy coating called "bloom". The fruit is not as sweet as the common wild blueberry and referred to as “Sour Top” 2. Wild Low Sweet (Vaccinium angustifolium Ait.). This species is the most common in managed fields, and the forest. The plants can reach heights of 7 to 38 cm (3 to 15 inches). The stems are free of hairs. The fruit is sweet, blue and covered with a bloom that gives it a light, powder-blue appearance. This species includes a sub-species called the Black-fruited Low Sweet (Vaccinium angustifolium var. nigrum). It has the same characteristics as the Low Sweet, except that the fruit is black with no waxy coating. 3. Highbush Blueberry (Vaccinium corymbosum L.). This species can be found in many areas, but tends to prefer wetter sites like the edges of bogs and swamps.
    [Show full text]