ABSTRACT YOUNG, ELISHEBA. Fruit Quality

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT YOUNG, ELISHEBA. Fruit Quality ABSTRACT YOUNG, ELISHEBA. Fruit Quality Evaluation of a Mapping Population and Single Nucleotide Polymorphic (SNP) Marker Discovery in Blueberry (Vaccinium) Species. (Under the direction of Hamid Ashrafi). Blueberry breeders at NC State University have released several elite cultivars that have contributed to the estimated ~$70 M statewide farm-gate value. Blueberries belong to the Ericaceae family and the genus Vaccinium with several subgenera or sections. Many commercially important cultivars released today including the parents of the population in the current study are derived from the species in section Cyanococcus. However, these cultivars may include introgressed genetic materials from other species of other sections that yet need to be discovered. Traditionally, selection for desirable traits is accomplished using recurrent selection through subjective field evaluations. Although a successful means of cultivar development, statistically only one in 10,000 seedlings is chosen as a cultivar which requires significant time, land, and labor resources. The task is made more difficult with increased ploidy levels. As such, there is growing interest in the development of genomic tools that blueberry breeders can use to make selections for fruit quality attributes more efficiently. Recently, a genetic linkage map has been used to identify quantitative trait loci (QTL) in a diploid population segregating for chilling requirements and cold-hardiness. However, little is known about the genetic mechanisms responsible for QTLs that control fruit quality traits like firmness, sugar content, acidity, and berry size in a tetraploid population of blueberries. As such, part of the research at the NC State blueberry breeding program involves the genotyping and phenotyping of mapping populations that segregate for fruit quality-related traits. In the current study, a tetraploid F1 population (n=344) of a cross between cv. ‘Reveille’ and cv. ‘Arlen’ (RA) was used for phenotypic evaluations. The collected phenotypic data and SNP data generated from sequence capture technology will be used for future genetic marker development, genetic map construction and QTL mapping. In the current thesis, we will only discuss the phenotypic evaluations of fruit quality-related traits in the RA population that were carried out in three harvest seasons from 2016-2018. The segregation of the traits in this population, their potential use for QTL mapping and the lessons learned will be discussed. In addition to being time and labor intensive, traditional breeding efforts to develop superior blueberry cultivars via interspecific hybridization followed by backcrossing has resulted in the development of modern cultivars that are segmental allopolyploids. The outbreeding nature of blueberry and the use of inter- and intra-specific hybridization during the past century has generated a lot of speculation about the relationship between the founder species and the modern cultivars. With the advent of next-generation sequencing (NGS) technologies, it is currently possible to uncover their interrelation at the whole genome level at a lower cost by sequencing each founder and cultivated species. In the second study, using Illumina sequencing, we re-sequenced 29 accessions at least 20X genome coverage. The 29 accessions were comprised of 18 different wild and cultivated species from 6 sections in Vaccinium that represent 18 diploids (2n = 2x = 24), 8 tetraploids (2n = 4x = 48), and 3 hexaploids (2n = 6x = 72). The 18 diploids represented 11 different species including: section Cyanococcus [V. caesariense, V. darrowii, V. elliottii, V. fuscatum, V. myrtilloides, V. pallidum, and V. tenellum]; section Batodendron [V. arboreum]; section Herpothamnus [V. crassifolium]; section Pyxothamnus [V. ovatum]; and section Polycodium [V. stamineum]. The 8 tetraploids were representative of 6 different species including: section Cyanococcus [V. angustifolium, V. corymbosum, V. formosum, and V. myrsinites]; section Hemimyrtillus [V. arctostaphylos]; and section Pyxothamnus [V. consanguineum]. The 3 hexaploids were all classified in section Cyanococcus [V. virgatum] and are known as rabbiteye blueberries. The re-sequencing data allowed for the discovery of single nucleotide polymorphic (SNP) markers within and between different groups. These SNP markers are easily adaptable to various SNP genotyping platforms that can be used in breeding programs, calculation of minor allele frequency, defining haplotype blocks and phylogenetic analysis. © Copyright 2019 Elisheba Young All Rights Reserved Fruit Quality Evaluation of a Mapping Population and Single Nucleotide Polymorphic (SNP) Marker Discovery in Blueberry (Vaccinium) Species by Elisheba Young A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science Horticulture Raleigh, North Carolina 2019 APPROVED BY: _______________________________ _______________________________ Dr. Hamid Ashrafi Dr. Penelope Veazie-Perkins Chair of Advisory Committee ___________________________ _______________________________ Dr. Consuello Arellano Dr. Ross Whetten ___________________________ Dr. Paul Manos External Member DEDICATION To God YHWH and my family. ii BIOGRAPHY As a child, I would perform experiments with plants ultimately learning that plants were not sessile, boring creatures, bending aimlessly in the wind, obedient only to the whims of sunlight and water. Instead, these plants were meticulously crafted entities that possessed deeper self-regulation than my middle-school classes let-on. This passion for plants continued into my adulthood. I graduated in 2008 from Spelman College with a degree in Biology. While there, I took an elective in Botany course that really peaked my interest in plant sciences. I was instantly intrigued with the intricacies of plant life. This elective incorporated trips to sustainable herbal gardens during the year. In this class, I had my first exposure to the maintenance, expertise, and responsibility that horticulturalists require to have a persistent impact on their communities. I immediately began to delve deeper by researching fascinating plants in books and articles, establishing gardens on available plots of land, and signing up for nature hikes where I would identify various wild species of plants. Although I was originally a pre-medical student and even successfully completed one year of medical school out of the country, my return to the United States due financial constraints allowed me to really consider my future career path and make a decision based on passion. While ruminating on my next steps, I served in the capacity of AP Environmental Science and Biology teacher. In these roles, I found it extremely important to foster a deep understanding of sustainable crop production. As such I introduced community-garden projects to students wherever I taught. In 2014, I left teaching and decided on a career in plant sciences. In preparation, I interfaced with several botanists in Massachusetts who iii advised me about the best course of action for my career switch. One botanist in particular, Dr. Adán Colón-Carmona, was very helpful and suggested I sit in his higher-level plant physiology course at University of Massachusetts, Boston (UMASS Boston). The class and laboratory research work were so interesting that I ended up enrolling in the course. While there I was responsible for conducting an individual project that involved the expression of the Lateral Organ Boundary gene LBD10 in response to auxin in wild-type and Auxin Response Factor 7/19 double mutant Arabidopsis plants. I knew I had found a field that I loved. Upon moving to North Carolina, I asked to volunteer with Dr. Todd Wehner, a well- established cucurbit breeder at NC State University. While here, I acquired several field, greenhouse, and lab research skills that would eventually solidify my decision to become a horticulturalist. Improving the quality of the food for all communities was definitely in line with my recent career path. I applied that summer to enroll as a Master’s Student at NC State University and was accepted into the Spring 2017 cohort under Dr. Hamid Ashrafi, a highly competent blueberry breeder. Eager to begin my research, I worked as a lab technician from 2016 until the start of my Master’s program, increasing my proficiency in performing DNA extractions, library preparations, gel electrophoresis, Quanti-IT PicoGreen ds DNA assay and qPCR analysis in addition to collecting agronomic data. Under Dr. Ashrafi, I began work on two projects that attempted to map out the relationships between fruit quality traits and the QTLs that control them as well as the genetic relationship between and among several wild and cultivated species. The first project involved the measuring fruit quality related traits for QTL mapping in an F1 population of blueberry from iv a cross between ‘Reveille’ x ‘Arlen’ cultivars. Once complete, this research will bring breeders one step closer to identifying and locating QTLs associated with important traits like firmness, soluble solid content, titratable acidity, size, etc. so that selections can be made more easily for breeding. This is important because traditionally, the selection for desirable traits is accomplished using recurrent selection through subjective field evaluations. Although a successful means of cultivar development, statistically only one in 10,000 seedlings is chosen as a cultivar which
Recommended publications
  • Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
    National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp.
    [Show full text]
  • USDA Forest Seroice Research Note S E- 177 July 1971
    USDA Forest Seroice Research Note S E- 177 July 1971 CHOPPING AND WEBBING CONTROL SAW-PALMETTO IN SOUTH FLORIDA1 Abstract.--Saw-palmetto is one of the more troublesome plants growing in south Florida, and its control is often desirable in programs of range and timber management. Both cross-chopping and webbing (root plowing) proved to be ef­ fective control measures, but webbing appeared to be less effective on a moist site. Many other shrubs were also effectively reduced by these treatments. Saw-palmetto (Serenoa repens (Bartr.) Small) is the major under­ story shrub over much of the pine flatwoods. It is the dominant shrub on some 8.5 million acres of grazed forest land and 9 million acres of com­ mercial, nongrazed forest land in Florida (4) and is commonly associated with other shrubs over most of the pine-;Iregrass type. These shrubs are important competitors with forage and trees for soil moisture, nutri­ ents, light, and space. In dense stands of shrubs, particularly palmetto, yield and availability of forage is decreased, and cattle handling is more difficult. Wildfire is especially damaging to trees where shrubs contrib­ ute a large amount of combustible material. Most shrubs also impede planting and harvesting of pines. For these reasons, most land managers seek practical methods of shrub control. Fire has been used in the South for many years to alleviate these problems (6). Although burning temporarily reduces the size of saw­ palmetto, the plants are not killed but readily begin sprouting. These re­ sponses to fire are also true of most other southern shrubs.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia).
    [Show full text]
  • Lyonia Preserve Plant Checklist
    Lyonia Preserve Plant Checklist Volusia County, Florida Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum Bitterweed Helenium amarum Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia Nolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia Cudweed Gnaphalium falcatum Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus Fireweed Erechtites hieracifolia Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) Ragweed Ambrosia artemisiifolia Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia Spanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra Sand Holly Ilex ambigua Bromeliaceae (Airplant) Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata Spanish Moss Tillandsia usneoides Arecaceae (Palm) Saw Palmetto Serenoa repens Cactaceae (Cactus) Scrub Palmetto Sabal etonia Prickly Pear Opuntia humifusa Asclepiadaceae (Milkweed) Caesalpinceae Butterfly Weed Asclepias
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • 1 Travel to Wolfville and Kentville, Nova Scotia, Canada, to Collect
    Travel to Wolfville and Kentville, Nova Scotia, Canada, to collect Vaccinium and Related Ericaceae for USDA Plant Exploration Grant 2012 Acadia University, Wolfville, Nova Scotia AAFC Kentville, Nova Scotia Kim Hummer, Research Leader USDA ARS National Clonal Germplasm Repository, Corvallis, Oregon Location and Dates of Travel Wolfville and Kentville, Nova Scotia, Canada 15 July through 20 July 20102 Objectives: To obtain cuttings/ propagules of the Vaccinium collections of Dr. Sam Vander Kloet, Professor Emeritus at Acadia University, Kentville, Nova Scotia. Executive Summary During 15 through 20 July 2012, I traveled to Nova Scotia to obtain plant material that Dr. Sam Vander Kloet, Emeritus Professor at Acadia University had obtained during his life. Acadia University Conservatory, Wolfville, had about 100 accessions of subtropical Vaccinium (blueberry) and related genera. Agriculture and Agri-Food Canada had about 90 accessions of native North American Vaccinium in their field collections. On Monday 16 July through Wednesday 18 July 2012, I worked at the Herbarium and Conservatory of Acadia University working with Ruth Newell, the Curator. From Wednesday afternoon through Thursday, I worked with Dr. Andrew Jamieson, Small fruit Breeder and Geneticist, Agriculture and Agri- Food Canada. I obtained a total of 654 root and stem cuttings of the following genera: Cavendishia (62), Ceratostemma (7), Costera (1), Diogenesia (9), Disterigma (10), Macleania (25), Pernettya (13), Psammisia (7), Spyrospermum (7), and Vaccinium (513). I also obtained two accessions of seed including Vaccinium boreale (1000 count) and Fragaria vesca subsp. alba (2000 count). I obtained a Canadian phytosanitary certificate and had USDA APHIS permits and letters to bring in the Vaccinium and permissible nurserystock.
    [Show full text]
  • Fournier Uqac 0862N 10666.Pdf
    UNIVERSITÉ DU QUÉBEC À CHICOUTIMI DÉPARTEMENT DES SCIENCES FONDAMENTALES DYNAMIQUE DE LA PHÉNOLOGIE, DE L’ALLOMÉTRIE ET DU RENDEMENT DES BLEUETIERS NAINS SAUVAGES DU QUÉBEC SELON L’ESPÈCE ET DIVERS TRAITEMENTS AGRICOLES PAR MARIE-PIER FOURNIER B. Sc. (BIOLOGIE) MÉMOIRE PRÉSENTÉ À L’UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN RESSOURCES RENOUVELABLES II RÉSUMÉ Le rendement des plants de bleuets sauvages est étroitement lié à plusieurs caractéristiques intrinsèques et extrinsèques. Pour ainsi améliorer la productivité, une meilleure compréhension de l’influence de l’architecture des plants, de la phénologie spécifique aux espèces et des traitements de fertilisation et de fauchage sur la production de fruit serait importante pour faire de meilleur choix de pratiques agricole en zone nordique. Pour ce faire, la première partie de cette étude porte sur la comparaison des traits phénologiques, architecturaux et allométriques entre les deux espèces présentes au Saguenay-Lac-Saint-Jean, soit Vaccinium angustifolium Aiton et Vaccinium myrtilloides Michaux. Dans la seconde partie de l’étude, ce sont les effets combinés sur les traits allométriques et le rendement de deux pratiques agricoles, soit le fauchage et l’application d’engrais, qui sont comparés dans une bleuetière en zone nordique. L’expérience s’est déroulée du printemps 2017 à l’automne 2018 sur une bleuetière commerciale située au nord du Saguenay-Lac-Saint-Jean. La combinaison de fauchage – mécanique ou mécanique et thermique – et d’engrais – minéral, organique ou sans – a été appliquée sur les champs. La phénologie des bourgeons, la croissance en hauteur et en longueur, la masse des fruits par plant et par parcelle ainsi que le nombre d’éléments sur la plante (bourgeon, feuille, fleur, fruit, etc.) ont été notés selon le type de production en cours dans les champs, soit l’année après fauchage (pruning year) ou l’année de récolte (harvesting year).
    [Show full text]
  • The Genus Vaccinium in North America
    Agriculture Canada The Genus Vaccinium 630 . 4 C212 P 1828 North America 1988 c.2 Agriculture aid Agri-Food Canada/ ^ Agnculturo ^^In^iikQ Canada V ^njaian Agriculture Library Brbliotheque Canadienno de taricakun otur #<4*4 /EWHE D* V /^ AgricultureandAgri-FoodCanada/ '%' Agrrtur^'AgrntataireCanada ^M'an *> Agriculture Library v^^pttawa, Ontano K1A 0C5 ^- ^^f ^ ^OlfWNE D£ W| The Genus Vaccinium in North America S.P.VanderKloet Biology Department Acadia University Wolfville, Nova Scotia Research Branch Agriculture Canada Publication 1828 1988 'Minister of Suppl) andS Canada ivhh .\\ ailabla in Canada through Authorized Hook nta ami other books! or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada K1A0S9 Catalogue No.: A43-1828/1988E ISBN: 0-660-13037-8 Canadian Cataloguing in Publication Data VanderKloet,S. P. The genus Vaccinium in North America (Publication / Research Branch, Agriculture Canada; 1828) Bibliography: Cat. No.: A43-1828/1988E ISBN: 0-660-13037-8 I. Vaccinium — North America. 2. Vaccinium — North America — Classification. I. Title. II. Canada. Agriculture Canada. Research Branch. III. Series: Publication (Canada. Agriculture Canada). English ; 1828. QK495.E68V3 1988 583'.62 C88-099206-9 Cover illustration Vaccinium oualifolium Smith; watercolor by Lesley R. Bohm. Contract Editor Molly Wolf Staff Editors Sharon Rudnitski Frances Smith ForC.M.Rae Digitized by the Internet Archive in 2011 with funding from Agriculture and Agri-Food Canada - Agriculture et Agroalimentaire Canada http://www.archive.org/details/genusvacciniuminOOvand
    [Show full text]
  • How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
    Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms.
    [Show full text]
  • Breeding Blueberries for Florida:Accomplishments
    select the smallest subset of the k treatments that will have Subset selection a preassigned probability of at least P of containing the best If k is large or if the 2 best treatments are close to each treatment; (c) pick the t( = 2, 3, etc.) best treatments; or (d) other, we may require a prohibitively large experiment to rank the t best treatments. assure a high probability of correctly selecting the best treatment. We mayt>e satisfied instead with picking a small Selecting the Best Treatment subset for future more intensive study. We want the smallest Obviously, the best treatment will be taken to be that subset such that the probability is P that the best treatment one for which the sample mean is the largest, but unless the is in the selected subset. The rule is to include a treatment number r of replications per treatment is sufficiently large, in the subset if its sample mean exceeds xraax. — h(k, P) the probability will not be high that the best treatment will O-/V* (i£ o- is known) or xmax. - V"2 t(l-p; k-1, n) s/yjr give the biggest sample mean. Given a probability P and a (cr unknown). Values of t(l-P; k-1, n) are given in Table Fl difference d of practical importance between the 2 best in (3). In our previous numerical example, xmax = 71.3, treatments, we can calculate r such that the probability is at s = 8.92, r = 6, n = 30 and k = 7. If P = .95, the table least P that the best treatment will give the largest sample gives t(.05; 6, 30) = 2.40.
    [Show full text]
  • Escuela De Posgrado Maestría En Agronegocios
    UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POSGRADO MAESTRÍA EN AGRONEGOCIOS “ESTRATEGIAS DE MERCADO PARA FOMENTAR LA EXPORTACIÓN DE ARÁNDANO (Vaccinium spp.) DESDE LIMA A ESTADOS UNIDOS A PARTIR DEL 2017” Presentada por: JULIA ESTHER GAMARRA SOLÓRZANO TESIS PARA OPTAR EL GRADO DE MAGISTER SCIENTIAE EN AGRONEGOCIOS Lima - Perú 2016 UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POSGRADO MAESTRÍA EN AGRONEGOCIOS “ESTRATEGIAS DE MERCADO PARA FOMENTAR LA EXPORTACIÓN DE ARÁNDANO (Vaccinium spp.) DESDE LIMA A ESTADOS UNIDOS A PARTIR DEL 2017” TESIS PARA OPTAR EL GRADO DE MAGISTER SCIENTIAE Presentada por: JULIA ESTHER GAMARRA SOLÓRZANO Sustentada y aprobada ante el siguiente jurado: Dr. Pedro Quiroz Quezada Mg.Sc. Luis Espinoza Villanueva PRESIDENTE PATROCINADOR Mto.Prof.CPC. Demetrio Tello Romero Dr. Ampelio Ferrando Perea MIEMBRO MIEMBRO DEDICATORIA La presente tesis la dedico a Dios, por haberme llenado de fuerza y optimismo para cumplir con este objetivo; a mi mamá Julia que ha sido un pilar fundamental en mi formación profesional, por su desprendimiento, sus consejos y por ser un gran ejemplo de perseverancia; a mi esposo Denis por su apoyo incondicional y estar siempre en los momentos difíciles brindándome su amor y su comprensión ; a mi hijo Thiago por su amor y ser el motor de mi vida ; a mi hermana Giuliana por ser siempre mi fortaleza ; a mi primo Tato por haberme siempre orientado a tomar mejores decisiones, a mi Negrita por ser mi segunda madre y motivarme siempre; y a toda mi familia por estar a mi lado en todo momento. Julia. AGRADECIMIENTO A la Universidad Nacional Agraria La Molina, por haberme brindado una formación académica de alto nivel y a los docentes de la Maestría en Agronegocios, por los conocimientos y enseñanzas impartidas durante mi formación post gradual.
    [Show full text]
  • The SP Vander Kloet Vaccinium Collections11 This
    337 REVIEW / SYNTHÈSE Beyond botany to genetic resource preservation: the S.P. Vander Kloet Vaccinium collections1 Kim E. Hummer, Andrew R. Jamieson, and Ruth E. Newell Abstract: Sam P. Vander Kloet, botanist, traveled the world examining and obtaining specimens to redefine infrageneric taxonomic units within Vaccinium L., family Ericaceae. Besides his botanical treatises, his legacy includes herbarium voucher specimens and ex situ genetic resource collections including a seed bank and living plant collections at the Agricul- ture and Agri-Food Canada Research Centre, Kentville, Nova Scotia, Canada; the K.C. Irving Environmental Science Centre and Harriet Irving Botanical Gardens, Acadia University, Wolfville, Nova Scotia, Canada; the Canadian Clonal Genebank, Harrow, Ontario, Canada; and the US Department of Agriculture, Agricultural Research Service, National Clonal Germ- plasm Repository, Corvallis, Oregon, United States. Sam P. Vander Kloet’s collections include representatives of wild Erica- ceae with special emphasis on collections of North American and subtropical endemic Vaccinium species. These reference collections are significant and represent a lifetime of dedicated research. Representatives of his heritage collections have now been deposited not only in American genebanks (in Canada and the United States) but also in the World Genebank in Svalbard, Norway, for long term conservation and future evaluation of Vaccinium for the service of humanity. The bequest of his wild collected germplasm will continue to be available to facilitate utilization of an extended Vaccinium gene pool for development and breeding throughout the world. Key words: germplasm conservation, blueberry, genetics, genebanks, plant exploration. Résumé : Sam P. Vander Kloet, botaniste, a voyagé à travers le monde en examinant et obtenant des spécimens pour redéfi- nir les unités taxonomiques infragénériques au sein des Vaccinium L., famille des Ericaceae.
    [Show full text]