Understanding Astronaut Shoulder Injury

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Astronaut Shoulder Injury Human-Spacesuit Interaction: Understanding Astronaut Shoulder Injury by ALEXANDRA MARIE HILBERT B.S. Mechanical Engineering Cornell University, 2013 Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 © 2015 Massachusetts Institute of Technology. All rights reserved. Signature of Author Department of Aeronautics and Astronautics May 21, 2015 Certified by Dava J. Newman, Ph.D. Apollo Professor of Astronautics and Engineering Systems Director of Technology and Policy Program Thesis Supervisor Accepted by Paulo C. Lozano, Ph.D. Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 1 2 Human-Spacesuit Interaction: Understanding Astronaut Shoulder Injury by ALEXANDRA MARIE HILBERT Submitted to the Department of Aeronautics and Astronautics on May 21, 2015 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautics and Astronautics ABSTRACT Extravehicular activities (EVA), or space walks, are a critical and complex aspect of human spaceflight missions. To prepare for safe and successful execution of the required tasks, astronauts undergo extensive training in the Neutral Buoyancy Lab (NBL), which involves many hours of performing repetitive motions at various orientations, all while wearing a pressurized spacesuit. The current U.S. spacesuit—the Extravehicular Mobility Unit (EMU)—is pressurized to 29.6 kPa (4.3 psi) and requires astronauts to exert a substantial amount of energy in order to move the suit into a desired position. The pressurization of the suit therefore limits human mobility, causes discomfort, and leads to a variety of contact and strain injuries. Shoulder injuries are one of the most severe injuries that astronauts contend with, and are mainly attributed to the EMU’s hard upper torso (HUT). While suit-related injuries have been observed for many years and some basic countermeasures have been implemented, there is still a lack of understanding of how humans move inside the spacesuit. The objective of this research is therefore to gain a greater understanding of this human-spacesuit interaction and potential for shoulder injury through two approaches: quantifying and analyzing the suit-induced pressures that arise in the shoulder region, and comparing the shoulder muscle forces that arise in the unsuited and suited conditions by modeling human-spacesuit interaction. The first approach provides an “inside look” of the pressure distributions and pressure profiles that arise at the interface between the human shoulder and the torso of the spacesuit, thereby suggesting which areas of the shoulder might be prone to contact injury. A commercially produced pressure sensing system is used to collect shoulder pressure data during a human subject experiment that involves three experienced subjects performing a series of upper body motions in both unsuited and suited conditions. Pressure distributions reveal that: 1) the least experienced subject generates the highest pressures, 2) for the majority of movements for all subjects, pressure is concentrated just above the clavicle over the soft musculature at the top of the shoulder, 3) the top of the shoulder is one of the regions in which maximum pressure is located most frequently, and 4) the shoulder blade is a secondary region of concern with regards to frequency of experiencing maximum pressure. Pressure profile analysis reveals that 1) for most subjects, general profile trends vary in shape across movement groups, 2) repetitions within each 3 movement group are consistent in shape, and for most subjects also in magnitude, 3) the highest pressures are typically found near the top of the shoulder, and 4) the shoulder blade area is of concern for at least one subject. As these results are primarily observational in nature, a statistical analysis is performed to assess the effects of motion type and anthropometric region on peak pressure magnitudes. This analysis shows that results cannot be generalized across subjects as they are likely affected by individual anthropometry, suit fit, and the biomechanics of how each subject performs the motion. However, a number of interesting trends regarding which motions or regions yield higher pressures are found for each of the individual subjects. The results are specific to the subjects, suit sizes, and experimental conditions used in this particular experiment; however, the application of these quantitative and repeatable techniques during future experiments, suit fit sessions, or NBL runs would lead to a more complete understanding of human-spacesuit interaction at the shoulder interface. The second approach analyzes the effects of spacesuits on muscle forces in the shoulder region. Data regarding spacesuit joint torques and the joint angles of a suited subject are integrated into an upper-extremity musculoskeletal model in OpenSim to evaluate which muscles are most affected by the spacesuit. Looking specifically at a shoulder abduction/adduction motion, shoulder abductors, adductors, and stabilizer muscle groups are evaluated for significant changes in force from the unsuited to suited condition, and individual muscles within the shoulder region are also evaluated for significant changes from the unsuited to suited conditions. From a statistical analysis of the musculoskeletal simulation results, it is found that of the three investigated muscle groups—shoulder abductors, adductors, and stabilizers—only the abductors experience a statistically significant change in total muscle force between the unsuited and suited conditions. Looking specifically at the individual muscles that constitute the abductors and stabilizers, we find that only the middle deltoid experienced a statistically significant change in force from the unsuited to suited condition. A number of explanations are provided for the observed force profiles and the statistical results. The presented results are specific to the subject’s motion data, suit torque data, and the musculoskeletal model that are used; however expanding this analysis to more subjects, other body joints, and a more complex musculoskeletal model would provide useful results for industry experts. Valuable information could be provided to EVA operations teams, flight doctors, and spacesuit designers regarding which movements or tasks should be avoided or performed minimally to prevent injury. The resulting muscle forces could also be used to set limits on the joint torques that are engineered in future spacesuits. Each of the approaches implemented in this thesis provides a different avenue for addressing the issue of shoulder injury in the spacesuit. While the pressure analysis contributes to the understanding of human-spacesuit interaction by informing on the anthropometric regions that might be most susceptible to contact injury, the musculoskeletal analysis provides insight as to which individual muscles are most susceptible to strain injury. Both of these quantitative, evidence-based approaches contribute to an increased understanding of the potential for shoulder injury in the spacesuit. Thesis Supervisor: Dava J. Newman, Ph.D. Title: Apollo Professor of Astronautics and Engineering Systems Director of Technology and Policy Program Massachusetts Institute of Technology 4 ACKNOWLEDGEMENTS First and foremost, I would like to thank my wonderful advisor, Professor Dava Newman, for providing me with numerous once-in-a-lifetime opportunities during my short grad school experience. I feel extremely fortunate to have had you as an advisor as your energy and passion for space exploration are truly inspiring. My experience at MIT would not have been the same without your support, guidance, and encouragement. I wish you the best in your own new adventure over the next few years! To Professor Leia Stirling and Dr. Aleksandra Stankovic, thank you for helping me with the design of my statistical analyses. To Gaurav, Alex, Ana, and Dustin, thank you for taking the time to help me with all of the intricacies of OpenSim. To all of our collaborators at David Clark and NASA—particularly Shane Jacobs, Shane McFarland, Lindsay Aitchison, and Amy Ross—thank you for allowing us to perform our experiments in your facilities and for taking the time to give us invaluable feedback on our research. To Allie and Ana, thanks for leaving me some work to do! But really, thank you for paving the way for me and getting me up to speed on the whole astronaut injury project. I really appreciate that both of you were always taking the time to explain things to me and help me come up with good ideas for my Master’s thesis. Your previous work made my life a lot easier! To Ana and Raquel…I know it sounds super cliché, but you guys know it’s true…thank you for being the best officemates ever! You were both so welcoming from my very first day at MIT, and I could not imagine lovelier ladies to share an office with. Thanks to both of you for never being “too cool” to hang out with the new students. Ana - from our coffee outings when we were first getting to know each other to our seven hour road trips to upstate New York (and the romantic McDonald’s dinners at Lee along the way), it has really been a fun two years. I’m so excited for you to graduate and to see all of the amazing things that you do in the future. Raquel – we took a little bit longer to get to know each other well, but before long I really felt like you were a sister to me. Thank you for always being there to listen to me (whether I was having a hard time or just chatting away to avoid doing work), and for bringing a little piece of Texas to my life in Boston. Also, don’t forget to look for jobs in Colorado! I know I will see both of you before too long, whether it’s in Colorado, Texas, or Ithaca, but the three of us should plan an exotic reunion trip sometime within the next couple of years! To Pierre….where to begin?! Thank you for being my partner in crime over the past two years.
Recommended publications
  • Supportability for Beyond Low Earth Orbit Missions
    Supportability for Beyond Low Earth Orbit Missions William Cirillo1 and Kandyce Goodliff2 NASA Langley Research Center, Hampton, VA, 23681 Gordon Aaseng3 NASA Ames Research Center, Moffett Field, CA, 94035 Chel Stromgren4 Binera, Inc., Silver Springs, MD, 20910 and Andrew Maxwell5 Georgia Institute of Technology, Hampton, VA 23666 Exploration beyond Low Earth Orbit (LEO) presents many unique challenges that will require changes from current Supportability approaches. Currently, the International Space Station (ISS) is supported and maintained through a series of preplanned resupply flights, on which spare parts, including some large, heavy Orbital Replacement Units (ORUs), are delivered to the ISS. The Space Shuttle system provided for a robust capability to return failed components to Earth for detailed examination and potential repair. Additionally, as components fail and spares are not already on-orbit, there is flexibility in the transportation system to deliver those required replacement parts to ISS on a near term basis. A similar concept of operation will not be feasible for beyond LEO exploration. The mass and volume constraints of the transportation system and long envisioned mission durations could make it difficult to manifest necessary spares. The supply of on-demand spare parts for missions beyond LEO will be very limited or even non-existent. In addition, the remote nature of the mission, the design of the spacecraft, and the limitations on crew capabilities will all make it more difficult to maintain the spacecraft. Alternate concepts of operation must be explored in which required spare parts, materials, and tools are made available to make repairs; the locations of the failures are accessible; and the information needed to conduct repairs is available to the crew.
    [Show full text]
  • Science in Nasa's Vision for Space Exploration
    SCIENCE IN NASA’S VISION FOR SPACE EXPLORATION SCIENCE IN NASA’S VISION FOR SPACE EXPLORATION Committee on the Scientific Context for Space Exploration Space Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by Contract NASW 01001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. International Standard Book Number 0-309-09593-X (Book) International Standard Book Number 0-309-54880-2 (PDF) Copies of this report are available free of charge from Space Studies Board National Research Council The Keck Center of the National Academies 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2005 by the National Academy of Sciences.
    [Show full text]
  • Constellation Space Suit System Acquisition Schedule Plan
    National Aeronautics and Space Administration ConstellationConstellation SpaceSpace Suit Suit SystemSystem ContractContract AwardAward AnnouncementAnnouncement DougDoug CookeCooke DeputyDeputy AssociateAssociate AdministratorAdministrator NASANASA ExplorationExploration SystemsSystems MissionMission DirectorateDirectorate JuneJune 12,12, 20082008 www.nasa.gov ConstellationConstellation SystemsSystems Division Extravehicular Activity – “EVA” • The space-suited astronaut is the ultimate symbol of human exploration • The spacesuit is essentially a self- contained, one-person spacecraft • It protects the crew from and enables them to work in the hostile environments of deep space and the lunar surface • It is the “last line of defense” for astronauts when they leave the relative safety of the crew exploration vehicle, lunar lander, or habitat 2 2 The Challenge for Exploration • Current spacesuits are not suitable for Exploration – Apollo Extravehicular Mobility Unit – Advanced Crew Escape Suit – Space Shuttle/International Space Station Extravehicular Mobility Unit • A new pressurized suit system will be required to support long-term Exploration requirements – Meets all capability requirements – Improves reliability – Improves logistics and maintenance – Reduces life cycle costs 3 3 The EVA System Design Approach Launch and Entry • A single spacesuit system with two configurations which share many components In-space Contingency • Common, evolvable infrastructure • Minimum set of hardware to meet all mission phase requirements • Modular,
    [Show full text]
  • Testing of the Z-2 Space Suit at the Neutral Buoyancy Laboratory
    47th International Conference on Environmental Systems ICES-2017-250 16-20 July 2017, Charleston, South Carolina Testing of the Z-2 Space Suit at the Neutral Buoyancy Laboratory Ian M. Meginnis,1 Richard A. Rhodes,2 Kristine N. Larson,3 and Amy J. Ross4 NASA Johnson Space Center, Houston, TX, 77058 The Z-2 space suit is the product of the last fifty years of NASA’s space suit research and testing experience. The Z-2 suit was originally developed as an exploration space suit for use on a planetary surface, such as the moon or Mars. However, Z-2 could also be used in microgravity at the International Space Station (ISS) to supplement or replace the existing extravehicular mobility unit (EMU). To evaluate the microgravity performance of Z-2 for compatibility at the ISS, the suit was tested in NASA’s Neutral Buoyancy Laboratory (NBL), which is the primary simulated microgravity testing environment for space suits. Seven test subjects, including five astronauts, performed various tasks that are representative of the tasks performed at the ISS. Test subjects performed tasks in the Z-2 suit and the EMU so that relative comparisons could be drawn between the two suits. Two configurations of the Z-2 space suit were evaluated during this test series: the EMU lower torso assembly (ELTA) configuration and the Z-2 lower torso assembly (ZLTA) configuration. The ELTA configuration, which was the primary test configuration, is comprised of the Z-2 upper torso and the EMU lower torso. The ZLTA configuration is comprised of the Z-2 upper torso and the Z-2 lower torso, which contains additional mobility elements.
    [Show full text]
  • The EVA Spacesuit
    POLITECNICO DI TORINO Repository ISTITUZIONALE Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design Original Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design / Favetto, Alain. - (2014). Availability: This version is available at: 11583/2546950 since: Publisher: Politecnico di Torino Published DOI:10.6092/polito/porto/2546950 Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 August 2020 POLITECNICO DI TORINO DOCTORATE SCHOOL Ph. D. In Informatics and Systems – XXV cycle Doctor of Philosophy Thesis Glove Exoskeleton for Extra-Vehicular Activities Analysis of Requirements and Prototype Design (Part One) Favetto Alain Advisor: Coordinator: Prof. Giuseppe Carlo Calafiore Prof. Pietro Laface kp This page is intentionally left blank Dedicato a mio Padre... Al tuo modo ruvido di trasmettere le emozioni. Al tuo senso del dovere ed al tuo altruismo. Ai tuoi modi di fare che da piccolo non capivo e oggi sono parte del mio essere. A tutti i pensieri e le parole che vorrei averti detto e che sono rimasti solo nella mia testa. A te che mi hai sempre trattato come un adulto. A te che te ne sei andato prima che adulto lo potessi diventare davvero. opokp This page is intentionally left blank Index INDEX Index .................................................................................................................................................5
    [Show full text]
  • Balloon Astronaut San Jose, CA 95113 1-408-294-8324 Design Challenge Learning Thetech.Org
    201 S. Market St. Balloon Astronaut San Jose, CA 95113 1-408-294-8324 Design Challenge Learning thetech.org Students investigate properties of materials and colliding objects by designing spacesuits for balloon astronauts. The objective is to design spacesuits that can withstand the hazards of high velocity impacts from space debris and meteoroids. As students iterate through this design challenge, they gain firsthand experience in the design process. Balloon Astronaut1 Grades 2-8 Estimated time: 45 minutes Student Outcomes: 1. Students will be able to design and build a protective device to keep their balloon astronaut from popping when impaled by a falling nail. 2. Students will be able to explain design considerations based on material characteristics, and concepts of energy, velocity, and the physics of colliding objects. 3. Students will be able to utilize the three step design process to meet an engineering challenge. Next Generation Science Standards Grade 2-5: Engineering Design K-2-ETS1-1, K-2-ETS1-2, K-2-ETS1-3, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3 Grade 2: Physical Science 2-PS1-1, 2-PS1-2 Grade 3: Physical Science 3-PS2-1 Grade 4: Physical Science 4-PS3-1, 4-PS3-3, 4-PS3-4 Grade 5: Physical Science 5-PS2-1 Grade 6-8: Engineering Design MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4; Physical Science MS-PS2-1, MS-PS2-2, MS-PS3-2, MS-PS3-5 Common Core Language Arts-Speaking and Listening Grade 2: SL.2.1a-c, SL.2.3, SL.2.4a Grade 3: SL.3.1b-d, SL.3.3, SL.3.4a Grade 4: SL.4.1b-d, SL.4.4a Grade 5: SL.5.1b-d, SL.5.4 Grade 6: SL.6.1b-d Grade 7: SL.7.1b-d Grade 8: SL.8.1b-d California Science Content Grade 2: Physical Science 1.a-c; Investigation and Experimentation 4.a, 4.c-d Grade 3: Investigation and Experimentation 5.a-b, d Grade 4: Investigation and Experimentation 6.a, 6.c-d Grade 5: Investigation and Experimentation 6.a-c, 6.h Grade 6: Investigation and Experimentation 7.a-b, 7.d-e Grade 7: Investigation and Experimentation 7.a, 7.c-e Grade 8: Physical Science 1.a-e, 2.a-g; Investigation and Experimentation 9.b-c 1 Developed from a program designed by NASA.
    [Show full text]
  • Repair Station Capabilities List
    Approved by: Astronautics Corporation of America J. Simet, Repair Station Supervisor Approved by: TITLE: Astronautics Corp. of America Repair Station Capabilities List QAP 2003/2 REV. H J. Williams, Repair Station Accountable Manager CODE IDENT NO 10138 Page 1 of 35 Astronautics’ Capabilities List QAP 2003/2 Revision H QAP 2003/2 Astronautics Corporation of America REV SYM DESCRIPTION OF CHANGE DATE APPROVED A Initial Release. 3/25/2003 PFM B Updated to reflect FAA comments regarding when revisions will 1/16/2004 JT, DY, JGW be submitted. C Updated to change the preliminary XQAR449-P-L Repair 6/25/2004 JT, EF, JGW Station Number to XQAR449L. Added the 197800-1 & -3 DU, the 198200-1 & -3 EU, the 198000-( ) EFI and its 198040-( ) Control Panel, and the 260500-( ) EFI. App Added the PMA’d 197800-1 and -3 Display Unit, the 198200-1 6/25/2004 JGW A and -3 Electronics Unit, and the TSOA’d 198000-( ) EFI and its 198040-( ) Control Panel, and the 260500-( ) EFI. The self- evaluation for these items was performed under paragraph 5.5 (d) of this document. These FAA approvals were the basis for the additions. D Updated to separate Appendix A from the text (removed the date 11/30/2004 JT, EF, JGW on the cover sheet for the Appendix). The FAA will be sent a copy of the Appendix within ten days of the date on the Appendix whenever items are added or removed. The appendix will be controlled by date. A copy of the QAP cover sheet and text are controlled by revision letter, and a copy of that will be submitted to the FAA within ten days of the date that the new revision letter version of the text is released.
    [Show full text]
  • Sg423finalreport.Pdf
    Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites
    [Show full text]
  • Constellation Space Suit System (CSSS) Title
    The Future of U.S. Space Suits Presented by Carl Walz 9-22-2015 1 U.S. Space Suits – The Past 2 U.S. Space Suits – The Present 3 Future Human Exploration 4 New Space Suit Development Defining Questions • What Is The Destination And The Destination Environment • What Will Be The Host Spacecraft – What Is The Life Support Interface – What Is The Mechanical Interface • What Are The Mobility Requirements – Walking, Riding, or Both • What Size Suits Are Required – Suit Should Support A Larger Anthropometric Range • What Is The Logistical Plan – Suit Must Be Logistically Supportable For Long Periods of Time • What Is The Maintenance Plan – Suit Must Be Field Maintainable 5 NASA EVA Technology Development NASA Performed Yearly Test Campaigns In The Western U.S. To Develop Requirements For Planetary Surface EVAs EVA Pressure Garments At Field Testing, Flagstaff AZ 2006 6 NASA EVA Technology Development • Mark 3 Planetary Garment Designed For Surface EVAs – Hard Upper Torso And Hard Brief – Rear Entry – Walking Boots – Tested During Desert Rats Planetary Exploration Activities 7 NASA EVA Technology Development . ILC Dover I-Suit Pressure Garment – Soft Upper Torso And Soft Brief – Waist Or Rear Entry – Soft Lower Torso And Walking Boots – Tested At ILC And During Desert Rats Planetary Exploration Activities – Excellent Surface Mobility 8 NASA EVA Technology Development • The Z-1Pressure Garment Was Developed By NASA Under The Advanced Exploration Systems Program • Z-1 Suit Represents A Follow-On To The Mark 3 – Rear Entry – Hard Upper Torso And
    [Show full text]
  • Complex Garment Systems to Survive in Outer Space
    Volume 7, Issue 2, Fall 2011 Complex Garment Systems to Survive in Outer Space Debi Prasad Gon, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA [email protected] Palash Paul, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA ABSTRACT The success of astronauts in performing Extra-Vehicular Activity (EVA) is highly dependent on the performance of the spacesuit they are wearing. Since the beginning of the Space Shuttle Program, one basic suit design has been evolving. The Space Shuttle Extravehicular Mobility Unit (EMU) is a waist entry suit consisting of a hard upper torso (HUT) and soft fabric mobility joints. The EMU was designed specifically for zero gravity operations. With a new emphasis on planetary exploration, a new EVA spacesuit design is required. Now the research scientists are working hard and striving for the new, lightweight and modular designs. Thus they have reached to the Red surface of Mars. And sooner or later the astronauts will reach the other planets too. This paper is a review of various types of spacesuits and the different fabrics required for the manufacturing of the same. The detailed construction of EMU and space suit for Mars is discussed here, along with certain concepts of Biosuit- Mechanical Counter pressure Suit. Keywords: Extra-Vehicular Activity (EVA), spacesuits, Biosuit-Mechanical Counter pressure Suit Tissues (skin, heart,
    [Show full text]
  • U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Year 2016
    47th International Conference on Environmental Systems ICES-2017-47 16-20 July 2017, Charleston, SC U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Year 2016 Cinda Chullen 1 NASA Johnson Space Center, Houston, Texas, 77058 and Vladenka R. Oliva2 Jacobs Engineering Technology, Houston, Texas, 77058 As our nation focuses on its goal to visit Mars by the 2030s, the NASA U.S. Spacesuit Knowledge Capture (SKC) Program continues to serve the spacesuit community with a collection of spacesuit-related knowledge. Since its 2007 inception, the SKC Program has been collecting and archiving significant spacesuit-related knowledge and sharing it with various technical staff, along with invested and interested entities. The program has sponsored and recorded more than 80 events, and continues to build an electronic library of spacesuit knowledge. By the end of Fiscal Year (FY) 2016, 60 of these events were processed and uploaded to a publically accessible NASA Web site where viewers can broaden their knowledge about the spacesuit’s evolution, known capabilities, and lessons learned. Sharing this knowledge with entities beyond NASA, such as space partners and academia, provides a tremendous opportunity to expand and retain the knowledge of space. This valuable SKC Program now serves as an optimum means of archiving NASA’s spacesuit legacy from the Apollo era to the pursuit of Mars. This paper focuses on the FY 2016 SKC events, the release and accessibility of the approved events, and the program’s future plans. Nomenclature ARM = Asteroid
    [Show full text]
  • Modeling Space Suit Mobility: Applications to Design and Operations
    2001-01-2162 Modeling Space Suit Mobility: Applications to Design and Operations P. B. Schmidt and D. J. Newman Massachusetts Institute of Technology E. Hodgson Hamilton Sundstrand Space Systems International Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT date repetitive tasks. Computer simulation also aids in future space suit design by allowing new space suit or Computer simulation of extravehicular activity (EVA) is component designs to be evaluated without the expense increasingly being used in planning and training for EVA. of constructing and certifying prototypes for human test- A space suit model is an important, but often overlooked, ing. While dynamic simulation is not currently used for component of an EVA simulation. Because of the inher- EVA planning, it has been used for post-flight analyses ent difficulties in collecting angle and torque data for [1, 2]. Other computer-based modeling and analysis space suit joints in realistic conditions, little data exists on techniques are used in pre-flight evaluations of EVA tasks the torques that a space suit’s wearer must provide in and worksites [3, 4]. order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuver- An important shortcoming of current EVA models is that ing Unit (EMU), with a novel measurement technique that they lack an accurate representation of the torques that used both human test subjects and an instrumented are required to bend the joints of the space suit. The robot. Using data collected in the experiment, a hystere- shuttle EMU, like all pressurized space suits, restricts sis modeling technique was used to predict EMU joint joint motion to specific axes and ranges and has a ten- torques from joint angular positions.
    [Show full text]