Metapenaeus Macleayi, Sagmariasus Verreauxi, and Jasus Edwardsii

Total Page:16

File Type:pdf, Size:1020Kb

Metapenaeus Macleayi, Sagmariasus Verreauxi, and Jasus Edwardsii ICES Journal of Marine Science (2011), 68(10), 2053–2058. doi:10.1093/icesjms/fsr144 Telomere length analysis in crustacean species: Metapenaeus macleayi, Sagmariasus verreauxi, and Jasus edwardsii Rosamond M. Godwin1*, Stewart Frusher2, Steven S. Montgomery3, and Jennifer Ovenden1 1Molecular Fisheries Laboratory, Agri-Science Queensland, Department of Employment, Economic Development and Innovation, Level 3 Ritchie Building (64A C-Wing), Research Road, The University of Queensland, Brisbane 4067, Australia 2Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Hobart 7001, Australia 3Industry and Investment NSW, Cronulla Fisheries Research Centre of Excellence, PO Box 21, Cronulla, NSW 2230 Australia *Corresponding Author: tel: +61 7 3346 6518; fax: +61 7 3346 6501; e-mail: [email protected] Downloaded from https://academic.oup.com/icesjms/article/68/10/2053/611301 by guest on 29 September 2021 Godwin, R. M., Frusher, S., Montgomery, S. S., and Ovenden, J. 2011. Telomere length analysis in crustacean species: Metapenaeus macleayi, Sagmariasus verreauxi, and Jasus edwardsii. – ICES Journal of Marine Science, 68: 2053–2058. Received 1 March 2011; accepted 20 June 2011; advance access publication 15 September 2011. Estimates of age and growth in crustaceans have been historically problematic and presented significant challenges to researchers. Current techniques of age determination provide valuable data, but also suffer from disadvantages. Telomeric DNA has been proposed as an age biomarker because it shortens with age in some species. In this study, the feasibility of using telomere length (TL) to estimate age was examined in the school prawn Metapenaeus macleayi and the spiny lobsters Sagmariasus verreauxi and Jasus edwardsii. Carapace length (CL) was used as a surrogate for age, and terminal restriction fragment assays were used to test the relationship between TL and size. Degradation of telomeric DNA with time during storage significantly influenced TL estimates, particularly for M. macleayi. TLs obtained from species in this study were 10–20 kb. No relationship between CL and TL was detected for any of the test species, and TL did not differ between male and female M. macleayi. TLs of J. edwardsii pueruli were unexpectedly shorter than those of J. edwardsii adults. The suitability of TL as an age biomarker in crustaceans may be limited, but further research is needed to elucidate telomere dynamics in these species with their different life histories and lifespans. Keywords: age biomarker, age estimation, Australia, crustacean, telomere length, TRF. Introduction In many vertebrate somatic cells, telomeres shorten with each Accurate assessments of age are required for understanding mitotic cell division over the animal’s life as a result of incomplete growth, maturity, reproduction, longevity, and mortality of replication of the DNA (Watson, 1972). This shortening has been animals in a wild population (Campana, 2001). They are basic correlated with age in mammals and some birds (Haussmann and considerations in stock assessment models for sustainable manage- Vleck, 2002; Haussmann et al., 2003; Vleck et al., 2003; Nakagawa ment of fisheries. et al., 2004), as well as in fish (Hatakeyama et al., 2008; Hartmann Estimating age and growth of crustaceans has been historically et al., 2009). It is also correlated with age in oysters and shell size in problematic, presenting significant challenges for researchers. abalone (RMG, unpublished data). Therefore, telomere length Methods used to estimate age or growth include tag-recapture, (TL) has been suggested as a potential age biomarker in animals size frequency distributions, size or weight measurements, and where it is difficult to determine age using conventional lipofuscin accumulation. Such methods provide valuable data methods (von Zglinicki and Martin-Ruiz, 2005; Haussmann and but can be inaccurate, subject to biases, costly, time-consuming, Mauck, 2008). The telomere repeat sequence of crustaceans is and deleterious to the animal (reviewed by Wahle and Fogarty, (TTAGG)n, which is common in many arthropod species 2006). Direct measures of size or weight are only weakly correlated (Klapper et al., 1998; Sahara et al., 1999; Lang et al., 2004; with age in crustaceans (Zheng et al., 1995; Uglem et al., 2005). Vı´tkova´ et al., 2005; Elmore et al., 2008). Detailed studies of TL Lipofuscin pigments, which accumulate with age in crustacean in crustaceans, however, are yet to be conducted. neural tissue, have yielded limited success, and the accuracy of In this study, the relationship between TL and age (as indicated the method is still under debate (Harvey et al., 2008; Sheehy, by size) is examined in three crustacean species with different life- 2008); accumulation of lipofuscin is not independent of environ- spans and life-history characteristics. The test species were school mental effects, particularly temperature (Wahle and Fogarty, prawns, Metapenaeus macleayi, and two species of spiny lobster, 2006). Therefore, the development of an alternative, low-cost, Sagmariasus verreauxi (formerly Jasus verreauxi) and Jasus non-lethal method to estimate age in crustaceans reliably would edwardsii. All three are commercially important and common in be a major improvement for fisheries management. Australian waters. School prawns are short lived (lifespan 12–18 Telomeres are the structures of highly repeated DNA sequences months; Montgomery et al., 2010) and endemic to estuarine and and their associated proteins that protect the ends of the linear inshore waters from southern Queensland to eastern Victoria. chromosomes from degradation and fusion (Blackburn, 1991). Juvenile and subadult prawns inhabit estuaries, generally near # The State of Queensland (through the Department of Employment, Economic Development and Innovation), 2011. 2054 R. M. Godwin et al. beds of seagrass. Adults are found mainly in marine waters, but 3-year-old lobsters were originally caught off Port Hacking as also in small numbers in estuaries (Ruello, 1977; Coles and recently settled pueruli. These small lobsters were then grown in Greenwood, 1983). Sagmariasus verreauxi and J. edwardsii captivity for some 3 years before sampling. The sampled J. edwardsii have relatively long lifespans, 30 years for S. verreauxi comprised two broad size classes, pueruli (CL unknown) and adults (Montgomery et al., 2009), and potentially longer for J. edwardsii. (CL 80–120 mm). Sagmariasus verreauxi is distributed in warmer waters along the Lobsters were transported to the laboratory alive and eutha- east coast of Australia and the North Island of New Zealand nased in ice slurry. Sampled tissues (Table 1) were dissected (Montgomery et al., 2009), and J. edwardsii widely around from the animals, placed in tubes, immediately snap-frozen in southern mainland Australia, Tasmania, and New Zealand liquid nitrogen, and then transferred to a 2808C freezer for long- (Booth, 2007). term storage. Lobsters such as S. verreauxi and J. edwardsii exhibit indetermi- nate growth patterns (Wahle and Fogarty, 2006), and despite its Downloaded from https://academic.oup.com/icesjms/article/68/10/2053/611301 by guest on 29 September 2021 shorter life, M. macleayi is also likely to exhibit indeterminate Extraction of total genomic DNA and TRF assays growth. Hence, the three species grow continuously throughout Genomic DNA of high molecular weight was extracted from their life and theoretically have no upper size limit. frozen tissue using standard methods (Sambrook and Russell, The aim of this study was to determine whether TL was suitable 2001). Extracted crustacean DNA appeared to be susceptible to as an age biomarker in crustaceans. If suitable, it could provide a degradation, so to minimize the co-purification of contaminating molecular method of age determination that would allow age to be material, a smaller quantity of fresh tissue was used during cell estimated from small samples of tissue, a non-lethal and cheaper lysis. Hence, 50 mg of tissue was digested per millilitre of digestion alternative to conventional methods of collecting age data. The buffer (10 mM Tris, pH 8.0, 5.0 mM EDTA, pH 8.0, 0.5% SDS, strategy was to compare TLs in at least two divergent age/size –1 200 mgml proteinase K). Different combinations of tempera- cohorts per species and to add data from other cohorts if ture and incubation period were optimal for cell lysis and digestion differences were indicated. TL can be estimated from very small of fresh tissue for each species (Table 2). Proteins and other con- quantities of tissue using PCR methods (Cawthorn, 2002), but taminants were removed by salt precipitation in 5 M potassium in the absence of any available sequence data for these test acetate and phenol/chloroform extractions. species, a terminal restriction fragment (TRF) assay was used in The resulting DNA was dissolved in TE (Tris–EDTA) buffer, this initial study. Our hypothesis was that there would be an pH 8.0, with 1 mM dithiothreitol added to minimize degradation inverse relationship between TL and age, as has been observed in and oxidation of the telomeric DNA. All DNA samples were stored many vertebrate species. at 48C. The quality and the quantity of genomic DNA were assessed by gel electrophoresis before each assay. High-quality Material and methods DNA samples contained molecular weight fragments .23 kb Sampling and tissue storage and a minimal presence of low molecular weight fragments Size (as indicated by carapace
Recommended publications
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • The World Lobster Market
    GLOBEFISH RESEARCH PROGRAMME The world lobster market Volume 123 GRP123coverB5.indd 1 23/01/2017 15:06:37 FAO GLOBEFISH RESEARCH PROGRAMME VOL. 123 The world lobster market by Graciela Pereira Helga Josupeit FAO Consultants Products, Trade and Marketing Branch Fisheries and Aquaculture Policy and Resources Division Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2017 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109631-4 © FAO, 2017 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • (Jasus Edwardsii Hutton, 1875) Larvae
    Environmental Physiology of Cultured Early-Stage Southern Rock Lobster (Jasus edwardsii Hutton, 1875) Larvae Michel Francois Marie Bermudes Submitted in fulfilment of the requirements for the degree of Doctor Of Philosophy University of Tasmania November 2002 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information in duly acknowledged in the thesis, and to the best of the candidate's knowledge and belief, no material previously published or written by another person except where due acknowledgment is made in the text of the thesis. Michel Francois Marie Bermudes This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968. Michel Francois Marie Bermudes Abstract The aim of this project was to define more clearly the culture conditions for the propagation of the southern rock lobster (Jasus echvardsii) in relation to environmental bioenergetic constraints. The effects of temperature and photoperiod on the first three stages of development were first studied in small-scale culture experiments. Larvae reared at 18°C developed faster and reached a larger size at stage IV than larvae cultured at 14°C. Development through stage II was shorter under continuous light. However, the pattern of response to photoperiod shifted at stage III when growth was highest in all the light/dark phase treatments than under continuous light. The influence of temperature and light intensity in early-stage larvae was further investigated through behavioural and physiological studies. Results obtained in stages I, II and III larvae indicated an energetic imbalance at high temperature (-22°C).
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • De Grave & Fransen. Carideorum Catalogus
    De Grave & Fransen. Carideorum catalogus (Crustacea: Decapoda). Zool. Med. Leiden 85 (2011) 407 Fig. 48. Synalpheus hemphilli Coutière, 1909. Photo by Arthur Anker. Synalpheus iphinoe De Man, 1909a = Synalpheus Iphinoë De Man, 1909a: 116. [8°23'.5S 119°4'.6E, Sapeh-strait, 70 m; Madura-bay and other localities in the southern part of Molo-strait, 54-90 m; Banda-anchorage, 9-36 m; Rumah-ku- da-bay, Roma-island, 36 m] Synalpheus iocasta De Man, 1909a = Synalpheus Iocasta De Man, 1909a: 119. [Makassar and surroundings, up to 32 m; 0°58'.5N 122°42'.5E, west of Kwadang-bay-entrance, 72 m; Anchorage north of Salomakiëe (Damar) is- land, 45 m; 1°42'.5S 130°47'.5E, 32 m; 4°20'S 122°58'E, between islands of Wowoni and Buton, northern entrance of Buton-strait, 75-94 m; Banda-anchorage, 9-36 m; Anchorage off Pulu Jedan, east coast of Aru-islands (Pearl-banks), 13 m; 5°28'.2S 134°53'.9E, 57 m; 8°25'.2S 127°18'.4E, an- chorage between Nusa Besi and the N.E. point of Timor, 27-54 m; 8°39'.1 127°4'.4E, anchorage south coast of Timor, 34 m; Mid-channel in Solor-strait off Kampong Menanga, 113 m; 8°30'S 119°7'.5E, 73 m] Synalpheus irie MacDonald, Hultgren & Duffy, 2009: 25; Figs 11-16; Plate 3C-D. [fore-reef (near M1 chan- nel marker), 18°28.083'N 77°23.289'W, from canals of Auletta cf. sycinularia] Synalpheus jedanensis De Man, 1909a: 117. [Anchorage off Pulu Jedan, east coast of Aru-islands (Pearl- banks), 13 m] Synalpheus kensleyi (Ríos & Duffy, 2007) = Zuzalpheus kensleyi Ríos & Duffy, 2007: 41; Figs 18-22; Plate 3.
    [Show full text]
  • Statewide Survey of Boat-Based Recreational Fishing in Western Australia 2015/16 K.L
    Department of Primary Industries and Regional Development Fisheries Research Report No. 287 Statewide survey of boat-based recreational fishing in Western Australia 2015/16 K.L. Ryan, N.G. Hall, E.K. Lai, C.B. Smallwood, S.M. Taylor, B.S. Wise Fisheries Research Report No. 287 December 2017 Correct citation: Ryan KL, Hall NG, Lai EK, Smallwood CB, Taylor SM, Wise BS 2017. Statewide survey of boat- based recreational fishing in Western Australia 2015/16. Fisheries Research Report No. 287, Department of Primary Industries and Regional Development, Western Australia. 205pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Department of Primary Industries and Regional Development Gordon Stephenson House 140 William Street PERTH WA 6000 Telephone: (08) 6551 4444 Website: dpird.wa.gov.au ABN: 18 951 343 745 ISSN: 1035-4549 (Print) ISBN: 978-1-921258-00-8 (Print) ISSN: 2202-5758 (Online) ISBN: 978-1-921258-01-5 (Online) Copyright © Department of Primary Industries and Regional Development, 2017. 4874/17 ii Fisheries Research Report [Western Australia] No. 287 Table of Contents Executive Summary ............................................................................................... ix 1 Introduction ....................................................................................................
    [Show full text]
  • Penaeidae 889
    click for previous page Penaeidae 889 Penaeidae PENAEIDAE Penaeid shrimps cervical groove short iagnostic characters: Rostrum well de- Dveloped and generally extending beyond eyes, always bearing more than 3 upper teeth. No styliform projection at base of eye- stalk and no tubercle on its inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. Carapace lacking both postorbital or postantennal spines. Cervical groove generally short, always with a distance from dorsal carapace. All 5 pairs of legs well devel- oped, fourth leg bearing a single well-devel- oped arthrobranch (hidden beneath carapace, occasionally accompanied by a second, rudimentary arthrobranch).In males, endopod of second pair of pleopods (abdominal appendages) with appendix mas- culina only. Third and fourth pleopods divided into 2 branches. Telson sharply pointed, with or without fixed and/or movable lateral spines. Colour: body colour varies from semi-translucent to dark greyish green or reddish, often with distinct spots, cross bands and/or other markings on the abdomen and uropods; live or fresh specimens, particularly those of the genus Penaeus, can often be easily distinguished by their coloration. Habitat, biology, and fisheries: Members of this family are usually marine, although juveniles and young are often found in brackish water or estuaries, sometimes with very low salinities (a few unconfirmed fresh-water records exist). Some penaeids, mainly those of the genera Parapenaeus and Penaeopsis, occur in deep water at depths of more than 750 m. Penaeids are mostly benthic and mainly found on soft bottom of sand and/or mud, but a few species (e.g.
    [Show full text]
  • Associate Professor Caleb Gardner
    Curriculum Vitae A ssoci ate Prof essor Caleb Gardner Contents 1. Summary 2 2. Personal Details 2 3. Qualifications 2 4. Current Employment 3 5. External Grants 3 6. Current Committee Membership 7 7. Refereed Publications 8 8. Research and Management Reports 14 9. Students 20 Caleb Gardner 16/12/2013 Page 1 Summary I have qualifications in both economics and biology which interact in research on commercial fisheries. I currently hold two positions. My main role is as the Director, Sustainable Marine Research Collaboration Agreement (SMRCA), Institute for Marine and Antarctic Studies, UTAS in South East Australia. This role involves supervision and resourcing of over 60 staff and 38 PhD students operating across around 150 projects. Research is mainly on the larger marine industries of farmed Atlantic salmon and wild harvest blacklip abalone and southern rock lobster. However activities also span many other operations including recreational fisheries, scalefish, crabs, scallops and oyster culture. In addition to my role as Director SMRCA, I lead several research projects dealing with wild fisheries species, generally with the objective of improving harvest strategies. I also have a smaller role in leading research activities on wild harvest fisheries at the Australian Seafood Cooperative Research Centre. Projects in this organisation are mainly related to improving economic yield and reducing ecosystem impacts through better management. Projects involve partnerships between research organisations around Australia and industry organisations including western rock lobster, southern rock lobster, abalone, finfish and prawn fisheries. Personal Details Name: Associate Professor Caleb Gardner Address: 2 Jersey St, Sandy Bay, 7005 Phone: H- +61 (03) 6224 8417 W- +61 (03) 6227 7233 Mob- 0409 427 366 Fax- +61 (03) 6227 8035 Email: [email protected] Qualifications • Bachelor of Science.
    [Show full text]
  • The Family Penaeidae(Excluding Genus Penaeus)
    SOUTH AFRICAN ASSOCIATION FOR MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No. 58 Th£ Penaeoidea of southeast Africa — The Family Penaeidae (excluding Genus Penaeus) by A.J. de Freitas The Investigational Report series of the Oceanographic Research Institute presents the detailed results of marine biological research. Reports have appeared at irregular intervals since 1961. All manuscripts are submitted for peer review, to national or overseas referees. The Bulletin series of the South African Association for. Marine Biological Research is of general interest and reviews the research and curatorial activities of the Oceanographic Research Institute, Aquarium and Dolphinarium. It is published annually. Both series are available in exchange for relevant publications of other scientific institutions anywhere in the world. All correspondence in this regard should be directed to: The Librarian, Oceanographic Research Institute. P.O. Box 10712. Marine Parade. 4056. Durban. South Africa. SOUTH AFRICAN ASSOCIATION FOR MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No.58 The Penaeoidea of southeast Africa. The Family Penaeidae (excluding Genus Penaeus) by A.J. de Freitas Published by THE OCEANOGRAPHIC RESEARCH INSTITUTE P.O. BOX 10712, MARINE PARADE DURBAN, 4056 SOUTH AFRICA November 1987 Copyright ISBN 0 86989 034 4 ISSN 0078-320X THE PENAEOIDEA OF SOUTHEAST AFRICA: III. The Family Penaeidae (excluding Genus Penaeus) by A.J. DE FREITAS ABSTRACT This is the third monograph of a series of five on the Penaeoidea of southeast Africa and, together with monograph four, deals with the family Penaeidae. The family is represented by nine genera of which eight, with a total of 15 species, are dealt with in this article.
    [Show full text]
  • California Spiny Lobster Scientific Name: Panulirus Interruptus Range
    Fishery-at-a-Glance: California Spiny Lobster Scientific Name: Panulirus interruptus Range: Spiny Lobster range from Monterey, California southward to at least as far as Magdalena Bay, Baja California. The physical center of the range is within Mexico, and population density and fishery productivity is highest in this area. Habitat: As juveniles (less than 3 years of age), Spiny Lobster live in coastal rubble beds, but as adults, they are found on hard bottomed or rocky-reef habitat kelp forests. Size (length and weight): Adult Spiny Lobsters average 2 pounds in weight and about 12 inches total length, with males slightly larger than females. Adults more than 5 pounds are currently considered trophy individuals, although records exist from a century ago of 26 pound, 3 foot long lobsters. Life span: Spiny Lobsters can live up to 30 to 50 years. Reproduction: Spiny Lobsters mature at about 5 years of age, or 2.5-inch carapace length. They have a complex, 2-year reproductive cycle from mating to the settlement of juvenile lobsters. Fecundity increases with size, and females produce one brood of eggs per year. Prey: Spiny Lobsters are omnivorous, and act as important keystone predators within the southern California nearshore ecosystem. Adults forage at night for algae, fish, and many marine invertebrates. Predators: Predators of juvenile Spiny Lobsters include California Sheephead, Cabezon, rockfishes, Kelp Bass, Giant Sea Bass, and octopus. Predators of adult lobsters tend to be the larger individuals such as male California Sheephead and Giant Sea Bass. Fishery: The commercial fishery accounted for approximately 312 metric tons (688,000 lb) in ex- vessel landings and $12.7 million in ex-vessel value during the 2017-2018 fishing season.
    [Show full text]
  • Jasus Edwardsii
    Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Search Jasus edwardsii From Wikipedia, the free encyclopedia Main page This article is about the animal. For the B-52's song, see Rock Lobster. Contents Jasus edwardsii, the southern rock lobster, red rock Featured content Jasus edwardsii lobster, or spiny rock lobster, is a species of spiny Current events Random article lobster found throughout coastal waters of southern Donate to Wikipedia Australia and New Zealand including the Chatham Islands. Wikipedia store This species is commonly called crayfish or crays in New [3] Interaction Zealand and kōura in Māori. They resemble lobsters, but Help lack the large characteristic pincers on the first pair of About Wikipedia walking legs. Community portal Spiny rock lobsters are carnivorous, leaving their rock Recent changes Contact page cover to venture out to feed during the night. They live in Conservation status and around reefs at depths ranging from 5–200 metres Tools (16–660 ft) deep at the continental shelf.[4] They can be What links here Related changes dark red and orange above with paler yellowish abdomens Upload file or grey-green brown with the paler underside. The more Least Concern (IUCN 3.1) [1] Special pages tropical animals tend to have the brighter colours. Adult Scientific classification Permanent link carapaces can grow up to 230 millimetres (9.1 in) in length Page information Kingdom: Animalia open in browser PRO version Are you a developer? Try out the HTML to PDF API pdfcrowd.com Page information Kingdom: Animalia and can often exceed 8 kilograms (18 lb) in under-fished Wikidata item Phylum: Arthropoda areas.
    [Show full text]
  • Indicative of an Offshore Migration of Females for the Purpose of Spawning During Autumn and Winter
    indicative of an offshore migration of females for the purpose of spawning during autumn and winter. However, although this is possible, the facts, including the predominance of impregnated females during summer, within Maputo Bay, seems to favour the idea that a considerable degree of spawning occurs during most of the year, within the Bay. The scarcity of impregnated females on the other hand may favour migration. The fact that the period of spawning activity is so long may indicate that a mature female spawns repeatedly during her lifetime. This could explain the presence, in the population, of large females (Lc = 39-40 mm and larger) with undeveloped ovaries (Stage I) (Fig. 111-29). These are very probably females with ovaries in the process of regeneration after spawning. No work on the planktonic larval forms was carried out in Mozambique. It is therefore impossible to claim with any certainty that M. monoceros spawns within Maputo Bay, in spite of the evidence given above. Panikkar and Aiyar (1939) did suggest that M. monoceros bred in the backwater areas and Menon (1951) states that "Penaeid prawns with the exception of M. stebbingi and M. monoceros breed, as far as is known, only in the sea." This implies that M. monoceros may breed in backwater areas. However, George and George (1964) claim that"... the presence of mature adults in a sand area at a depth of 50 to 60 metres off Cochin points to this as a possible spawning ground." In September 1972 off Moma in central Mozambique, in catches predominantly of mating Penaeus indicus, a considerable number of large M.
    [Show full text]