Photometric Study of Polar-Ring Galaxies. III. Forming Rings

Total Page:16

File Type:pdf, Size:1020Kb

Photometric Study of Polar-Ring Galaxies. III. Forming Rings A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS 03 (11.09.1 NGC 3808B; 11.09.1 NGC 6286; 11.09.2; 11.16.1) 30.9.2018 Photometric study of polar-ring galaxies. III. Forming rings V.P. Reshetnikov1, V.A. Hagen-Thorn2, V.A. Yakovleva2 1 Astronomical Institute of St.Petersburg State University, 198904 St.Petersburg, Russia 2 St.Petersburg State University, 198904 St.Petersburg, Russia Received 16 January 1996; accepted 29 March 1996 Abstract. We present the results of detailed surface pho- Whitmore et al. 1990 (PRC)) are symmetric objects in tometry of NGC 3808B and NGC 6286 - two spiral which the remnants of interacting galaxies are not mixed galaxies with possibly forming ring-like structures rotat- but stay in a quasi-stationary state for a long time, may ing around major axes of the galaxies. The formation of be comparable with Hubble time. Detailed investigation rings in NGC 3808B and NGC 6286 being accompanied of PRGs supply the new approaches to the study of such by accretion of matter on galactic disk results in some important problems as the shape of galactic potential, the interesting gasdynamical and stellardynamical effects in frequency of interactions and mergings, influence of inter- these galaxies. One can note, for instance, peculiar rota- actions on global structure of galaxies, on their nuclear tion curve of NGC 3808B gaseous disk; strong infrared and activity etc. Hα emission from the galaxies; bending and flaring stellar Probably the most important problem concerning disks in both galaxies. Our observations clearly illustrate PRGs is their origin. It is usually contended that the col- the possibility that polar-ring galaxies may be formed as lapse of single protogalactic cloud cannot create the object a result of matter accretion from one galaxy to another. with two nearly orthogonal large-scale kinematic systems and therefore in the history of such objects some second Key words: galaxies: interactions; photometry; NGC event (for instance, interaction or merging) has occured 3808B; NGC 6286 (Schweizer et al. 1983, Whitmore et al. 1987). From the other side, recent simulations by Curir & Diaferio (1994) seem to indicate that a single dissipationless collapse of rotating triaxial system can produce misaligned spins. Here we give the results of new observations of two can- 1. Introduction didates to PRGs from the PRC which obviously demon- The general picture of the observed part of the Universe strate the possibility of polar-ring galaxy formation as a has been in a marked degree due to the gravitational in- result of interaction between galaxies. arXiv:astro-ph/9608100v1 15 Aug 1996 teractions and mergings between galaxies. Observations Throught this paper the value H0 =75 km/s/Mpc is and model calculations show that mutual interactions and adopted. accretion may change such fundamental galaxy character- istics as mass and luminosity distributions, morphological 2. Observations and reductions type, the rate of star formation, etc. Galaxies with polar rings (PRGs) keep aloof among The photometric observations of galaxies were carried the objects which traditionally are considered as a result out in 1992 and 1994 in the prime focus of the 6-m of interaction between galaxies. Indeed, close encounters telescope of the Special Astrophysical Observatory of are the reason of disturbance of the galaxy form and ap- Russian Academy of Sciences. The photon collector was × × pearance of asymmetric structures such as bridges, tails virtual phase CCD of 520 580 pixels, each 18 24 µm × ′′ and so on, while the merging between the galaxies is con- (0.15 0.2 ) (Borisenko et al.1991). Reimaged optics, that × ′ sidered to result in the origin of smoothed elliptical-like realized a field of view 4.5 6.9 with angular resolution × objects where the remnants of merged objects are well 0.53 0.71”, was used during our observations of NGC mixed. To the contrary, ”classic” PRGs (category A in 6286. Observations of NGC 3808 were obtained without reimaged optics − with a field of view 1.3 × 2.0′ and reso- Send offprint requests to: V.P. Reshetnikov lution 0.15 × 0.2”. The data were acquired with standard 2 V.P. Reshetnikov, V.A. Hagen-Thorn, V.A. Yakovleva: Photometric study of polar-ring galaxies. Johnson B, V and Cousins R filters for NGC 6286, and in the case of NGC 3808B we observe the formation of with Johnson V and Cousins R, I filters for NGC 3808. polar ring as a result of mass transfer from the nearby Photometric calibration was accomplished using repeated galaxy. This suggestion is confirmed by spectral observa- observations of the BV RI standard stars from Landolt tions which have shown that the main body of the galaxy (1983) and Smith et al. (1991). The seeing during our ob- rotates around minor axis whereas the matter of twined servations was about 2′′. A log of observations is given arm moves around the major axis of the galaxy as in clas- in Table 1 (extinction corrected sky brightnesses in each sic PRGs (Reshetnikov & Yakovleva 1990). frame in magarcsec−2 are presented in the last column of the table). Reduction of the raw CCD data was made in standard manner (for details see Paper I - Reshetnikov et al. 1994). The ESO-MIDAS package (MIDAS User Guide 1994) was used. Fig. 1. Reproduction of NGC3808 from the Atlas of Peculiar Table 1. Observations Galaxies by Arp (1966). North is at the top, east to the left Object Data Band- Exp. Air- Sky pass (sec) mass mag. 3.1.1. Photometric characteristics Global photometric parameters of NGC 3808B are sum- NGC 3808 10/11.03.94 V 600 1.075 21.14 marized in Table 2 (the value of Bt in the table was derived R 300 1.079 20.66 from our Vt magnitude and colour index from Gavazzi et I 600 1.075 19.24 al. (1991): B − V = +0.65). There are some published results of photometric ob- NGC 6286 6/7.05.92 B 1000 1.049 21.94 servations of NGC 3808B. Tomov (1978) has found V = V 600 1.043 21.19 14.27 for the 54” aperture which covers almost whole R 300 1.040 20.58 galaxy. This value is more bright than that found by us (Vt =14.39) probably because of getting in the aperture the star, located to SW from the galaxy. Spectral observations of the galaxies were obtained Gavazzi et al. (1991) give the results of photoelectric earlier at the 1.93-m telescope of the Observatoire de observations of NGC 3808B with three various apertures. Haute-Provence, using the spectrograph CARELEC and The mean difference between these values and our mea- − ± the CCD TK512. For details of observations and reduc- surements for the same apertures is 0.05 0.02 (σ). In tions see Reshetnikov & Combes (1994) (RC). the work of Gavazzi & Randone (1994) the apparent mag- nitude in the V band within the elliptical isophote of 25 −2 mag arcsec is given: V25 = 14.61. Taking in mind the 3. Results and discussion mean difference between their V25 and total magnitudes 3.1. NGC 3808B (PRC D-19) in RC3 (+0.3 ± 0.2) we make the conclusion about good agreement between our Vt value and the data of Gavazzi NGC 3808 (Arp 87, VV 300) is M 51-type interacting dou- & Randone (1994). ble system, which consists of Sc spiral with Bt = 14.1±0.3 The isophotes of NGC 3808B in the V band are given (de Vaucouleurs et al. 1991, RC3) seen nearly face-on and in Fig.2. The main body of the galaxy is viewed practically a companion located at the end of spiral arm of the main edge-on. The twined arm become apparent as ”swelling” galaxy and seen edge-on. In what follows we shall refer of isophotes to NW and SE from the main body. Outside to the main galaxy as NGC 3808A and the companion as the main body the arm does not end but goes to NW NGC 3808B. The distance to the system is D =93 Mpc from its edge as far as ≈40” (18 kpc). In Fig.2 one can see (RC) and the angular separation between companions is faint (V =18.7) galaxy projected on the NE edge of NGC about 1.1’ (30 kpc). Our unpublished observations with 6- 3808B. We think this galaxy is background one seen here m telescope show that a radial velocity difference between by chance. However, it may be gravitationally bound with two galaxies is only 33 km/s. NGC 3808A,B but because of its non-distorted structure As one can see in Fig.1 where a contrast copy from it is located sufficiently far from the pair and does not the ”Atlas of Peculiar Galaxies” (Arp 1966) is given, the participate in strong gravitational interaction between A spiral arm of the main galaxy is not only drawn out to and B galaxies. the companion but twines it forming an unrolled spi- ral. For this reason Schweizer (1986) has supposed that V.P. Reshetnikov, V.A. Hagen-Thorn, V.A. Yakovleva: Photometric study of polar-ring galaxies. 3 Table 2. General characteristics NGC 3808B NGC 6286 D (Mpc) [RC] 93.0 76.5 Ag(B) [RC3] 0.00 0.02 Bt (± 0.10) 15.04 14.2 [1] (B − V )t +0.65 +0.75 ± 0.05 (V − R)t +0.48 ± 0.03 +0.50 ± 0.03 (R − I)t +0.46 ± 0.03 a (µB = 26) 0.77’ (20.7 kpc) 1.68’ (37.5 kpc) b/a (µB = 26) 0.36: 0.36: [2] µ0 18.5(V ) 20.4 (B) h 3.9” (1.8 kpc) 6.6” (2.5 kpc)[2] [3] [3] z0 2.2” (1.0 kpc) 3.8” (1.4 kpc) Vmax (km/s) 120±10 P ossible forming ring : M -18(V ) -18.4(B) B − V +0.5: V − R +0.4: +0.3: R − I +0.4: Vmax(km/s) 120 100: Ring-to-central galaxy ratio 0.1(V ) 0.2(B) (1) Gavazzi et al.
Recommended publications
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Nustar Unveils a Heavily Obscured Low-Luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy Ngc 6286 C
    Draft version October 26, 2015 A Preprint typeset using LTEX style emulateapj v. 04/17/13 NUSTAR UNVEILS A HEAVILY OBSCURED LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN THE LUMINOUS INFRARED GALAXY NGC 6286 C. Ricci1,2,*, et al. Draft version October 26, 2015 ABSTRACT We report on the detection of a heavily obscured Active Galactic Nucleus (AGN) in the Lumi- nous Infrared Galaxy (LIRG) NGC 6286, obtained thanks to a 17.5 ks NuSTAR observation of the source, part of our ongoing NuSTAR campaign aimed at observing local U/LIRGs in different merger stages. NGC6286 is clearly detected above 10keV and, by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured 24 −2 [N H ≃ (0.95 − 1.32) × 10 cm ], with a column density consistent with being mildly Compton- −2 thick [CT, log(N H/cm ) ≥ 24]. The AGN in NGC 6286 has a low absorption-corrected luminosity 41 −1 (L2−10 keV ∼ 3 − 20 × 10 ergs ) and contributes .1% to the energetics of the system. Because of its low-luminosity, previous observations carried out in the soft X-ray band (< 10 keV) and in the in- frared excluded the presence of a buried AGN. NGC 6286 has multi-wavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGN in LIRGs that can only be detected by sensitive hard X-ray observations. 1. INTRODUCTION 2012; Schawinski et al.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Interstellarum 52 • Juni/Juli 2007 1 Inhalt
    Editorial fokussiert Liebe Leserinnen und Leser, gibt es tatsächlich Planeten um andere Sterne, die die Vorrausset- zungen für die Entwicklung von Leben erfüllen? Eine derartige Mel- dung machte Ende April die Runde, als die ESO die Entdeckung eines Planeten in der »bewohnbaren«, weil möglicherweise die Existenz fl üs- sigen Wassers erlaubenden Zone um den Stern Gliese 581 bekanntgab (Seite 18). Solche Berichte machen den Eindruck, die Entdeckung von Leben in anderen Sonnensystemen stehe unmittelbar bevor – doch Daniel Fischers Blick hinter die Kulissen zeigt, dass wir noch am Anfang der Suche nach Exoplaneten stehen (Seite 12). Wenn interstellarum Teleskope testet, dann richtig – mit mehrmo- natigem Praxistest und optischer Bank. Diesmal stehen drei apochro- Ronald Stoyan, Chefredakteur matische Refraktoren der neuen Generation auf dem Prüfstand, die die Entscheidung besonders schwer machen – und die Beurteilung zu einem Vergnügen für den Tester. In diesem Heft steht die visuelle Leis- tungsfähigkeit im Vordergrund (Seite 50), in der kommenden Ausgabe werden die fotografi schen Fähigkeiten nachgereicht. Übrigens: Falls Sie einen Fernrohr-Kauf planen, empfehle ich Ihnen unsere Neuer- scheinung »Fernrohrwahl«. Dort sind praktisch alle auf dem deutschen Markt erhältlichen Modelle tabellarisch aufgelistet. Neu im Verlagsprogramm ist ebenfalls eine neue Ausgabe der inter- stellarum Archiv-CD, diesmal mit PDF-Dokumenten der Heftnummern 32 bis 49 – bestellbar über unsere Internetseite www.interstellarum.de. Dort laden wir Sie auch zur Teilnahme an der bisher größten Leserum- frage unserer Geschichte ein, denn wir wollen mehr über Sie und Ihre astronomischen Vorlieben erfahren – natürlich anonym. Bitte helfen Sie uns, interstellarum noch mehr auf Ihre Bedürfnisse auszurichten. Ihr Titelbild: Wie ein Planet eines anderen Sterns aussieht ist reine Spekulation – doch die künstlerische Darstellung der ESO hilft der Vorstellungskraft auf die Sprünge.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Arp Catalogue.Xlsx
    ATLAS OF PECULIAR GALAXIES CATALOGUE 1 ATLAS OF PECULIAR GALAXIES CATALOGUE Object Name Mag RA Dec Constellation ARP 1 NGC 2857 12.2 09:24:37 49:21:00 Ursa Major ARP 2 13.2 16:16:18 47:02:00 Hercules ARP 3 13.4 22:36:34 ‐02:54:00 Aquarius ARP 4 13.7 01:48:25 ‐12:22:00 Cetus ARP 5 NGC 3664 12.8 11:24:24 03:19:00 Leo ARP 6 NGC 2537 12.3 08:13:14 45:59:00 Lynx ARP 7 14.5 08:50:17 ‐16:34:00 Hydra ARP 8 NGC 0497 13 01:22:23 ‐00:52:00 Cetus ARP 9 NGC 2523 11.9 08:14:59 73:34:00 Camelopardalis ARP 10 13.8 02:18:26 05:39:00 Cetus ARP 11 14.4 01:09:23 14:20:00 Pisces ARP 12 NGC 2608 12.2 08:35:17 28:28:00 Cancer ARP 13 NGC 7448 11.6 23:00:02 15:59:00 Pegasus ARP 14 NGC 7314 10.9 22:35:45 ‐26:03:00 Pisces Austrinus ARP 15 NGC 7393 12.6 22:51:39 ‐05:33:00 Aquarius ARP 16 M66 8.9 11:20:14 12:59:00 Leo ARP 17 14.7 07:44:32 73:49:00 Camelopardalis ARP 17 07:44:38 73:48:00 Camelopardalis ARP 18 NGC 4088 10.5 12:05:35 50:32:00 Ursa Major ARP 19 NGC 0145 13.2 00:31:45 ‐05:09:00 Cetus ARP 20 14.4 04:19:53 02:05:00 Taurus ARP 21 14.7 11:04:58 30:01:00 Leo Minor ARP 22 14.9 11:59:29 ‐19:19:00 Corvus ARP 22 NGC 4027 11.2 11:59:30 ‐19:15:00 Corvus ARP 23 NGC 4618 10.8 12:41:32 41:09:00 Canes Venatici ARP 24 NGC 3445 12.6 10:54:36 56:59:00 Ursa Major ARP 24 12.8 10:54:45 56:57:00 Ursa Major ARP 25 NGC 2276 11.4 07:27:13 85:45:00 Cepheus ARP 26 M101 7.9 14:03:12 54:21:00 Ursa Major ARP 27 NGC 3631 10.4 11:21:02 53:10:00 Ursa Major ARP 28 NGC 7678 11.8 23:28:27 22:25:00 Pegasus ARP 29 NGC 6946 8.8 20:34:52 60:09:00 Cygnus ARP 30 NGC 6365 12.2 17:22:42 62:10:00
    [Show full text]
  • June 2013 Volume 24 Number 6 - the Official Publication of the San Jose Astronomical Association
    The Ephemeris June 2013 Volume 24 Number 6 - The Official Publication of the San Jose Astronomical Association. Houge Park June Events From the Editor - Mina Wagner 6/2 Hello friends! Summer is fast approaching and Solar observing. 2 - 4 p.m. Star Party season is just around the corner. It’s Fix-It Day 2 - 4 p.m. time to get the telescopes out, clean them, review your observing accessories, cold-weather 6/14 clothes, favorite snacks and drinks, thermoses, Star party. 9:30 p.m. - midnight. etc. One major star party already took place, the Texas Star Party (TSP) in the West Texas desert, and the Golden State Star Party (GSSP) begins on July 6th in north-east California. 6/21 Beginners Imaging Group 7:30 - 9 pm If you have never been to GSSP you should treat yourself this year. The skies are very dark, the scenery spectacular, and the Albaughs, our hosts, make it feel like a family affair. 6/22 General Meeting Please check our website: sjaa.net for updates on local weekend star parties. If you have 7:30 - 8 p.m. Social time pot luck never joined us for those you should go to one. Bring your telescope, or just bring yourself. 8 - 10 p.m. Speaker: Dr. Dana Backman, Children will love the experience and will never forget it. You can look through other peo- “SOPHIA—Science from 41,000 Feet”. ple's telescopes and share a nice evening of observing. Don't forget your jacket and snacks. 6/28 If you have any ideas about an observing trip, maybe you want to share them and we can 7 to 8:15 p.m.
    [Show full text]
  • Arxiv:1707.07134V1 [Astro-Ph.GA] 22 Jul 2017 2 Radio-Selected AGN
    Astronomy Astrophysics Review manuscript No. (will be inserted by the editor) Active Galactic Nuclei: what’s in a name? P. Padovani · D. M. Alexander · R. J. Assef · B. De Marco · P. Giommi · R. C. Hickox · G. T. Richards · V. Smolciˇ c´ · E. Hatziminaoglou · V. Mainieri · M. Salvato Received: June 12, 2017 / Accepted: July 21, 2017 Abstract Active Galactic Nuclei (AGN) are energetic as- sic differences between AGN, and primarily reflect varia- trophysical sources powered by accretion onto supermassive tions in a relatively small number of astrophysical parame- black holes in galaxies, and present unique observational ters as well the method by which each class of AGN is se- signatures that cover the full electromagnetic spectrum over lected. Taken together, observations in different electromag- more than twenty orders of magnitude in frequency. The netic bands as well as variations over time provide comple- rich phenomenology of AGN has resulted in a large number mentary windows on the physics of different sub-structures of different “flavours” in the literature that now comprise a in the AGN. In this review, we present an overview of AGN complex and confusing AGN “zoo”. It is increasingly clear multi-wavelength properties with the aim of painting their that these classifications are only partially related to intrin- “big picture” through observations in each electromagnetic band from radio to γ-rays as well as AGN variability. We P. Padovani · E. Hatziminaoglou · V. Mainieri address what we can learn from each observational method, European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 the impact of selection effects, the physics behind the emis- Garching bei Munchen,¨ Germany sion at each wavelength, and the potential for future studies.
    [Show full text]
  • The Phenomenon of the Galaxy NGC 6286: a Forming Polar Ring Or A
    Astronomy Letters, Vol. 30, No. 1, 2004, pp. 1–13. Translated from Pis’ma v Astronomicheski˘ı Zhurnal, Vol. 30, No. 1, 2004, pp. 3–16. Original Russian Text Copyright c 2004 by Shalyapina, Moiseev, Yakovleva, Hagen-Thorn, Burenkov. The Phenomenon of the Galaxy NGC 6286: AFormingPolarRingoraSuperwind? L. V. Shalyapina1*, A.V.Moiseev2, V.A.Yakovleva1, V. A. Hagen-Thorn 1, and A. N. Burenkov2 1Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, Petrodvorets, 198904 Russia 2Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, 357147 Karachai-Cherkessian Republic, Russia Received March 20, 2003; in final form, May 26, 2003 Abstract—We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5–7 from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5 × 5) field of view of the scanning Fabry–Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and[NII]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II] λ6583/Hα ratio for both galaxies.
    [Show full text]
  • Arp's Peculiar Galaxies - Supplementary Index the Deep Space CCD Atlas: North Presents 153 of the 338 Views Selected by Halton C
    Arp's Peculiar Galaxies - Supplementary Index The Deep Space CCD Atlas: North presents 153 of the 338 views selected by Halton C. Arp in his 1966 Atlas of Peculiar Galaxies. An asterisk (*) indicates that the galaxy is not identified by its Arp number in the CCD Atlas or its index. The headings are the categories (a "preliminary" taxonomy) Arp established with his 1966 Atlas. Arp Common name Page Arp Common name Page Arp Common name Page Spiral Galaxies: 116 MESSIER 60 143 239 NGC 5278 + 79 152 LOW SURFACE BRIGHTNESS 120 NGC 4438 + 35 134* 240 NGC 5257 + 58 152 1 NGC 2857 99 122 NGC 6040A + B 167* 242 The Mice 143 2 UGC 10310 168* 123 NGC 1888 + 89 49 243 NGC 2623 93 3 MCG-01-57-016 245 124 NGC 6361 + comp 177* 244 NGC 4038 + 39 123* 5 NGC 3664 116 WITH NEARBY FRAGMENTS 245 NGC 2992 + 93 101 6 NGC 2537 90* 133 NGC 0541 15* 246 NGC 7838 + 37 1* SPLIT ARM 134 MESSIER 49 136* 248 Wild's Triplet 120 8 NGC 0497 14 135 NGC 1023 29* IRREGULAR CLUMPS 9 NGC 2523 91* 136 NGC 5820 161* 259 NGC 1741 group 47 12 NGC 2608 92* MATERIAL EMANATING FROM E 263 NGC 3239 107 DETACHED SEGMENTS GALAXIES 264 NGC 3104 104 13 NGC 7448 248* 137 NGC 2914 99* 266 NGC 4861 147 14 NGC 7314 245* 140 NGC 0275 + 74 9* 268 Holmberg II 91 15 NGC 7393 247 142 NGC 2936 + 37 100 16 MESSIER 66 114* 143 NGC 2444 + 45 85 Group Character 18 NGC 4088 124* CONNECTED ARMS THREE-ARMED Galaxies 269 NGC 4490 + 85 136* 19 NGC 0145 3 WITH ASSOCIATED RINGS 270 NGC 3395 + 96 110* 22 NGC 4027 123* 148 Mayall's Object 112 271 NGC 5426 + 27 156 ONE-ARMED WITH JETS 272 NGC 6050 + IC1174 168*
    [Show full text]
  • Star Formation and Nuclear Activity of Local Luminous Infrared Galaxies
    PhD Thesis Star Formation and Nuclear Activity of Local Luminous Infrared Galaxies Memoria de tesis doctoral presentada por D. Miguel Pereira Santaella para optar al grado de Doctor en Ciencias F´ısicas Universidad Aut´onoma Consejo Superior de Madrid de Investigaciones Cient´ıficas Facultad de Ciencias Instituto de Estructura de la Materia Departamento de F´ısica Te´orica Centro de Astrobiolog´ıa Madrid, noviembre de 2011 Directora: Dra. Almudena Alonso Herrero Instituto de F´ısica de Cantabria Tutora: Prof.ª Rosa Dom´ınguez Tenreiro Universidad Aut´onoma de Madrid Agradecimientos En primer lugar quer´ıadar las gracias a mi directora de tesis, Almudena Alonso Herrero, por haber confiado en mi desde un principio para realizar este trabajo, as´ı como por todo su inter´es y dedicaci´on durante estos cuatro a˜nos. Adem´as me gustar´ıa agradecer la ayuda y consejos de Luis Colina. En este tiempo he tenido la oportunidad de realizar estancias en centros de in- vestigaci´on extranjeros de los que guardo un grato recuerdo personal y cient´ıfico. En particular me gustar´ıaagradecer a George Rieke y a Martin Ward su hospitalidad y amabilidad durante mis visitas al Steward Observatory en la Universidad de Arizona y a la Universidad de Durham. Y volviendo a Madrid, quisiera agradecer a Tanio y a Marce el apoyo y la ayuda que me ofrecieron en los inciertos comienzos de este proyecto. Tambi´en quiero dar las gra- cias a todos (Arancha, Nuria, Alvaro,´ Alejandro, Julia, Jairo, Javier, Ruym´an, Fabi´an, entre otros) por las interesantes conversaciones, a veces incluso sobre ciencia, en las sobremesas, caf´es, etc.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis The varying activity of supermassive black holes on multiple timescales Author(s): Sartori, Lia Publication Date: 2019 Permanent Link: https://doi.org/10.3929/ethz-b-000382815 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 26133 The varying activity of supermassive black holes on multiple timescales A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Lia Federica Sartori Master of Science ETH in Physics ETH Zurich born on October 26, 1990 citizen of Bosco/Gurin (TI), Switzerland accepted on the recommendation of Prof. Dr. Alexandre Refregier Dr. Kevin Schawinski Prof. Dr. Ezequiel Treister 2019 Per la mia famiglia Vargaltsgott Abstract Variable emission is a ubiquitous property of active galactic nuclei (AGN). It can be observed or inferred at essentially all timescales, from hours to billions of years, and across the entire electromagnetic spectrum. Since most of the AGN luminosity originates from the accretion of matter into the central supermassive black hole (SMBH), the study of AGN variability can provide crucial information about the physics and structure of the central engine, including at spatial scales that are beyond the resolving power of most of the observing facilities for the majority of the AGN. In addition, the study of AGN variability allows us to probe the close link between SMBHs and their host galaxies by taking into account the fact that the energy injection from the AGN varies with time.
    [Show full text]