JEB Classics

Total Page:16

File Type:pdf, Size:1020Kb

JEB Classics JEB Classics 177 THE ORIGIN OF INSECT George Newport had reported that there is JEB Classics is an occasional THERMOREGULATORY a correlation between activity and elevated column, featuring historic body temperature in a moth, a bumblebee, publications from The Journal of STUDIES and a beetle (Newport, 1837). After the Experimental Biology. These subject remained fallow for the following articles, written by modern experts 60 years the Russian physicist Perfirij J. in the field, discuss each classic Bachmetjev resurrected the subject when paper’s impact on the field of he identified the same correlation in insects biology and their own work. A just before the end of the 19th Century PDF of the original paper is (Bachmetjev, 1899). Similarly, Heinz available from the JEB Archive Dotterweich showed specifically that the (http://jeb.biologists.org/). rise in thoracic temperature of sphinx moths is related to the insects’ flight preparations (Dotterweich, 1928). In Krogh’s own laboratory in Denmark, Marius Nielsen showed that human body temperature also rises during strenuous activity, and is then regulated at a high level corresponding to work output (Nielsen, 1938). Referencing these early, possibly forgotten, classical studies in Krogh and Zeuthen’s 1941 paper brought the neglected topic of thermoregulation to the forefront of the then hot field of respiratory physiology. Prior to Krogh and Zeuthen’s work, reports Bernd Heinrich writes about August Krogh of insect thermoregulation were mainly and Eric Zeuthen’s 1941 classic paper on s descriptive. However, their 1941 paper was insect thermoregulation entitled ‘The the first to attempt to crack the proverbial mechanism of flight preparation in some black box of the underlying physiological insects’. A copy of the paper can obtained mechanisms. It set the stage for subsequent at c work by reviewing salient points from the http://jeb.biologists.org/cgi/reprint/18/1/1 scant data available on muscle temperature i and mechanical work of insects prior to Some ‘classic’ papers shine for their sheer flight or while resting. Using brilliance and thoroughness. They put an thermocouples implanted in butterfly end to argument. Others pioneer a new (Vanessa) flight muscles, they s method that opens up novel directions of demonstrated that wing movements during research, or they focus on a previously both pre-flight shivering and flight, are ignored work and bring it to light. Still associated with a steady rise in muscle others have impact because they draw temperature until temperatures approaching s attention when a big gun stumbles across human body temperature are reached. The an obstacle or exposes a gaping hole in our butterflies were then thrown into the air to knowledge. I believe that the 1941 paper find the muscle temperatures that enabled by August Krogh and Eric Zeuthen does the insects to fly. Krogh and Zeuthen’s a some or all of the above in the area where observation led them to disagree with insect physiology intersects ecological previous observations about insect flight l energetics and thermoregulation. Working temperatures, stating that ‘We cannot together, they examined a butterfly, a subscribe to Dotterweich’s statement that bumblebee, and a beetle, and concluded moths require a definite temperature to be that the temperature of an insect’s flight able to fly. We made a few observations on C muscle during pre-flight warm-up Catocola sponsa, measuring thoracic determines its maximal rate of work output temperature and then throwing the moths during flight (Krogh and Zeuthen, 1941). I into the air. These observations indicate first read the Krogh and Zeuthen paper in that at muscle temperatures above 25°C the mid 1960’s when I became interested in this species is able to fly’. Although Krogh insect physiology with the aim of and Zeuthen’s statement does not specify B discerning mechanisms of what temperatures ‘a few’ observations thermoregulation. I think their paper was encompass, nor what a ‘definite’ inspiring, not for any one particular temperature is, it is clear to me that the E discovery, but rather for their approach. moth can fly at temperatures as low as 25°C and is not restricted to just the However, the concept that flight muscle narrow range of high muscle temperatures J activity raised body temperature was hardly that they reported for flight in other insects. new, even in 1941. A century earlier Apparently Dotterweich drew incorrect THE JOURNAL OF EXPERIMENTAL BIOLOGY JEB Classics 178 generalizations about temperature during insect pre-flight warm-up is unlikely potentials and wing muscle contractions regulation, extrapolating from sphinx to be an adaptation for the discharge of that would translate to wing movements. moths to other moths. nervous impulses from the ganglia to the These incorrect assumptions stimulated my muscles. Instead, they state that it is own work when I realised that bees achieve Next the team extended their observations ‘required to allow the muscular engine to impressive temperature increases without of flight muscle temperature into the develop the energy expenditure for flight’. moving their wings, and it eventually bumblebee Bombus horti and found that This, a major point of their paper, became apparent that the wing muscles are the bumblebee’s temperatures paralleled established the framework and a trajectory in tetanus during warm-up (Kammer and those of the butterfly; the thoracic muscles of subsequent insect thermoregulation Heinrich, 1974). Numerous subsequent heated up to at least 30°C before flight. studies for those that followed their lead studies over the next half century revealed Measurements of the insect’s abdominal into physiology. To my knowledge, the fascinating mechanisms of muscle function temperature showed that it was only authors themselves did not proceed further and morphological adaptations for damping slightly elevated, enhancing the team’s in this area, possibly because of the war: thoracic and wing vibrations during warm- point that the flight muscles are indeed the there is a note at the end of the paper, up (Esch et al., 1991) and that ‘warm-up’ source of the body heat, and that the action which states that ‘Owing to war conditions, plays a role in a variety of other of warming-up permits high energy the authors have been unable to submit physiological phenomena besides flight expenditure during flight. corrected proofs prior to publication’. preparation, including brood incubation and colony defense. Krogh and Zeuthen also Krogh and Zeuthen’s final observations in While the paper clearly laid out the essential implied that abdominal temperature is their 1941 paper focused on the large role of thermoregulation in flight, the passive, with thoracic heat simply diffusing (weighing in at almost one gram) authors also enunciated several apparent into the abdomen, setting up another lamellicorn beetle, Geotrupes stercorarius. enigmas that would concern many of the strawman that stimulated subsequent Large beetles ‘pump’ their abdomen prior researchers who followed in their wake. For research that ultimately yielded to flight, and since beetles show no example, why do some insects require a breakthroughs in our understanding of externally-visible motion of the wings or high muscle temperature in order to fly, insect thermoregulation, behavior and social elytra prior to flight, it was presumed that while others do not? Krogh and Zeuthen ecology (reviewed in Heinrich, 1993; they did so in order to raise the oxygen assumed (an assumption that held for the Heinrich, 1996). concentration of the tracheal system. next 30 years) that the maximum flight However, Krogh and Zeuthen’s electrical temperature achieved is only that which the Their short (it would fit into 4 or 5 pages recordings from the flight muscles showed insect spends valuable energy to achieve. in JEB’s current format) paper’s main neural spiking activity as the beetle Since all the work was done with highly influence, I believe, arose not only from warmed up; the flight muscles were active restrained animals, not free-flying ones, the clear and incisive insights it provided even though the wings did not move. That there was never any suggestion that some through simple direct observations, but also is, these insects, which appeared to fly insects might produce heat in excess of their from the unknowns (and interesting without prior shivering, were indeed flight requirements. In their attempt to mistakes) it highlighted. It also emphasises exercising their flight muscles, and since explain this enigma of variable flight the little that was known about insect working muscles require vigorous gas temperatures, Krogh and Zeuthen merely thermoregulation in 1941, most of which exchange, that explained the abdominal suggested that those insects requiring high had been buried in the literature for up to a pumping. It was this observation of muscle temperatures are ‘bad flyers’ and century. ‘invisible’ muscle activity in particular that those who fly at lower temperatures ‘good I found the most intriguing, because it flyers’. It would nowadays be a bit of a Ironically, although the paper by Krogh showed that much was still hidden and stretch to characterize sphinx moths and and Zeuthen focused on muscle unknown. bees as ‘bad’ flyers. Undoubtedly, many physiology, the last paragraph introduced a subsequent studies on the aerodynamics of way of connecting the muscle temperature For me, one of the most provocative insect flight owe at least some of their of the animal with practical estimates of its aspects of Krogh and Zeuthen’s paper was inspiration to Krogh and Zeuthen’s claim energy input and expenditure. For me, that their use of the insects’ cooling curves to about the bumblebee’s ineptitude. I was observation culminated in field studies that estimate energy expenditure, measurements personally inspired to instigate numerous revealed the ecological and evolutionary relationships between bees and flowers and which are still considered virtually studies to determine what body temperatures stimulated me to write the book impossible in free-living animals.
Recommended publications
  • Thermogenesis in Stingless Bees: an Approach with Emphasis on Brood's Thermal Contribution
    J Anim Behav Biometeorol ISSN 2318-1265 v.4, n.4, p.101-108 (2016) REVIEW Thermogenesis in stingless bees: an approach with emphasis on brood's thermal contribution Maiko Roberto Tavares Dantas MRT Dantas (Corresponding author) email: [email protected] Department of Animal Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil. Received: August 09, 2016 ▪ Revised: September 08, 2016 ▪ Accepted: September 12, 2016 Abstract The animals behave as a thermodynamic system development, productivity and reproduction in its various complex, which remains all the time exchanging energy with segments (Heinrich 1981; Heinrich 1993; Heinrich 1994; the environment. In this context, the body temperature of Mardan and Kevan 2002; Roldão 2011). The body bees considerably accompanies variations in ambient temperature of an animal refers to the quantity of stored temperature, and the performance of most of its activity is thermal energy per unit of body mass. This energy can be largely affected by air temperature. When these individuals increased or decreased by thermolysis and thermogenesis are exposed to temperatures above or below the optimum processes, respectively (Silva 2000). In these processes are range for the species during its pupal stage, these, when they involved behavioral, autonomous and adaptive mechanisms survive, have morphological deficiencies, physiological or (Silva 2000). behavioral as adults. These insects use physiological The animals act as a thermodynamic complex system, activities such as internal temperature control mechanisms of which remains all the time exchanging energy with the the nest. Social insects like honey bees demonstrate certain environment (Silva 2000). Due to this process, the ambient thermoregulatory ability to nest in which they live, known as tends to induce physiological changes in such organisms in the colonial endotherm.
    [Show full text]
  • Thermal Ecology of the Western Tent Caterpillar
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2020 Heat for the Masses: Thermal Ecology of the Western Tent Caterpillar Victoria Dahlhoff University of Montana, Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Behavior and Ethology Commons, Entomology Commons, Integrative Biology Commons, Other Ecology and Evolutionary Biology Commons, and the Other Physiology Commons Let us know how access to this document benefits ou.y Recommended Citation Dahlhoff, Victoria, "Heat for the Masses: Thermal Ecology of the Western Tent Caterpillar" (2020). Graduate Student Theses, Dissertations, & Professional Papers. 11673. https://scholarworks.umt.edu/etd/11673 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. HEAT FOR THE MASSES: THERMAL ECOLOGY OF THE WESTERN TENT CATERPILLAR By VICTORIA C. DAHLHOFF B.S. Bates College, Lewison ME, 2015 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Ecology and Evolution The University of Montana Missoula, MT September 2020 Submitted for approval by: Scott Wittenburg, Graduate School Dean H. Arthur Woods, Chair Division of Biological Sciences Creagh Breuner Division of Biological Sciences Bret Tobalske Division of Biological Sciences Caroline Williams Department of Integrative Biology, University of California Berkeley Abstract A unique feature of some gregarious, colonial insects is their ability to create external structures that alter environmental conditions for the entire (often family) group.
    [Show full text]
  • Factors Affecting Metabolism During Non-Feeding Stages in Insects
    FACTORS AFFECTING METABOLISM DURING NON-FEEDING STAGES IN INSECTS A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Liz Doralyn Cambron In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Program: Cellular and Molecular Biology April 2020 Fargo, North Dakota North Dakota State University Graduate School Title FACTORS AFFECTING METABOLISM DURING NON-FEEDING STAGES IN INSECTS By Liz Doralyn Cambron The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Kendra Greenlee Chair Dr. Stephen Foster Dr. Tim Greives Dr. Yagna Jarajapu Dr. George Yocum Approved: July 9, 2020 Dr. Kendra Greenlee Date Department Chair ABSTRACT Although feeding is important for optimal development and growth in insects, there are several points during the insect life cycle that are non-feeding: metamorphosis, pupation, and overwintering. Non-feeding periods also occur in response to internal cues, such as feedback from nutrient thresholds and immune responses being activated. Additionally, as an insect goes through different developmental stages, its nutritional requirements change in response to or in preparation for non-feeding periods. Most physiological responses like feeding are regulated through an interconnection of pathways, but how these networks change in response to different energy demands, such as immune challenges or changes in metabolism, is poorly understood. One significant pathway that is involved in regulating several physiological processes is the insulin signaling pathway. In my dissertation research, I tested hypotheses explaining the regulation of physiological processes during non-feeding periods in two agriculturally relevant insects, Manduca sexta and Megachile rotundata.
    [Show full text]
  • Behavioural Effects of Temperature on Ectothermic Animals: Unifying Thermal Physiology and Behavioural Plasticity
    bioRxiv preprint doi: https://doi.org/10.1101/056051; this version posted June 9, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity Paul K. Abrama,b, Guy Boivinb, Joffrey Moirouxa,b, Jacques Brodeura aInstitut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada. bCentre de Recherche et de Développement de St-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, St-Jean-sur-Richelieu, Canada. Abstract Temperature imposes significant constraints on ectothermic animals, and these organisms have evolved numerous adaptations to respond to these constraints. While the impacts of temperature on the physiology of ectotherms have been extensively studied, there are currently no frameworks available that outline the multiple and often simultaneous pathways by which temperature can affect behaviour. Drawing from the literature on insects, we propose a unified framework that should apply to all ectothermic animals, generalizing temperature’s behavioural effects into (1) Kinetic effects, resulting from temperature’s bottom-up constraining influence on metabolism and neurophysiology over a range of timescales (from short- to long-term), and (2) Integrated effects, where the top-down integration of thermal information intentionally initiates or modifies a behaviour (behavioural thermoregulation, thermal orientation, thermosensory behavioural adjustments). We discuss the difficulty in distinguishing adaptive behavioural changes due to temperature from behavioural changes that are the products of constraints, and propose two complementary approaches to help make this distinction and class behaviours according to our framework: (i) behavioural kinetic null modeling and (ii) behavioural ecology experiments using temperature-insensitive mutants.
    [Show full text]
  • University of Texas at Arlington Dissertation Template
    INTRA-SPECIFIC VARIATION ACROSS A SMALL TEMPERATURE DIFFERENCE IN THE SPIDER RABIDOSA RABIDA (ARANEAE: LYCOSIDAE) FROM THE MOUNTIANS IN ARKANSAS by RYAN STORK Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2011 Copyright © by Ryan Stork 2011 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank my committee (Daniel Formanowicz, Laura Mydlarz, James Grover, Jeff Demuth, and Jonathan Campbell) for their guidance and long hours of editing. I would also like to thank my lovely wife Katy and daughter Annalee who showed incredible patience during this process. I would also like to thank all of the graduate and undergraduate students who helped feed, clean, and generally care for the hundreds of spiders used in this study. Finally I would like to thank God without whom none of this would be possible. Thank you all. I could not have finished this project without all of you. November 3, 2010 iii ABSTRACT INTRA-SPECIFIC VARIATION ACROSS A SMALL TEMPERATURE DIFFERENCE IN THE SPIDER RABIDOSA RABIDA (ARANEAE: LYCOSIDAE) FROM THE MOUNTIANS IN ARKANSAS Ryan Stork, PhD The University of Texas at Arlington, 2011 Supervising Professor: Daniel Formanowicz Temperature affects all levels of biological organization and ultimately affects multiple aspects of ecological performance and fitness. Generalist arthropod predators are ectothermic and are strongly affected by temperature in ways that are not fully understood. Descriptions of thermal ecology of important generalist arthropod predators are, therefore, essential pieces of information for studying ecology in changing thermal environments.
    [Show full text]
  • 1 Errata LOLI, D. (2008)
    Errata LOLI, D. (2008) Termorregulação colonial e energética individual em abelhas sem ferrão Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae, Meliponini). Tese de Doutorado – Instituto de Biociências da USP, SP. Tabela 1. Correções de citações distribuídas ao longo do texto da tese Onde consta: Lê-se: Contrera (2005, 2006) Contrera (2004) Grigg et al (2001) Grigg et al (2004) Dickson e Graham (2001) Dickson e Graham (2004) Bloch (1994) Block (1994) Saktor (1976) Sacktor (1976) Becher et al (1996) Becker et al (1996) Agrícola et al (1989) Agricola et al (1988) Grumbaum e Muller (1998) Grünbaum e Müller (1998) Hillenius e Ruben (2001ª) Hillenius e Ruben (2004) Seymour et al (2001) Seymour et al (2004) Heinrich (1997) Heinrich e Esch (1997) Tabela 2. Correções de paginação Onde consta: Lê-se: Páginas 1 a 7 (páginas preliminares) Páginas i, ii, iii, iv, v, vi, vii. Páginas 8 a 229 Páginas 1 a 222 Referências bibliográficas – complementação Capítulo 1 AIDAR, D.S.; CAMPOS, L.A.O. (1994) Resposta de meliponíneos à alimentação artificial (Melipona quadrifasciata Lep. MELIPONINAE, APIDAE). Ann. Enc. Et 12:105-106. AIDAR, D.S. (1995) Multiplicação Artificial e Manejo de Colônias de Melipona quadrifasciata Lep. Hymenoptera Apidae, Meliponinae). Viçosa, MG, 85p . ANTONINI, Y. (2002) Efeitos de variáveis ecológicas na ocorrência de Melipona quadrifasciata (Apidae, Meliponini) em fragmentos urbanos e rurais. Tese de Doutorado - Ecologia Conservação Manejo de Vida Silvestre, UFMG. BATISTA, M.A. (2003). Distribuição e dinâmica espacial de abelhas sociais Meliponini em um remanescente de Mata Atlântica (Salvador, Bahia, Brasil). Dissertação de Mestrado - Departamento de Biologia, FFCLRP, USP, Ribeirao Preto.
    [Show full text]
  • Thermal Ecology of Ectotherms: the Role of Microclimates in Climate Change Responses Sylvain Pincebourde
    Thermal ecology of ectotherms: the role of microclimates in climate change responses Sylvain Pincebourde To cite this version: Sylvain Pincebourde. Thermal ecology of ectotherms: the role of microclimates in climate change responses. Biodiversity and Ecology. Université de Tours, 2019. tel-02474332 HAL Id: tel-02474332 https://hal.archives-ouvertes.fr/tel-02474332 Submitted on 11 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HABILITATION À DIRIGER DES RECHERCHES Discipline : Sciences de la Vie Année universitaire : 2019 / 2020 Présentée et soutenue publiquement par : SYLVAIN PINCEBOURDE Le 06 Décembre 2019 ECOLOGIE THERMIQUE DES ECTOTHERMES: ROLE DU MICROCLIMAT DANS LA REPONSE AU CHANGEMENT CLIMATIQUE -------------------------------- JURY : M. Jérôme CASAS Professeur des Universités Université de Tours Mme Patricia GIBERT Directrice de Recherche CNRS Université Lyon 1 Mme Nathalie GUIVARC'H Professeur des Universités Université de Tours M. Michael KEARNEY Professeur Université de Melbourne (Australie) M. Claudio LAZZARI Professeur des Universités Université de Tours M. Jean-François LE GALLIARD Chargé de Recherche CNRS, HDR Sorbonne Université M. David RENAULT Maitre de Conférence, HDR Université Rennes 1 M. Brent SINCLAIR Professeur Université Western Ontario (Canada) Habilitation à Diriger des Recherches Thermal ecology of ectotherms: The role of microclimates in climate change responses Sylvain PINCEBOURDE Insect Biology Research Institute (IRBI, UMR 7261) Dissertation presented on December 6th, 2019 Discipline: Life Sciences Committee: M.
    [Show full text]
  • Differences in Thermal Balance, Body Temperature and Activity
    The Journal of Experimental Biology 199, 2655–2666 (1996) 2655 Printed in Great Britain © The Company of Biologists Limited 1996 JEB0446 DIFFERENCES IN THERMAL BALANCE, BODY TEMPERATURE AND ACTIVITY BETWEEN NON-MELANIC AND MELANIC TWO-SPOT LADYBIRD BEETLES (ADALIA BIPUNCTATA) UNDER CONTROLLED CONDITIONS PETER W. DE JONG, SANDER W. S. GUSSEKLOO AND PAUL M. BRAKEFIELD* Section of Evolutionary Biology and Systematic Zoology, Institute of Evolutionary and Ecological Sciences, University of Leiden, PO Box g516, 2300 RA Leiden, The Netherlands Accepted 8 August 1996 Summary The consequences of the elytral colour difference the model predictions and, considering the assumptions between non-melanic (red) and melanic (black) two-spot made, closely corresponded at the quantitative level. The ladybirds for their thermal properties were studied by consequences of the temperature differences for morph applying and testing a biophysical model. The expected activity were studied by measuring walking speeds and the differential effects of variation in transmission through the time needed to become active for each morph under the elytra, body size, width of the subelytral cavity, ambient various conditions. The results are consistent with the temperature, radiation intensity and wind speed are differences in body temperature, assuming an optimum described, assuming that the two colour patterns represent curve relating performance to body temperature. The differences in elytral reflectance and transmittance. The colour difference between morphs appeared to be the model predicts a higher body temperature for melanic principal factor influencing activity. beetles under most conditions. Invasive temperature measurements on living beetles under ranges of specified conditions with respect to ambient temperature, radiative Key words: ladybird, Adalia bipunctata, thermal balance, colour regime and wind speed were in qualitative agreement with morph, walking speed, physical model, melanism.
    [Show full text]
  • Functional Materials in Insects
    DOI: 10.1002/adma.201705322 Article type: Review It’s Not a Bug, It’s a Feature: Functional Materials in Insects Thomas B. H. Schroeder, Jared Houghtaling, Bodo D. Wilts*, Michael Mayer* T. B. H. Schroeder University of Michigan Department of Chemical Engineering 2300 Hayward Street, Ann Arbor, MI, 48109, USA J. Houghtaling University of Michigan Department of Biomedical Engineering 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA T. B. H. Schroeder, J. Houghtaling, Dr. B. D. Wilts, Prof. M. Mayer Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4, 1700 Fribourg, Switzerland E-mail: [email protected], [email protected] Keywords: entomology, biomaterials, nanomaterials, hierarchical materials, structure–function relationships This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/adma.201705322. This article is protected by copyright. All rights reserved. Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats that include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a wide range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all of the habitable regions on the planet, they still represent a largely untapped pool of unique problem-solving strategies.
    [Show full text]
  • Cyclocephala Colasi) Associated with Pollination Biology of a Thermogenic Arum Lily (Philodendron Solimoesense)
    2960 The Journal of Experimental Biology 212, 2960-2968 Published by The Company of Biologists 2009 doi:10.1242/jeb.032763 Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense) Roger S. Seymour1,*, Craig R. White2 and Marc Gibernau3 1Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, Darling Building, University of Adelaide, Adelaide, SA 5005, Australia, 2School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia and 3Laboratoire d’Evolution et Diversité Biologique UMR 5174, Université Paul Sabatier, 31062 Toulouse, Cedex 9, France *Author for correspondence ([email protected]) Accepted 28 June 2009 SUMMARY Cyclocephala colasi beetles are facultative endotherms that spend most of their adult lives inside the inflorescences of Philodendron solimoesense, where ambient temperature (Ta) averages about 28°C due to floral thermogenesis. Measurements of respiration within a range of Ta showed that active beetles became spontaneously endothermic at Ta below 28°C but were rarely endothermic above it. There was no evidence of endothermy within the inflorescences, indicating that activities in the floral chamber can occur without the high energy expense of endothermy. Bouts of endothermy occurred at lower Ta in respirometer chambers mainly in the evening, when the insects normally fly from one inflorescence to another, and during the night, when they normally eat and mate within the inflorescence. Patterns of endothermy in individual episodes were studied in non-flying beetles with respirometry and infrared thermal imaging. Heat was generated in the thorax by oscillatory waves of respiration that were coupled with thoracic temperature (Tth) increases.
    [Show full text]
  • The Biometeorology of High-Altitude Insect Layers
    Department of Meteorology in association with Rothamsted Research The biometeorology of high-altitude insect layers Curtis Ron Wood A thesis submitted for the degree of Doctor of Philosophy March 2007 The biometeorology of high-altitude insect layers (ii) Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Curtis Wood The biometeorology of high-altitude insect layers (iii) Abstract Flight at high altitude is part of a migration strategy that maximises insect population displacement. This thesis represents the first substantial analysis of insect migration and layering in Europe. Vertical-looking entomological radar has revealed specific characteristics of high-altitude flight: in particular layering (where a large proportion of the migrating insects are concentrated in a narrow altitude band). The meteorological mechanisms underpinning the formation of these layers are the focus of this thesis. Aerial netting samples and radar data revealed four distinct periods of high-altitude insect migration: dawn, daytime, dusk, and night-time. The most frequently observed nocturnal profiles during the summertime were layers. It is hypothesised that nocturnal layers initiate at a critical altitude (200–500 m above ground level) and time (20:00–22:00 hours UTC). Case study analysis, statistical analysis, and a Lagrangian trajectory model showed that nocturnal insect layers probably result from the insects’ response to meteorological conditions. Temperature was the variable most correlated with nocturnal insect layer presence and intensity because insects are poikilothermic, and temperatures experienced during high-altitude migration in temperate climates are expected to be marginal for many insects’ flight.
    [Show full text]
  • Thermal Dependence of Muscle Function
    Thermal dependence of muscle function BENNETT, ALBERT F. Thermal dependence of muscle function. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R217-R229, 1984.-Maximal isometric forces during both twitch and tetanus are largely temperature independent in muscles from both endothermic and ecto- thermic vertebrates. Anuran muscle can develop maximal force at lower temperatures than mammalian muscle. Tetanic tension is maximal at normally experienced body temperatures in a variety of animals, but twitch tension seldom is. Thermal dependence of twitch tension varies with muscle fiber type: tension decreases with increasing temperature in fast-twitch muscles and remains constant in slow-twitch muscles. In contrast to the low temperature dependence of force generation, rates of development of tension (time to peak twitch tension and tetanic rise time) and maximal velocity of shortening and power output are markedly temperature depend- ent, with average temperature coefficient (QlO) values of 2.0-2.5. Q10 values for rate processes of anuran muscle are only slightly lower than those of mammalian muscle. High body temperatures permit rapid rates of muscle contraction; animals active at low body temperatures do not achieve the maximal rate performance their muscles are capable of delivering. Thermal acclimation or hibernation does not appear to result in compensatory adjustments in either force generation or rate processes. In vivo, dynamic processes dependent on contractile rates are positively temperature de- pendent, although with markedly lower &lo values than those of isolated muscle. Static force application in vivo is nearly temperature independent. force generation; isometric contraction; isotonic contraction; skeletal mus- cle; temperature TEMPERATURE HAS PERVASIVE EFFECTS on the func- experience a thermal range of more than lO”C, depending tional properties of biological systems.
    [Show full text]