University of Texas at Arlington Dissertation Template

Total Page:16

File Type:pdf, Size:1020Kb

University of Texas at Arlington Dissertation Template INTRA-SPECIFIC VARIATION ACROSS A SMALL TEMPERATURE DIFFERENCE IN THE SPIDER RABIDOSA RABIDA (ARANEAE: LYCOSIDAE) FROM THE MOUNTIANS IN ARKANSAS by RYAN STORK Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2011 Copyright © by Ryan Stork 2011 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank my committee (Daniel Formanowicz, Laura Mydlarz, James Grover, Jeff Demuth, and Jonathan Campbell) for their guidance and long hours of editing. I would also like to thank my lovely wife Katy and daughter Annalee who showed incredible patience during this process. I would also like to thank all of the graduate and undergraduate students who helped feed, clean, and generally care for the hundreds of spiders used in this study. Finally I would like to thank God without whom none of this would be possible. Thank you all. I could not have finished this project without all of you. November 3, 2010 iii ABSTRACT INTRA-SPECIFIC VARIATION ACROSS A SMALL TEMPERATURE DIFFERENCE IN THE SPIDER RABIDOSA RABIDA (ARANEAE: LYCOSIDAE) FROM THE MOUNTIANS IN ARKANSAS Ryan Stork, PhD The University of Texas at Arlington, 2011 Supervising Professor: Daniel Formanowicz Temperature affects all levels of biological organization and ultimately affects multiple aspects of ecological performance and fitness. Generalist arthropod predators are ectothermic and are strongly affected by temperature in ways that are not fully understood. Descriptions of thermal ecology of important generalist arthropod predators are, therefore, essential pieces of information for studying ecology in changing thermal environments. Rabidosa rabida is a wolf spider that inhabits much of the eastern United States and plays an important role as a generalist predator of large herbivorous arthropods. This study makes the first description of the thermal ecology of R. rabida. A description of intra-specific variation in this spider and applications of this data to habitat selection for this generalist arthropod predator are also made. Descriptions of thermal preference, critical thermal maxima, and locomotor performance were made for spiders collected at four locations in the mountains of Arkansas which differed by less than three degrees. Comparisons of thermal ecology and other ecologically significant thermal performance measures, such as predation and immunity, were made between these populations to determine if intra-specific variation could be described and if small temperature iv differences would result in measureable differences in thermal response. Estimates of heritability were also made for size, sprint speed, and immunity measures to determine if variation found could be attributed to genetic factors or if environmental factors such as temperature could explain any variation observed. Carapace length differed between spiders from different mountains with spiders from Mt. Magazine having a greater CL. Body mass also differed between sexes and between spiders from different elevations with females and spiders from low elevation showing the greater body mass. Rabidosa rabida was found to have an acute thermal preference of 32.0 ± 0.011◦C. Thermal preference differed between spiders from different mountains. The critical thermal maximum was estimated to be 43.52 ± 0.105◦C. Thermal limits did not differ between mountain or elevation groups. Sprint speed was significantly affected by temperature and differed between spiders from different elevations with spiders from higher elevations showing a greater mean sprint speed. Comparisons with characteristics of insects using various thermal strategies showed that R. rabida is a thermal conformer and thermal generalist with moderate thermal sensitivity. Thermal sensitivity, which did not significantly differ between 5◦ intervals, was greatest at the thermal extremes and between 25◦ and 30◦C for all but male spiders. Measures of prey capture showed an apparent increase in prey capture as temperature increased but the ability for statistical interpretation was limited. Immunity showed limited variation between spiders and no significant differences between spiders from different elevations or mountains. Heritability estimates for size, sprint speed, and immunity measures were low and not significantly different from zero. This first description of the thermal ecology and thermal performance in this large non web building spider gives insights into the thermal habitat selection of this animal. This spider showed a thermal preference suggesting that it can detect temperature differences and actively chooses to occupy one temperature over another. Thermal performance tests show that as temperature increases performance also increases. Survival may be negatively influenced by v warmer temperatures especially during early instars and molting. The thermal sensitivity of this spider showed an apparent increase in the temperatures between 25◦ and 30◦C which would suggest that if all other factors were the same then this spider should choose to inhabit temperatures in the low thirties similar to its thermal preference. In the field these spiders are found actively hunting in the low vegetation at night when temperatures are dropping from the 30◦’s into the 20◦’s and in an area where wind would have negative effects on body temperature and hydration. This suggests that other factors such as inter-specific interactions influence habitat choice in this spider. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................................iii ABSTRACT ..................................................................................................................................... iv LIST OF ILLUSTRATIONS............................................................................................................... x LIST OF TABLES ............................................................................................................................xii Chapter Page 1. INTRODUCTION……………………………………..………..….. ..................................... 1 1.1 Temperature ..................................................................................................... 1 1.2 Thermal Ecology Questions ............................................................................. 2 1.3 Thermal Regulation or Conformity ................................................................... 4 1.4 Thermal Specialist or Generalist ...................................................................... 5 1.5 Intra-Specific Variation ..................................................................................... 5 1.6 Co-adaptation of Physiology and Performance ............................................... 6 1.7 Heritability ......................................................................................................... 7 1.7.1 Heritability of Performance ............................................................... 7 1.8 Study Organism ............................................................................................... 8 1.8.1 The Family Lycosidae ...................................................................... 9 1.8.2 The Genus Rabidosa ..................................................................... 10 1.8.3 Range ............................................................................................. 13 1.8.4 Habitat ............................................................................................ 14 1.8.5 Ecological Importance .................................................................... 14 1.9 Specific Aims .................................................................................................. 15 1.9.1 Thermal Ecology ............................................................................ 15 vii 1.9.2 Evidence of Intra-Specific Variation ............................................... 16 1.9.3 Is this variation heritable and thus subject to selective pressures? ..................................................................................... 16 1.9.4 How does a small temperature difference affect temperate arthropod predators? ...................................................................... 17 2. Population and Collection Location Descriptions ......................................................... 18 2.1 Introduction..................................................................................................... 18 2.2 Spider Collection and Care ............................................................................ 18 2.3 Thermal Differences between Collection Locations ....................................... 19 2.4 Size Methods.................................................................................................. 22 2.5 Size Results ................................................................................................... 24 2.6 Juvenile Survival Methods ............................................................................. 29 2.7 Juvenile Survival Results ............................................................................... 30 2.8 Discussion ...................................................................................................... 32 3. COMPARATIVE THERMAL ECOLOGY ...................................................................... 36 3.1 Thermal Ecology ...........................................................................................
Recommended publications
  • Archiv Für Naturgeschichte
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Archiv für Naturgeschichte Jahr/Year: 1905 Band/Volume: 71-2_2 Autor(en)/Author(s): Lucas Robert Artikel/Article: Arachnida für 1904. 925-993 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Arachnida fiir 1904. Bearbeitet von Dr. Robert Lucas. A. Publikationen (Autoren alphabetisch). d'Agostino, A. P. Prima nota dei Ragni deU'Avelliiiese. Avellino 1/8 4 pp. Banks, Nathan (1). Some spiders and mites from Bermuda Islands. Trans. Connect. Acad. vol. XI, 1903 p. 267—275. — {%), The Arachnida of Florida. Proc. Acad. Philad. Jan. 1904 p. 120—147, 2 pls. (VII u. VIII). — (3). Some Arachnida from CaUfornia. Proc. Californ. Acad. III No. 13. p. 331—374, pls. 38—41. — (4). Arachnida (in) Alaska; from the Harriman Alaska Ex- pedition vol. VIII p. 37—45, 11 pls. — Abdruck der Publikation von 1900 aus d. Proc. Washington Acad. vol. II p. 477—486. Berthoumieu, L' Abbe. Revision de l'entomologie dans 1' Antiquite. Arachnides p. 197—200 (Chelifer, Scorpiones, Galeodes, Aranea, Ixodes, Tyroglyphus et Cheyletus). Eev. Sei. Bourbonnais 1904, p. 167. Bolton, H. The Palaeontology of the Lancashire Goal Measures. Manchester. Mus. Owens Coli. Publ. 50. Mus. Handb. p. 378—415. — Abdruck aus Trans. Manchester geol. min. Soc. vol. 28. Brown, Rob. (I). Rectifications tardives mais necessaires. Proc- verb. Soc. Linn. Bordeaux, vol. 59 p. LXVIII—LXX. — Auch über Arachniden. Calman, W. T. Arachnida in Zool. Record for 1903 vol. XL. XI 47 pp. Cambridge, F. 0. Pickard. 1901. Further Contributions towards the Knowledge of the Arachnida of Epping Forest.
    [Show full text]
  • Field Biology Booklet 2011
    Field Biology Booklet 2011 Field Biology 2011 Leroy Percy State Park Tishomingo State Park The students and faculty of Field Biology, Summer Trimester 2011, Dr. Thomas Rauch Frank Beilmann Haley Bryant Courtney Daley Jennifer Farmer Jillian Ferrell Amy Ford Jessie Martin Rendon Martin Kayla Ross Whit Sanguinetti Katy Scott Laila Younes Nafiyah Younes would like to thank the manager of Leroy Percy State Park, Betty Bennett, for her hospitality, kindness, and generosity and the manager of Tishomingo State Park, Bill Brekeen, for his help and overwhelming support of our Field Biology class. The 2011 Field Biology class would also like to thank Ms. Heather Sullivan and Ms. Margaret Howell for helping us identify numerous species, and Mr. Bob Gresham for allowing us to explore on his property. In addition, the students would like to extend a HUGE thank you to our beloved professor, Dr. Thomas Rauch (Rauchfiki). This booklet was made by the students of the 2011 Field Biology class and is not sponsored by William Carey University (i.e. it is not used for the purpose of keying organisms). All collections were done in and around Leroy Percy State Park in the Mississippi Delta, in and around Tishomingo State Park in Mississippi, and right over the Alabama border. Various means were used to identify animals including bird calls and tracks, as well as many species identification books. We, the 2011 Field biology students, fully enjoyed our field biology experience. We hope that this booklet will give you a glimpse into all that we were able to learn, as well as all the fun times we shared.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • A Review of the Anti-Predator Devices of Spiders* Invaders Away Or Kill and Eat Them
    Bull. Br. arachnol. Soc. (1995) 10 (3), 81-96 81 A review of the anti-predator devices of spiders* invaders away or kill and eat them. The pirate spiders (Mimetidae) that have been studied feed almost J. L. Cloudsley-Thompson exclusively on other spiders, whilst certain Salticidae 10 Battishill Street, (Portia spp.) feed not only upon insects, but sometimes London Nl 1TE also on other jumping spiders, and even tackle large orb-weavers in their webs (see below). Several other Summary families and genera, including Archaeidae, Palpimanus (Palpimanidae), Argyrodes and Theridion (Theridiidae), The predators of spiders are mostly either about the and Chorizopes (Araneidae) contain species that include same size as their prey (arthropods) or much larger (vertebrates), against each of which different types of de- other spiders in their diet. Sexual cannibalism has been fence have evolved. Primary defences include anachoresis, reviewed by Elgar (1992). Other books in which the phenology, crypsis, protective resemblance and disguise, enemies of spiders are discussed include: Berland (1932), spines and warning coloration, mimicry (especially of ants), Bristowe (1958), Cloudsley-Thompson (1958, 1980), cocoons and retreats, barrier webs, web stabilimenta and Edmunds (1974), Gertsch (1949), Main (1976), Millot detritus, and communal webs. Secondary defences are flight, dropping to the ground, colour change and thanatosis, (1949), Preston-Mafham, R. & K. (1984), Savory (1928), web vibration, whirling and bouncing, autotomy, venoms Thomas (1953) and Wise (1993). (For earlier references, and defensive fluids, urticating setae, warning sounds and see Warburton, 1909). deimatic displays. The anti-predator adaptations of spiders The major predators of spiders fall into two cate- are extremely complex, and combinations of the devices gories: (a) those about the same size as their prey (mainly listed frequently occur.
    [Show full text]
  • JEB Classics
    JEB Classics 177 THE ORIGIN OF INSECT George Newport had reported that there is JEB Classics is an occasional THERMOREGULATORY a correlation between activity and elevated column, featuring historic body temperature in a moth, a bumblebee, publications from The Journal of STUDIES and a beetle (Newport, 1837). After the Experimental Biology. These subject remained fallow for the following articles, written by modern experts 60 years the Russian physicist Perfirij J. in the field, discuss each classic Bachmetjev resurrected the subject when paper’s impact on the field of he identified the same correlation in insects biology and their own work. A just before the end of the 19th Century PDF of the original paper is (Bachmetjev, 1899). Similarly, Heinz available from the JEB Archive Dotterweich showed specifically that the (http://jeb.biologists.org/). rise in thoracic temperature of sphinx moths is related to the insects’ flight preparations (Dotterweich, 1928). In Krogh’s own laboratory in Denmark, Marius Nielsen showed that human body temperature also rises during strenuous activity, and is then regulated at a high level corresponding to work output (Nielsen, 1938). Referencing these early, possibly forgotten, classical studies in Krogh and Zeuthen’s 1941 paper brought the neglected topic of thermoregulation to the forefront of the then hot field of respiratory physiology. Prior to Krogh and Zeuthen’s work, reports Bernd Heinrich writes about August Krogh of insect thermoregulation were mainly and Eric Zeuthen’s 1941 classic paper on s descriptive. However, their 1941 paper was insect thermoregulation entitled ‘The the first to attempt to crack the proverbial mechanism of flight preparation in some black box of the underlying physiological insects’.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • References (The Literature Survey Was Completed in the Spring of 1995)
    References (The literature survey was completed in the Spring of 1995) Abdullah MAR, Abulfatih HA (1995) Predation of Acacia seeds by bruchid beetles and its relation to altitudinal gradient in south-western Saudi Arabia. J Arid Environ 29:99- 105 Abramsky Z, Pinshow B (1989) Changes in foraging effort in two gerbil species with habitat type and intra- and interspecific activity. Oikos 56:43-53 Abramsky Z, Rosenzweig ML, Pins how BP, Brown JS, Kotler BP, Mitchell WA (1990) Habitat selection: an experimental field test with two gerbil species. Ecology 71:2358-2369 Abramsky Z, Shachak M, Subrach A, Brand S, Alfia H (1992) Predator-prey relationships: rodent-snail interaction in the Central Negev Desert ofIsrael. Oikos 65:128-133 Abushama FT (1972) The repugnatorial gland of the grasshopper Poecilocerus hiero­ glyphicus (Klug). J Entomol Ser A Gen EntomoI47:95-100 Abushama FT (1984) Epigeal insects. In: Cloudsley-Thompson JL (ed) Sahara desert (Key environments). Pergamon Press, Oxford, pp 129-144 Alexander AJ (1958) On the stridulation of scorpions. Behaviour 12:339-352 Alexander AJ (1960) A note on the evolution of stridulation within the family Scorpioni­ dae. Proc Zool Soc Lond 133:391-399 Alexander RD (1974) The evolution of social behaviour. Annu Rev Ecol Syst 5:325-383 AlthoffDM, Thompson IN (1994) The effects of tail autotomy on survivorship and body growth of Uta stansburiana under conditions of high mortality. Oecologia 100:250- 255 Applin DG, Cloudsley-Thompson JL, Constantinou C (1987) Molecular and physiological mechanisms in chronobiology - their manifestations in the desert ecosystem. J Arid Environ 13:187-197 Arnold EN (1984) Evolutionary aspects of tail shedding in lizards and their relatives.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Response of Pollinators to the Tradeoff Between Resource Acquisition And
    Oikos 000: 001–010, 2011 doi: 10.1111/j.1600-0706.2011.19910.x © 2011 The Authors. Oikos © 2011 Nordic Society Oikos Subject Editor: Koos Biesmierer. Accepted 25 July 2011 0 Response of pollinators to the tradeoff between resource 53 acquisition and predator avoidance 55 5 Ana L. Llandres, Eva De Mas and Miguel A. Rodríguez-Gironés 60 A. L. Llandres ([email protected]), E. De Mas and M. A. Rodríguez-Gironés, Dept of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento, s/n, ES-04120, La Cañada de San Urbano, Almería, Spain. 10 65 Although the behaviour of animals facing the conflicting demands of increasing foraging success and decreasing predation risk has been studied in many taxa, the response of pollinators to variations in both factors has only been studied in isola- tion. We compared visit rates of two pollinator species, hoverflies and honeybees, to 40 Chrysanthemum segetum patches 15 in which we manipulated predation risk (patches with and without crab spiders) and nectar availability (rich and poor patches) using a full factorial design. Pollinators responded differently to the tradeoff between maximising intake rate and minimising predation risk: honeybees preferred rich safe patches and avoided poor risky patches while the number of hov- 70 erflies was highest at poor risky patches. Because honeybees were more susceptible to predation than hoverflies, our results suggest that, in the presence of competition for resources, less susceptible pollinators concentrate their foraging effort on 20 riskier resources, where competition is less severe. Crab spiders had a negative effect on the rate at which inflorescences were visited by honeybees.
    [Show full text]
  • World Spider Catalog (Accessed 4 January 2020) Family: Thomisidae Sundevall, 1833
    World Spider Catalog (accessed 4 January 2020) Family: Thomisidae Sundevall, 1833 Gen. Bassaniana Strand, 1928 Bassaniana floridana (Banks, 1896) AL, AR, FL, GA, LA, MD, MS, NJ, OH, SC, TX, VA Bassaniana utahensis (Gertsch, 1932) AB, BC, LB, MB, NB, NF, NS, NT, NU, ON, PQ, SK; AK, AZ, CA, CO, FL, ID, IL, MA, ME, MI, MN, MS, MT, ND, NH, NM, NV, NY, OH, OR, PA, SD, TX, UT, VT, WA, WI Bassaniana versicolor (Keyserling, 1880) ON; AL, AR, AZ, CT, FL, IA, IL, IN, KS, KY, LA, MA, MD, MI, MO, MS, NC, NE, NM, NY, OH, OR, PA, RI, TN, TX, VA, WI, WV Gen. Bucranium O. Pickard-Cambridge, 1881 Bucranium sp. undescribed TX Gen. Coriarachne Thorell, 1870 Coriarachne brunneipes Banks, 1893 AB, BC, MB, NT, ON, PQ, SK; AK, AZ, CA, CO, ID, NV, OR, WA, WY Gen. Diaea Thorell, 1869 Diaea livens Simon, 1876 CA Diaea seminola Gertsch, 1939 FL Gen. Mecaphesa Simon, 1900 Mecaphesa aikoae (Schick, 1965) CA Mecaphesa asperata (Hentz, 1847) AB, BC, MB, ON, PQ, SK; AL, AR, CA, CO, CT, DC, FL, GA, ID, IL, IN, KS, KY, LA, MA, MD, MI, MN, MO, NC, NE, NH, NJ, NM, NY, OH, OK, PA, RI, TN, TX, UT, VA, WI Mecaphesa californica (Banks, 1896) CA, CO, TX, UT Mecaphesa carletonica (Dondale & Redner, 1976) ON, PC; IN, TX Mecaphesa celer (Hentz, 1847) AB, BC, SK; AL, AZ, CA, CO, FL, GA, ID, IL, IN, KS, LA, MA, MI, MN, MO, MS, NC, NE, NM, NV, NY, OH, OK, OR, TX, UT, VA, WA, WY Mecaphesa coloradensis (Gertsch, 1933) AZ, CO, TX, UT Mecaphesa deserti (Schick, 1965) CA Mecaphesa devia (Gertsch, 1939) CA Mecaphesa dubia (Keyserling, 1880) AZ, CA, FL, KS, LA, MS, OK, TX Mecaphesa gabrielensis (Schick, 1965) CA Mecaphesa importuna (Keyserling, 1881) CA Mecaphesa importuna belkini (Schick, 1965) CA Mecaphesa lepida (Thorell, 1877) CA, UT Mecaphesa lowriei (Schick, 1970) CA Mecaphesa quercina (Schick, 1965) CA Mecaphesa rothi (Schick, 1965) CA Mecaphesa schlingeri (Schick, 1965) CA Mecaphesa sierrensis (Schick, 1965) BC Mecaphesa verityi (Schick, 1965) CA Gen.
    [Show full text]
  • Download Download
    Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally.
    [Show full text]