Rolling Resistance and Energy Loss in Tyres Mohammad Mehdi Davari [email protected] KTH Vehicle Dynamics Department of Aeronautical and Vehicle Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Rolling resistance and energy loss in tyres Mohammad Mehdi Davari [email protected] KTH Vehicle Dynamics Department of Aeronautical and Vehicle Engineering SVEA seminar May 20, 2015 Contents • Background and challenges • Research objectives • Rolling loss • Tyre models • Modelling process • Results • Summary and conclusions MOHAMMAD MEHDI DAVARI 2015-05-19 2 Vehicle energy usage 8 100 0,38 6 4,14 Inertial forces 1,33 0,78 4,93 km 4 0,76 Aerodynamic forces 0,97 2,24 2,19 Internal frictional forces 2 0,55 0,59 Rolling resistance forces 2,57 0,5 Contribution in liters/ 1,47 1,56 1,38 0 Urban Extraurban Major and minor Motorway roads Every day 2 millions tonnes of fuel burns up to overcome rolling resistance! Source: Michelin MOHAMMAD MEHDI DAVARI 2015-05-19 3 Reducing rolling resistance and consequently the fuel consumption is a major development goal for vehicle and tyre manufactures. MOHAMMAD MEHDI DAVARI 2015-05-19 4 What does the vehicle industry do? Narrower Larger VW XL1: 115/80 R15 Michelin BMW i3: 155/70 R19 Bridgestone MOHAMMAD MEHDI DAVARI 2015-05-19 5 What about the tyre industry? Source: Michelin MOHAMMAD MEHDI DAVARI 2015-05-19 6 …but, there are challenges! Green tyres Source: Michelin MOHAMMAD MEHDI DAVARI 2015-05-19 7 What we as vehicle dynamicists can do to affect the rolling resistance? MOHAMMAD MEHDI DAVARI 2015-05-19 8 Research goal… … presenting an idea, apart from the state-of-the-art methods, to reduce the resistance originated from the tyre. MOHAMMAD MEHDI DAVARI 2015-05-19 9 Research questions • What is an appropriate model to characterise the rolling loss in the tyre during a vehicle manoeuvre? • Is it reasonable to believe that there is any potential to reduce the rolling loss and thereby fuel consumption by using active chassis solutions? MOHAMMAD MEHDI DAVARI 2015-05-19 10 Rolling resistance Main contributors associated with tyre rolling resistance; • Hysteretic losses in the sidewall and the tread • Tyre aerodynamic drag and air circulations • Tyre-road interaction and surface losses Rubber deformation 80 – 95 % Aerodynamic resistance 0 – 15 % Tyre-road interaction <5 % MOHAMMAD MEHDI DAVARI 2015-05-19 11 Rolling resistance In-door measurement Out-door measurement Rolling direction [Source: Technical University of Gdansk] 퐹푟 푓푟 = 퐹푧 푀푦 푀푦 = 퐹푧 ∙ 푒 푓푟 = 퐹푧 ∙ 푧푡 ISO 18164:2005 measuring rolling resistance, under controlled laboratory conditions (free rolling, straight ahead driving, specific load and speed) MOHAMMAD MEHDI DAVARI 2015-05-19 12 A global definition Pressure distribution and shape of the contact patch depend on driving conditions and wheel alignments, thus this coefficient will be a variable dependent to other parameters; 푠푖푑푒 푠푙푖푝 푎푛푔푙푒 푐푎푚푏푒푟 푎푛푔푙푒 푠푙푖푝 푟푎푡푖표 푅표푙푙푖푛푔 푟푒푠푖푠푡푎푛푐푒 푐표푒푓푓푖푐푖푒푛푡 = 푓 푣푒푟푡푖푐푎푙 푙표푎푑 푠푝푒푒푑 푡푒푚푝푒푟푎푡푢푟푒 푚푎푡푒푟푖푎푙 … Therefore, for free-rolling, straight ahead driving and neutral wheel alignment in-plane rolling resistance coefficient (푓푟) will be used instead and in general the term rolling resistance coefficient (푓푅). MOHAMMAD MEHDI DAVARI 2015-05-19 13 Rolling loss “Rolling loss" refers to the energy dissipation in the tyre due to deflections as well the losses in the sliding region. Dissipation sources Adhesion force limit Sliding force limit Adhesion region -a 0 a SlidingSliding region region Contact patch length Internal losses External losses MOHAMMAD MEHDI DAVARI 2015-05-19 14 Tyre models Empirical models Similarity based models Simple physical models Complex physical models Degree of fit Low dependency Independency on number of from number of experiments full scale tests Insight in tyre Simplicity of behaviour formulation Less computational effort MOHAMMAD MEHDI DAVARI 2015-05-19 15 Initialisation Rolling loss Expectations from the model... Tyre Rubber Time Energy observer Inputs Internal loss Bristle External loss • Be applicable within vehicle deflection δ Bristle force Longitudinal speed Vx dynamics simulations. Vertical force F x x level z Vehicle Slip ratio y Rubber model y Total rolling resistance • Considering the rolling loss Side slip angle z z Camber angle Friction observer In-plane rolling resistance in tyre from a holistic level Chassis Chassis approch. Pressure distribution Pressure K Tyre z • Be able to simulate the level (vertical stiffness) Updating Time Quarter car internal and external losses. And model Road roughness Bristle deflection level Road MOHAMMAD MEHDI DAVARI 2015-05-19 16 Modelling process: Dissipation modelling Loss angle Rate Viscoelastic modules dependent Rate Friction modules independent Force Displacement Phase 20 15 10 5 0 Force [N] Force -5 1 Hz -10 10 Hz Friction -15 -20 -0,01 -0,005 0 0,005 0,01 Displacement [m] Rubber model MOHAMMAD MEHDI DAVARI 2015-05-19 17 Modelling process: Tyre modelling Extended Brush tyre Model (EBM) Finite number of Flexible carcass 0.05 lines and bristles 0 -0.05 -0.1 -0.15 Brush tyre Z [m] State observer theory -0.2 -0.25 Lateral force -0.3 Friction ellipse -0.1 -0.05 0 0.05 0.1 Y [m] Maximum Dissipation Rate Mode (MDRM) - Think about animtion - Use bigger fonts MOHAMMAD MEHDI DAVARI 2015-05-19 18 Model algorithm MOHAMMAD MEHDI DAVARI 2015-05-19 19 Results MOHAMMAD MEHDI DAVARI 2015-05-19 20 Global forces Longitudinal slip 6000 5000 The structural behaviour of the 4000 Magic Formula 3000 tyre model represented by the [N] EBM x global forces shows good fit F 2000 with measured data and Magic Formula. 1000 0 0 10 20 30 40 50 60 70 80 90 100 [-] x Combined slip Lateral slip 500 3000 Measured data at = 0 0 EBM at = 0 Measured data at = 6 2000 = -2 -500 EBM at = 6 1000 -1000 Measurement 0 EBM -1500 Measurement [N] [N] y y -1000 EBM -2000 F F -2000 = 4 -2500 -3000 -3000 -3500 -4000 -4000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 0 5 10 15 20 25 30 F [N] [deg] x MOHAMMAD MEHDI DAVARI 2015-05-19 21 Detailed study of contact patch = 0 , = 0 4 0.15 Inner edge x 10 0 0.1 0.05 5 [Pa] z 0 p 10 -0.05 Contact width [m] width Contact 15 -0.1 = 0 -0.1 -0.05 0.1 = -2 0 0.05 -0.15 Outer edge 0.05 0 = -3 -0.05 0.1 -0.1 -0.1 -0.05 0 0.05 0.1 0.15 y[m] x[m] Contact length [m] Make another movie to prevent flickering MOHAMMAD MEHDI DAVARI 2015-05-19 22 Influence of vehicle level parameters: speed 0.025 0.02 EBM FEM 0.02 0.015 0.015 0.01 0.01 0.005 0.005 Rollingresistance coefficient [-] Rollingresistance coefficient [-] Rubber A Rubber a Rubber B Rubber b Rubber C Rubber c 0 0 0 10 20 30 40 50 5 10 15 20 25 30 35 40 Velocity [m/s] Velocity[ m/s] MOHAMMAD MEHDI DAVARI 2015-05-19 23 Influence of vehicle level parameters: load and torque 0.019 0.0185 0.018 0.0175 0.017 0.0165 Rollingresistance coefficient [-] 0.016 0.0155 2000 3000 4000 5000 6000 7000 8000 Vertical force [N] 4000 3500 3000 2500 2000 1500 1000 500 Energy loss per unit distance travelled [J/m] travelleddistance unit lossper Energy 0 -6000 -4000 -2000 0 2000 4000 6000 Fx [N] Braking Driving MOHAMMAD MEHDI DAVARI 2015-05-19 24 Influence of chassis and tyre level parameters 0.0146 0.16 0.0145 0.14 0.0145 0.12 0.0144 0.1 0.0144 0.08 0.0143 0.06 0.0143 0.04 0.0142 0.02 Rollingresistance coefficient [-] Rollingresistance coefficient [-] 0.0142 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Camber angle [deg] Side slip angle [deg] 0.035 0.03 0.025 Tyre pressure and 0.02 vertical stiffness are linearly dependent 0.015 푃 ∝ 푘푧 0.01 Rollingresistance coefficient [-] 0.005 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Relative vertical stiffness [-] MOHAMMAD MEHDI DAVARI 2015-05-19 25 Energy studies 1800 Longitudinal dissipation =0 [deg] 1600 Lateral dissipation =0 [deg] 훼 1400 Vertical dissipation =0 [deg] Longitudinal dissipation =2 [deg] 1200 Lateral dissipation =2 [deg] 1000 Vertical dissipation =2 [deg] 800 600 Total dissipated energy Total [J]dissipated energy 400 200 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Time [s] MOHAMMAD MEHDI DAVARI 2015-05-19 26 2000 0.04 Dynamic maneouvres 1000 =0 0.03 0 =-2 [N] 0.02 y Steering angle F -1000 0.01 -2000 0 1 1.5 2 2.5 [rad] angle Steering 56 =0 54 5 N 10,0% =-2 [N] r F 52 50 1 1.5 2 2.5 2000 =0 -19,0% =-2 435 N [N] R 1000 F 0 1 1.5 2 2.5 1000 =0 30 W -2,5% =-2 900 800 Internal lossInternal [W] rate 1 1.5 2 2.5 1000 =0 -11,5% 72 W 500 =-2 0 External loss [W] rate 1 1.5 2 2.5 훾 = 0° Time [s] MOHAMMAD MEHDI DAVARI 2015-05-19 27 Internal Loss (E) Internal Loss Rate (dE/dt) 1 1 = 0 = 0 = -2 = -2 [J] 0 0 x /dt [W] x E dE -1 -1 0 0.5 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 40 100 [J] 20 y /dt [W] 50 y E dE 0 0 0 0.5 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3000 950 1421 2000 1420.5 [J] z 900 1420 /dt [W] z E 1000 1419.5 dE 1.6119 1.612 1.6121 0 850 0 0.5 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3000 1000 2000 1620 1615 950 E [J] 1000 1610 dE/dt [W] 900 1.802 1.804 1.806 0 0 0.5 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 time time MOHAMMAD MEHDI DAVARI 2015-05-19 28 Summary and future work Internal losses Parametrising the Implementation rolling resistance External losses Tyre modelling Control strategies Rolling losses Rolling loss Rolling loss studies in full modelling vehicle MOHAMMAD MEHDI DAVARI 2015-05-19 29 Conclusion • A tyre model to investigate the rolling loss is presented.