Striated Tire Yaw Marks—Modeling and Validation

Total Page:16

File Type:pdf, Size:1020Kb

Striated Tire Yaw Marks—Modeling and Validation energies Article Striated Tire Yaw Marks—Modeling and Validation Wojciech Wach * and Jakub Z˛ebala Institute of Forensic Research in Kraków, 31-033 Kraków, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-61-85-763 Abstract: Tire yaw marks deposited on the road surface carry a lot of information of paramount importance for the analysis of vehicle accidents. They can be used: (a) in a macro-scale for establishing the vehicle’s positions and orientation as well as an estimation of the vehicle’s speed at the start of yawing; (b) in a micro-scale for inferring among others things the braking or acceleration status of the wheels from the topology of the striations forming the mark. A mathematical model of how the striations will appear has been developed. The model is universal, i.e., it applies to a tire moving along any trajectory with variable curvature, and it takes into account the forces and torques which are calculated by solving a system of non-linear equations of vehicle dynamics. It was validated in the program developed by the author, in which the vehicle is represented by a 36 degree of freedom multi-body system with the TMeasy tire model. The mark-creating model shows good compliance with experimental data. It gives a deep view of the nature of striated yaw marks’ formation and can be applied in any program for the simulation of vehicle dynamics with any level of simplification. Keywords: yaw marks striations; tire model; multibody dynamics; vehicle accident simulation 1. Introduction Citation: Wach, W.; Z˛ebala,J. The rectified projection of tire yaw marks deposited on the road surface (often either Striated Tire Yaw Marks—Modeling from an orthophotomap, a point cloud or a total station survey) can be used in a macro-scale and Validation. Energies 2021, 14, for: 4309. https://doi.org/10.3390/ • determination of subsequent vehicle positions and orientation during critical move- en14144309 ment by matching the position of individual wheels to the corresponding marks; • estimation of the vehicle’s speed at the start of yawing. Academic Editor: Aldo Sorniotti For the latter—assuming the vehicle was moving on a horizontal and homogeneous Received: 16 June 2021 surface along a curve of radius r—the critical speed formula (CSF) is most commonly used: Accepted: 15 July 2021 p Published: 17 July 2021 v = m·g·r, (1) r g 2 Publisher’s Note: MDPI stays neutral where: m—tire-to-roadway coefficient of friction, —radius of the mark, = 9.8 m/s — with regard to jurisdictional claims in gravitational acceleration. published maps and institutional affil- Although this formula may seem simplistic, it has been shown repeatedly over the iations. years that, under certain conditions, it can be considered as a quasi-empirical critical speed method (CSM). A broad overview of such conditions has been presented among others by Brach and Brach [1]. Sledge and Marshek [2] examined some refined forms of the CSF which account for the effects of, among others, vehicle weight distribution, slip angles, cornering stiffnesses and ABS. Cannon [3] has demonstrated that effective Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. braking causes the CSF to overestimate the speed at the start of the yaw mark and that This article is an open access article a 50 ft. chord appears to give acceptably low effective braking-related errors (<7%) for distributed under the terms and speeds of approximately 72 km/h (45 mph) and for speeds of approximately 97 km/h conditions of the Creative Commons (60 mph) with light to moderate braking. Cliff et al. [4] have concluded that when using the Attribution (CC BY) license (https:// peak coefficient of friction, both the CSF and simulation over-estimated the actual speed, creativecommons.org/licenses/by/ whereas slide coefficient of friction under-estimated them. Braking tended to increase the 4.0/). results. Amirault and MacInnis [5] carried out a total of 29 tests at speeds of 80 to 95 km/h. Energies 2021, 14, 4309. https://doi.org/10.3390/en14144309 https://www.mdpi.com/journal/energies Energies 2021, 14, 4309 2 of 21 Bearing in mind non-braking and ABS braking tests, using 20 m chord measurements for the radius and the average braking coefficient of friction overestimated the measured speed by 4.1% ± 6.3% (±1σ), while using a center of gravity trajectory for the radius and the average braking coefficient of friction underestimated the measured speed by 2.0% ± 5.2% (±1σ). Lambourn [6] conducted tests in which passenger cars were freely coasting, braking or under power when travelling in a curve at speed of 55 to 100 km/h, and proposed a procedure which makes it possible to limit the uncertainty of speed calculated from the CSF to ±10%. In [7] and [8] he concluded that his previously described CSM gives satisfactory results also in the event of light braking, heavy braking with ABS, acceleration and the operation of ESP. There was no sign of the cycling of the ABS. The yaw marks had the typical appearance, practically the same as in the case of low braking without ABS. Significantly less yaw or off-tracking were observed when compared with marks deposited with little or no braking. If the brakes were applied aggressively during the yaw, the amount of yaw would decrease. This feature—the reverse of usual yawing with the heavy non-ABS braking—is probably the result of the “select low” algorithm. While most authors, notably Lambourn [6–8] and Amirault and MacInnis [5], limit their analysis to yawing with relatively low yaw rate, Cash and Crouch [9] derived a formula which accounts for a higher degree of vehicle yaw and any brake force (not only from driver input), resulting in a narrower error band than conventional CSMs. If the exact path and orientation of the collision vehicle are not readily apparent, their method allows the flexibility of considering ranges for the required values. What distinguishes simulation methods is that they provide a deep view into the time histories of curvilinear movement parameters, including the critical speed, as well as identifying a set of data (e.g., steering angle, braking/accelerating level of particular wheels, yaw moment of inertia etc.) which enables a virtual vehicle to move along the actual tire marks. The point of this article is the appearance of yaw marks in the micro-scale, that is from the perspective of the topology of striations forming the mark, which make it possible to infer the braking or acceleration status of the wheels (and sometimes even the steering angle of the front wheels). The yaw mark is essentially left by the entire tire footprint remaining in contact with the roadway (contact patch), but its blackness and distinctness depend on the local slip of the tread blocks relative to the road, and stress. The rule “the greater the stress, the more distinct the mark” applies both in the macro (when observing the entire yaw marks, the most pronounced are the marks of the external, loaded wheels) and in the micro scale (the most visible is the outer edge of a single yaw mark). Yamazaki and Akasaka in their classic article [10] argue that deposition of striations is independent of the tread pattern and is caused by an in-plane bending moment that is transmitted from the roadway to the body of the tire via the tread contact patch during sharp cornering. They refer to this phenomenon as the bending buckling behavior of a steel-belted radial tire. Buckling occurs immediately in the contact patch in the presence of a large lateral reaction from the road and is specific to radial—not bias—tires. Yamazaki in [11] shows that sharp cornering turns on steel-belted radial tires often cause wavy wear along the periphery of the shoulder. Beauchamp et al. in [12] summarize the literature concerning the yaw mark striations issue, analyze the differences in the mechanism in which striations are deposited, and discuss the relationship between tire mark striations and tire forces. They conclude that in the case of tires with pronounced shoulder blocks the striations are typically produced by these blocks whereas tires with very low pressure or without a tread pattern are more likely to deposit striations by buckling. In the absence of braking and acceleration the striation marks are parallel to the wheel rotation axis. When the brakes are applied aggressively, the striations will change to a direction more in line with the wheel trajectory but ABS prevents the tires from locking. Beauchamp et al. in [13] show examples where the striations reflect point loading of the tread shoulder blocks. In Figure1 of their article they show a mark on Energies 2021, 14, x FOR PEER REVIEW 3 of 21 Energies 2021, 14, 4309 3 of 21 striations reflect point loading of the tread shoulder blocks. In Fig. 1 of their article they show a mark on which two stripes can be distinguished: lighter striations from the inside, being deposited by the tread, and darker striations from the outside, being deposited by thewhich shoulder two stripes blocks. can A bescheme distinguished: of formation lighter of such striations a mark from they the demonstrate inside, being in deposited Fig. 3 of [13].by the tread, and darker striations from the outside, being deposited by the shoulder blocks. A scheme of formation of such a mark they demonstrate in Figure 3 of [13]. TheThe authors authors of of this this work, work, in in their their research research practice, practice, have have encountered encountered all allthe the types types of yawof yaw marks marks mentioned mentioned before—two before—two examples examples are are shown shown in in Figure Figure 1.1 .In In both both cases the vehiclevehicle was was yawing, yawing, but but the the tire tire mark mark (a) (a) was was deposited deposited by by a a buckled, buckled, zero-pressure zero-pressure tire tire duringduring a a clockwise clockwise yaw, yaw, while while the the tire tire mark mark (b) (b) was was left left by by the the leading leading shoulder shoulder blocks blocks of of thethe normal-pressure normal-pressure tire tire duri duringng a a counter-clockwise counter-clockwise yaw.
Recommended publications
  • Mechanics of Pneumatic Tires
    CHAPTER 1 MECHANICS OF PNEUMATIC TIRES Aside from aerodynamic and gravitational forces, all other major forces and moments affecting the motion of a ground vehicle are applied through the running gear–ground contact. An understanding of the basic characteristics of the interaction between the running gear and the ground is, therefore, essential to the study of performance characteristics, ride quality, and handling behavior of ground vehicles. The running gear of a ground vehicle is generally required to fulfill the following functions: • to support the weight of the vehicle • to cushion the vehicle over surface irregularities • to provide sufficient traction for driving and braking • to provide adequate steering control and direction stability. Pneumatic tires can perform these functions effectively and efficiently; thus, they are universally used in road vehicles, and are also widely used in off-road vehicles. The study of the mechanics of pneumatic tires therefore is of fundamental importance to the understanding of the performance and char- acteristics of ground vehicles. Two basic types of problem in the mechanics of tires are of special interest to vehicle engineers. One is the mechanics of tires on hard surfaces, which is essential to the study of the characteristics of road vehicles. The other is the mechanics of tires on deformable surfaces (unprepared terrain), which is of prime importance to the study of off-road vehicle performance. 3 4 MECHANICS OF PNEUMATIC TIRES The mechanics of tires on hard surfaces is discussed in this chapter, whereas the behavior of tires over unprepared terrain will be discussed in Chapter 2. A pneumatic tire is a flexible structure of the shape of a toroid filled with compressed air.
    [Show full text]
  • Nonlinear Finite Element Modeling and Analysis of a Truck Tire
    The Pennsylvania State University The Graduate School Intercollege Graduate Program in Materials NONLINEAR FINITE ELEMENT MODELING AND ANALYSIS OF A TRUCK TIRE A Thesis in Materials by Seokyong Chae © 2006 Seokyong Chae Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2006 The thesis of Seokyong Chae was reviewed and approved* by the following: Moustafa El-Gindy Senior Research Associate, Applied Research Laboratory Thesis Co-Advisor Co-Chair of Committee James P. Runt Professor of Materials Science and Engineering Thesis Co-Advisor Co-Chair of Committee Co-Chair of the Intercollege Graduate Program in Materials Charles E. Bakis Professor of Engineering Science and Mechanics Ashok D. Belegundu Professor of Mechanical Engineering *Signatures are on file in the Graduate School. iii ABSTRACT For an efficient full vehicle model simulation, a multi-body system (MBS) simulation is frequently adopted. By conducting the MBS simulations, the dynamic and steady-state responses of the sprung mass can be shortly predicted when the vehicle runs on an irregular road surface such as step curb or pothole. A multi-body vehicle model consists of a sprung mass, simplified tire models, and suspension system to connect them. For the simplified tire model, a rigid ring tire model is mostly used due to its efficiency. The rigid ring tire model consists of a rigid ring representing the tread and the belt, elastic sidewalls, and rigid rim. Several in-plane and out-of-plane parameters need to be determined through tire tests to represent a real pneumatic tire. Physical tire tests are costly and difficult in operations.
    [Show full text]
  • Tire Manual.Pdf
    Revision Highlights The FedEx Tire Manual has content changes including the following: Chapter 1: Purchasing Jun 2008 1-10: Added Q & A FILING WARRANTY ON TIRES NOT MOUNTED Chapter 2: Warranty Chapter 3: Tire Applications Jun 2008 3-10: Updated Product Codes and Drive Tire Design 3-15: Added Toyota Specs to Cargo Tractors Chapter 4: Maintenance . Chapter 5: Shop Administration . Contents ii Contents Publication Information ........................................................................................................................ vi Chapter 1: Purchasing .......................................................................................................................... 1 1-5: Tire Ordering Process ....................................................................................................................................... 2 Filing Claims – Tires Lost in Shipment ........................................................................................................ 2 Contact Numbers and Procedures .............................................................................................................. 4 1-10: Frequently Asked Questions - Goodyear Tires ............................................................................................... 5 Double Shipment on Tires ........................................................................................................................... 5 Ordered Wrong or Wrong Tires Shipped ...................................................................................................
    [Show full text]
  • Rolling Resistance During Cornering - Impact of Lateral Forces for Heavy- Duty Vehicles
    DEGREE PROJECT IN MASTER;S PROGRAMME, APPLIED AND COMPUTATIONAL MATHEMATICS 120 CREDITS, SECOND CYCLE STOCKHOLM, SWEDEN 2015 Rolling resistance during cornering - impact of lateral forces for heavy- duty vehicles HELENA OLOFSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Rolling resistance during cornering - impact of lateral forces for heavy-duty vehicles HELENA OLOFSON Master’s Thesis in Optimization and Systems Theory (30 ECTS credits) Master's Programme, Applied and Computational Mathematics (120 credits) Royal Institute of Technology year 2015 Supervisor at Scania AB: Anders Jensen Supervisor at KTH was Xiaoming Hu Examiner was Xiaoming Hu TRITA-MAT-E 2015:82 ISRN-KTH/MAT/E--15/82--SE Royal Institute of Technology SCI School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci iii Abstract We consider first the single-track bicycle model and state relations between the tires’ lateral forces and the turning radius. From the tire model, a relation between the lateral forces and slip angles is obtained. The extra rolling resis- tance forces from cornering are by linear approximation obtained as a function of the slip angles. The bicycle model is validated against the Magic-formula tire model from Adams. The bicycle model is then applied on an optimization problem, where the optimal velocity for a track for some given test cases is determined such that the energy loss is as small as possible. Results are presented for how much fuel it is possible to save by driving with optimal velocity compared to fixed average velocity. The optimization problem is applied to a specific laden truck.
    [Show full text]
  • Chapter 4 Vehicle Dynamics
    Chapter 4 Vehicle Dynamics 4.1. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration and deceleration, is described in this section. This model will be used for design of control laws and computer simulations. Although the model considered here is relatively simple, it retains the essential dynamics of the system. 4.2. System Dynamics The model identifies the wheel speed and vehicle speed as state variables, and it identifies the torque applied to the wheel as the input variable. The two state variables in this model are associated with one-wheel rotational dynamics and linear vehicle dynamics. The state equations are the result of the application of Newton’s law to wheel and vehicle dynamics. 4.2.1. Wheel Dynamics The dynamic equation for the angular motion of the wheel is w& w =[Te - Tb - RwFt - RwFw]/ Jw (4.1) where Jw is the moment of inertia of the wheel, w w is the angular velocity of the wheel, the overdot indicates differentiation with respect to time, and the other quantities are defined in Table 4.1. 31 Table 4.1. Wheel Parameters Rw Radius of the wheel Nv Normal reaction force from the ground Te Shaft torque from the engine Tb Brake torque Ft Tractive force Fw Wheel viscous friction Nv direction of vehicle motion wheel rotating clockwise Te Tb Rw Ft + Fw ground Mvg Figure 4.1. Wheel Dynamics (under the influence of engine torque, brake torque, tire tractive force, wheel friction force, normal reaction force from the ground, and gravity force) The total torque acting on the wheel divided by the moment of inertia of the wheel equals the wheel angular acceleration (deceleration).
    [Show full text]
  • Winter Testing in Driving Simulators
    ViP publication 2017-2 Winter testing in driving simulators Authors Fredrik Bruzelius, VTI Artem Kusachov, VTI www.vipsimulation.se ViP publication 2017-2 Winter testing in driving simulators Authors Fredrik Bruzelius, VTI Artem Kusachov, VTI www.vipsimulation.se Cover picture: Original photo by Hejdlösa Bilder AB, edited by Artem Kusachov Reg. No., VTI: 2014/0006-8.1 Printed in Sweden by VTI, Linköping 2018 Preface The project Winter testing in driving simulator (WinterSim) was a PhD student project carried out by the Swedish National Road and Transport Research Institute (VTI) within the ViP Driving Simulation Centre (www.vipsimualtion.se). The focus of the project was to enable a realistic winter simulation environment by studying the required components and suggesting improvements to the current common practice. Two main directions were studied, motion cueing and tire dynamics. WinterSim started in November 2014 and lasted for three years, ending in December 2016. Findings from both research directions have been published in journals and at scientific conferences, and the project resulted in the licentiate thesis “Motion Perception and Tire Models for Winter Conditions in Driving Simulators” (Kusachov, 2016). This report summarises the thesis and the undertaken work, i.e. gives a short overall presentation of the project and the major findings. The WinterSim project was funded up to a licentiate thesis through the ViP competence centre (i.e. by ViP partners and the Swedish Governmental Agency for Innovation Systems, VINNOVA), Test Site Sweden and the internal PhD student program at VTI. The project was carried out by Artem Kusachov (PhD student) and Fredrik Bruzelius (project manager and supervisor of the PhD student), both at VTI.
    [Show full text]
  • Tyre Dynamics, Tyre As a Vehicle Component Part 1.: Tyre Handling Performance
    1 Tyre dynamics, tyre as a vehicle component Part 1.: Tyre handling performance Virtual Education in Rubber Technology (VERT), FI-04-B-F-PP-160531 Joop P. Pauwelussen, Wouter Dalhuijsen, Menno Merts HAN University October 16, 2007 2 Table of contents 1. General 1.1 Effect of tyre ply design 1.2 Tyre variables and tyre performance 1.3 Road surface parameters 1.4 Tyre input and output quantities. 1.4.1 The effective rolling radius 2. The rolling tyre. 3. The tyre under braking or driving conditions. 3.1 Practical brakeslip 3.2 Longitudinal slip characteristics. 3.3 Road conditions and brakeslip. 3.3.1 Wet road conditions. 3.3.2 Road conditions, wear, tyre load and speed 3.4 Tyre models for longitudinal slip behaviour 3.5 The pure slip longitudinal Magic Formula description 4. The tyre under cornering conditions 4.1 Vehicle cornering performance 4.2 Lateral slip characteristics 4.3 Side force coefficient for different textures and speeds 4.4 Cornering stiffness versus tyre load 4.5 Pneumatic trail and aligning torque 4.6 The empirical Magic Formula 4.7 Camber 4.8 The Gough plot 5 Combined braking and cornering 5.1 Polar diagrams, Fx vs. Fy and Fx vs. Mz 5.2 The Magic Formula for combined slip. 5.3 Physical tyre models, requirements 5.4 Performance of different physical tyre models 5.5 The Brush model 5.5.1 Displacements in terms of slip and position. 5.5.2 Adhesion and sliding 5.5.3 Shear forces 5.5.4 Aligning torque and pneumatic trail 5.5.5 Tyre characteristics according to the brush mode 5.5.6 Brush model including carcass compliance 5.6 The brush string model 6.
    [Show full text]
  • Tire/Road Rolling Resistance Modeling: Discussing the Surface Macrotexture Effect
    coatings Article Tire/Road Rolling Resistance Modeling: Discussing the Surface Macrotexture Effect Malal Kane * , Ebrahim Riahi and Minh-Tan Do AME-EASE, University Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France; [email protected] (E.R.); [email protected] (M.-T.D.) * Correspondence: [email protected] Abstract: This paper deals with the modeling of rolling resistance and the analysis of the effect of pavement texture. The Rolling Resistance Model (RRM) is a simplification of the no-slip rate of the Dynamic Friction Model (DFM) based on modeling tire/road contact and is intended to predict the tire/pavement friction at all slip rates. The experimental validation of this approach was performed using a machine simulating tires rolling on road surfaces. The tested pavement surfaces have a wide range of textures from smooth to macro-micro-rough, thus covering all the surfaces likely to be encountered on the roads. A comparison between the experimental rolling resistances and those predicted by the model shows a good correlation, with an R2 exceeding 0.8. A good correlation between the MPD (mean profile depth) of the surfaces and the rolling resistance is also shown. It is also noticed that a random distribution and pointed shape of the summits may also be an inconvenience concerning rolling resistance, thus leading to the conclusion that beyond the macrotexture, the positivity of the texture should also be taken into account. A possible simplification of the model by neglecting the damping part in the constitutive model of the rubber is also noted. Keywords: dynamic friction model; rolling resistance coefficient; macrotexture Citation: Kane, M.; Riahi, E.; Do, M.-T.
    [Show full text]
  • Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle
    Energies 2015, 8, 6820-6840; doi:10.3390/en8076820 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle Kanghyun Nam 1, Yoichi Hori 2 and Choonyoung Lee 3,* 1 School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Korea; E-Mail: [email protected] 2 Department of Advanced Energy, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-8561, Japan; E-Mail: [email protected] 3 School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 702-701, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +82-53-950-7541. Academic Editor: Joeri Van Mierlo Received: 20 May 2015 / Accepted: 30 June 2015 / Published: 7 July 2015 Abstract: In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been Used to Photo­ Graph and Reproduce This Manuscript from the Microfilm Master
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 3 0 0 Nortfi Z eeb Road, Ann Arbor, Ml 48106 -1 3 4 6 USA 313/761-4700 800/521-0600 Order Number 8907262 Application of suspension derivative formulation to ground vehicle modeling and simulation Maalej, Aref Younes, Ph.D.
    [Show full text]
  • Study on Cornering Stability Control Based on Pneumatic Trail Estimation by Using Dual Pitman Arm Type Steer-By-Wire on Electric Vehicle
    Study on Cornering Stability Control Based on Pneumatic Trail Estimation by Using Dual Pitman Arm Type Steer-By-Wire on Electric Vehicle Ryo Minaki Yoichi Hori The University of Tokyo The University of Tokyo Department of Electrical Engineering Graduate School of Frontier Sciences Hongo, Bunkyo-ku, Japan Kashiwa, Chiba, Japan [email protected] [email protected] Abstract—This paper proposes novel high accuracy road margin). In addition, we propose a novel cornering stability condition estimation called Tire Grip Margin (TGM), and TGM control technique based on the tire grip margin with active is estimated by using dual pitman arm type steer-by-wire and front steering and in-wheel motor on electric vehicle. Finally, lateral force sensor and estimator. In addition, we propose we verify the technique by the vehicle dynamics simulator cornering stability control technique based on the TGM. It can CarSim. help driver and vehicle before unstable state. We verify our proposed system achieves robust vehicle dynamics control on the low friction road by CarSim. CarSim is simulator for the vehicle II. TIRE GRIP MARGIN (TGM) dynamics. A. Ground Contact Length of Tire and Lateral Keywords-active front steering; electric power steering; electric Displacement of Tire Tread Rubber vehicle; in-wheel motor; pitman arm; pneumatic trail; steer-by- A Tire has ground contact length caused by vehicle load, wire; tire grip margin; deflection because tire is made of hollow rubber. It is about 15- 20 [cm]. When a tire is rolled ground contact is started. After a I. INTRODUCTION few second, it is ended.
    [Show full text]
  • Michelin® Agriculture and Compact Equipment Tires Technical Data Book | 2019
    MICHELIN® AGRICULTURE AND COMPACT EQUIPMENT TIRES TECHNICAL DATA BOOK | 2019 Business.Michelinman.com Tweel.Michelinman.com Michelin Agriculture Contents TRACTOR TIRES 2-55 SPRAYER & ROW CROP TIRES 76-81 AGRIBIB® 2SPRAYBIB™ 76 AGRIBIB® 2 12 AGRIBIB® ROW CROP 79 YIELDBIB™ 17 MACHXBIB® 21 AXIOBIB® 26 AXIOBIB® 2 31 MULTIBIB™ 36 OMNIBIB™ 43 XEOBIB® 48 ROADBIB® 52 TRAILERS & IMPLEMENTS 82-93 EVOBIB® 54 CARGOXBIB® HIGH FLOTATION 82 CARGOXBIB® HEAVY DUTY 86 CARGOXBIB® 87 XP27™ 90 XS™ 92 HARVESTER & FLOATER TIRES 56-74 CEREXBIB™ 2 56 CEREXBIB™ 61 FLOATXBIB 66 MEGAXBIB® 2 68 MEGAXBIB® 71 TIRE TECHNICAL DATA BOOK | 2019 COMPACT EQUIPMENT TIRES 94-132 OPERATIONAL INFORMATION 133-153 XMCL™ 99 SIZE EQUIVALENCY CHART 134 XM27™ 104 ROLLING CIRCUMFERENCE INDEX CHART 135 BIBLOAD® HARD SURFACE 105 TIRE SIDEWALL MARKINGS 138 CROSSGRIP® 109 LOAD INDICES AND SPEED RATINGS 139 XF™ 112 OPERATING INSTRUCTIONS 140 XM47™ 114 CALCULATION OF MECHANICAL LEAD (4WD) 141 POWER CL™ 116 LOAD-BALANCING CALCULATION 142 POWER DIGGER 121 RIM AND O-RING REFERENCES 144 BIBSTEEL™ ALL TERRAIN 123 VALVE CHARACTERISTICS 145 BIBSTEEL™ HARD SURFACE 125 MICHELIN® TUBES 147 X® TWEEL® SSL 2 127 MOUNTING / DISMOUNTING 149 X® TWEEL® TURF 129 X® TWEEL® TURF CASTER 130 X® TWEEL® UTV 131 X® TWEEL® TURF – GOLF CART 132 TIRE TECHNICAL DATA BOOK | 2019 Reading the technical data Charts Specifi c markings for high technology tires • IF: Increased Flexion (Tires designed to carry 20% more load at the same pressure or 20% less pressure for the same load compared to standard radials in the same size) • VF: Very High Flexion (Tires designed to carry 40% more load at the same pressure or 40% less pressure for the same load compared to standard radials in the same size) • CFO & CFO+: Improved Flexion Cyclic Field Operation (Cyclic Field Operating parameters for IF and VF designated tires) Rim Local country diameter (TL) & international in inches Tubeless product code Rim Size (inch) Description MSPN (CAI) 38 IF 710/85 R38 178D TL 99013 (992951) Section Overall Loaded Rolling Recommended Acceptable Min.
    [Show full text]