The Leasowes SSSI Dudley
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systematics, Barcoding and Ecology of Fungi from Waxcap Grasslands in Britain
Project report to DEFRA 1: 3 December 2010 Systematics, barcoding and ecology of fungi from waxcap grasslands in Britain Collaborations An important component of the project is to bring together professional scientists and specialist volunteers to contribute specimens and ecological data, and later on to explore ways of improving the existing recording and monitoring schemes. The project will provide valuable data to aid decision-making for conservation management, for example designation of SSSIs and establishment of red data lists. The first action was therefore to publicize the project to potential collaborators, and emails and verbal communications took place both directly with known collectors/recording groups and through the British Mycological Society. Excluding those named in the project application, 33 individuals/recording groups have provided specimens and/or identification data. Our initial request was for all species of Hygrocybe and Geoglossaceae. While a number of these are common and widespread, there are concerns that existing species concepts are too broad and are masking cryptic taxa. Along with specimens that we have collected ourselves, we have received a total of 213 collections belonging to 34 species/varieties of Hygrocybe and four species of Geoglossaceae. The collections have come from 27 different vice-counties in England, Wales and Scotland. Much of the field season was poor for waxcap species, although a number of species fruited abnormally late in the year. With this in mind, we are very happy with the response we have received from field workers, and there has been a widespread welcome for our project. We are confident that our field collaborators will continue to support our work throughout the project period and beyond. -
Clavulinopsis Helvola (Pers.) Corner, Monograph of Clavaria and Allied Genera (Annals of Botany Memoirs No
© Miguel Ángel Ribes Ripoll [email protected] Condiciones de uso Clavulinopsis helvola (Pers.) Corner, Monograph of Clavaria and allied Genera (Annals of Botany Memoirs No. 1): 372 (1950) COROLOGíA Registro/Herbario Fecha Lugar Hábitat MAR-111009 11 11/10/2009 Colllado de las Tres Cruces, Santa Orosia, En un talud en bosque mixto de Leg.: Fermín Pancorbo, Juan Carlos Campos, Juan Yebra de Basa (Huesca) haya (Fagus sylvatica) y abeto Carlos Zamora, Luis Rubio, Jorge Hernanz, Félix 1528 m 30T YN2510 blanco (Abies alba) Mateo, Eliseo Vernis, Santiago García Det.: Miguel Á. Ribes TAXONOMíA Basiónimo: Clavaria helvola Pers. [as 'helveola'], Comm. fung. clav. (Lipsiae): 69 (1797) Citas en listas publicadas: Index of Fungi 2: 19. Posición en la clasificación: Clavariaceae, Agaricales, Agaricomycetidae, Agaricomycetes, Basidiomycota, Fungi Sinónimos: o Clavaria dissipabilis Britzelm., Ber. naturw. Augsburg 29: 289 (1887) o Clavaria flammans Berk., J. Linn. Soc., Bot. 14(1): 350 (1873) o Clavaria helvola Pers., Comm. fung. clav. (Lipsiae): 69 (1797) subsp. Helvola o Clavaria inaequalis sensu auct.; fide Checklist of Basidiomycota of Great Britain and Ireland (2005) o Clavaria inaequalis var. helvola (Pers.) Fr., Elench. fung. (Greifswald) 1: 232 (1828) o Clavaria similis Boud. & Pat., J. Bot. Morot 2: 406 (1888) o Ramariopsis helvola (Pers.) R.H. Petersen, Mycologia 70(3): 668 (1978) DESCRIPCIÓN MACRO Basidioma filiforme, cilíndrico-claviforme o cilíndrico-aplanado, normalmente sinuoso y no ramificado, pero a veces con una pequeña ramificación en el ápice, a veces ligeramente surcado, hasta de 6-7 cm de alto, de color amarillo-anaranjado vivo o pálido, mate, cubierto por una pruina más clara en ejemplares jóvenes, ápice redondeado que se vuelve pardo al envejecer. -
LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005. -
Reviewing the Data Deficient Fungi List, 2009
Using molecular techniques to combine taxonomic and ecological data for fungi Reviewing the Data Deficient fungi list, 2009 SCIENCE FOR CONSERVATION 306 Using molecular techniques to combine taxonomic and ecological data for fungi Reviewing the Data Deficient fungi list, 2009 Peter Johnston, Duckchul Park, Ian Dickie and Katrin Walbert SCIENCE FOR CONSERVATION 306 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Cortinarius tessiae. Photo: Jerrie Cooper. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright October 2010, New Zealand Department of Conservation ISSN 1177–9241 (web PDF) ISBN 978–0–478–14833–6 (web PDF) This report was prepared for publication by the Publishing Team; editing by Lynette Clelland and layout by Frith Hughes and Lynette Clelland. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 5 1. Introduction 6 2. Objectives 7 3. Methods 7 3.1 Data sources 7 3.1.1 Ecological datasets 7 3.1.2 Dried herbarium specimens 8 3.1.3 Tissue samples stored in CTAB buffer 8 3.1.4 Updated collection data from PDD herbarium 8 3.2 Molecular methods 9 3.2.1 DNA extraction and amplification 9 3.2.2 DNA analysis 9 4. -
As I Mentioned in the Spring Edition, the Aim Is to Produce Our News
Some thoughts on the HFSG News Sheet President & Recorder: Ted Blackwell As I mentioned in the Spring issue News Sheet, the tel. 01568 780480; aim is now to try to produce an issue twice per e-mail: [email protected] year. This would seem to work out as publications in: Chair & Secretary: Sheila Spence . late April/early May, covering the September – tel. 01531 631736; February forays; e-mail: [email protected] . late September/early October, covering the March – August forays. Treasurer: Ray Bray tel. 01531 670301 Both the last issue and this current one rely very e-mail: [email protected] heavily on contributions from Ted and Ray, to whom I am most grateful for their willing(?) submission to blackmail! It would be pleasing, CHAIRMAN’S MESSAGE though, if our News Sheet reflected more widely the talents, as well as the wishes, of the whole Group The Spring foraying season started with great and I hope that future issues will increasingly do enthusiasm: it was great to be out in the woods this. again! My first season as Chairman has gone smoothly, due to the great support of members - in It is, I think, desirable to keep both the size and particular Shelly and Mike, for leading the foray to content of these News Sheets as flexible as Netherwood and, of course, Ted for his continuing, possible. However, each issue will, hopefully, unstinting help and guidance. We have had some contain, as a common denominator: really good forays so far: thank you, Ted, for giving us all the info. on the exciting finds we have made. -
Hans Halbwachs
Hans Halbwachs hat are fungal characteristics Moreover, the variability of spore traits in winter. It has been speculated that good for? Well, for identifying is bewildering (as was discussed by Else this may be a strategy to avoid predators fungi, of course! Field Vellinga in the previous issue of FUNGI). (Halbwachs et al., 2016), though this Wmycologists all over the world are living Size, ornamentation, and pigmentation would imply investment, e.g., into encyclopedias when it comes to fungal occur in all combinations (Fig. 2). These antifreeze substances and producing traits. Even the most subtle differences are the visible characteristics which may relatively small fruit bodies, as in in spore size or cap coloration have their be grouped in (1) morphological (shape, Flammulina velutipes or Hygrophorus place in identifying mushrooms and size) and (2) physiological (pigments, hypothejus. Generally, species fruiting other fungi. Quite many mycologists are taste, smell, toxicity, etc.). A third, more in late autumn seem to have larger intrigued by the endless variations, for mysterious trait, is the phenology of fruit fruit bodies, at least in Cortinarius instance of fruit bodies (Fig. 1). bodies. Some do it in spring, some even (Halbwachs, 2018). Figure 1. Examples of basidiomycete fruit body shapes and colors. From left to right top: Amanita flavoconia (courtesy J. Veitch), Lactarius indigo (courtesy A. Rockefeller), Butyriboletus frostii (courtesy D. Molter); bottom: Calostoma cinnabarinum (courtesy D. Molter), Tricholomopsis decora (courtesy W. Sturgeon), Mycena adonis (courtesy D. Molter). creativecommons. org/licenses/by-sa/3.0/deed.en. 18 FUNGI Volume 12:1 Spring 2019 Knockin’ on Evolution’s Door Although some ideas are circulating about the functionality of fungal traits, mycologists want to know more about their ecological implications. -
New Species and New Records of Clavariaceae (Agaricales) from Brazil
Phytotaxa 253 (1): 001–026 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.253.1.1 New species and new records of Clavariaceae (Agaricales) from Brazil ARIADNE N. M. FURTADO1*, PABLO P. DANIËLS2 & MARIA ALICE NEVES1 1Laboratório de Micologia−MICOLAB, PPG-FAP, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. 2Department of Botany, Ecology and Plant Physiology, Ed. Celestino Mutis, 3a pta. Campus Rabanales, University of Córdoba. 14071 Córdoba, Spain. *Corresponding author: Email: [email protected] Phone: +55 83 996110326 ABSTRACT Fourteen species in three genera of Clavariaceae from the Atlantic Forest of Brazil are described (six Clavaria, seven Cla- vulinopsis and one Ramariopsis). Clavaria diverticulata, Clavulinopsis dimorphica and Clavulinopsis imperata are new species, and Clavaria gibbsiae, Clavaria fumosa and Clavulinopsis helvola are reported for the first time for the country. Illustrations of the basidiomata and the microstructures are provided for all taxa, as well as SEM images of ornamented basidiospores which occur in Clavulinopsis helvola and Ramariopsis kunzei. A key to the Clavariaceae of Brazil is also included. Key words: clavarioid; morphology; taxonomy Introduction Clavariaceae Chevall. (Agaricales) comprises species with various types of basidiomata, including clavate, coralloid, resupinate, pendant-hydnoid and hygrophoroid forms (Hibbett & Thorn 2001, Birkebak et al. 2013). The family was first proposed to accommodate mostly saprophytic club and coral-like fungi that were previously placed in Clavaria Vaill. ex. L., including species that are now in other genera and families, such as Clavulina J.Schröt. -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
And Interspecific Hybridiation in Agaric Fungi
Mycologia, 105(6), 2013, pp. 1577–1594. DOI: 10.3852/13-041 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 Evolutionary consequences of putative intra- and interspecific hybridization in agaric fungi Karen W. Hughes1 to determine the outcome of hybridization events. Ronald H. Petersen Within Armillaria mellea and Amanita citrina f. Ecology and Evolutionary Biology, University of lavendula, we found evidence of interbreeding and Tennessee, Knoxville, Tennessee 37996-1100 recombination. Within G. dichrous and H. flavescens/ D. Jean Lodge chlorophana, hybrids were identified but there was Center for Forest Mycology Research, USDA-Forest no evidence for F2 or higher progeny in natural Service, Northern Research Station, Box 137, Luquillo, populations suggesting that the hybrid fruitbodies Puerto Rico 00773-1377 might be an evolutionary dead end and that the Sarah E. Bergemann genetically divergent Mendelian populations from which they were derived are, in fact, different species. Middle Tennessee State University, Department of Biology, PO Box 60, Murfreesboro Tennessee 37132 The association between ITS haplotype divergence of less than 5% (Armillaria mellea 5 2.6% excluding Kendra Baumgartner gaps; Amanita citrina f. lavendula 5 3.3%) with the USDA-Agricultural Research Service, Department of presence of putative recombinants and greater than Plant Pathology, University of California, Davis, California 95616 5% (Gymnopus dichrous 5 5.7%; Hygrocybe flavescens/ chlorophana 5 14.1%) with apparent failure of F1 2 Rodham E. Tulloss hybrids to produce F2 or higher progeny in popula- PO Box 57, Roosevelt, New Jersey 08555-0057 tions may suggest a correlation between genetic Edgar Lickey distance and reproductive isolation. -
Clavaria Miniata) Flame Fungus
A LITTLE BOOK OF CORALS Pat and Ed Grey Reiner Richter Ramariopsis pulchella Revision 3 (2018) Ramaria flaccida De’ana Williams 2 Introduction This booklet illustrates some of the Coral Fungi found either on FNCV Fungi Forays or recorded for Victoria. Coral fungi are noted for their exquisite colouring – every shade of white, cream, grey, blue, purple, orange and red - found across the range of species. Each description page consists of a photo (usually taken by a group member) and brief notes to aid identification. The corals are listed alphabetically by genus and species and a common name has been included. In this revision five species have been added: Clavicorona taxophila, Clavulina tasmanica, Ramaria pyrispora, R. watlingii and R. samuelsii. A field description sheet is available as a separate PDF. Coral Fungi are so-called because the fruit-bodies resemble marine corals. Some have intricate branching, while others are bushier with ‘florets’ like a cauliflower or broccolini. They also include those species that have simple, club-shaped fruit-bodies. Unlike fungi such as Agarics that have gills and Boletes that have pores, the fertile surface bearing the spores of coral fungi is the external surface of the upper branches. All species of Artomyces, Clavaria, Clavulina, Clavulinopsis, Multiclavula, Ramariopsis and Tremellodendropsis have a white spore print while Ramaria species have a yellow to yellow-brown spore print, which is sometimes seen when the mature spores dust the branches. Most species grow on the ground except for two Peppery Corals Artomyces species and Ramaria ochracea that grow on fallen wood. Ramaria filicicola grows on woody litter and Tree-fern stems. -
Fungi on Lundy 2003
Rep. Lundy Field Soc. 53 FUNGI ON LUNDY 2003 By JOHN N . H EDGER 1 AND J. D AVID GEORGE2 'School of Biosciences,University of Westminster, 115 New Cavendish Street, London, WlM 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD Dedication: The authors wish to dedicate this paper to Professor John Webst er of the University of Exeter on the occasion of his 80'" birthday, in recognition of his contribution to the Mycology of Southwest Britain. ABSTRACT The results of a preliminary field survey of fungi can·ied out on Lundy between 11-18 October 2003 are reported and compared with previous records. One hundred and eight taxa were identified of which seventy five appear to be new records for the island, in spite of the very dry conditions during the survey. Habitat and resource preferences of the fungi are discussed, and suggesti ons made for further studies on Lundy. Keywords: Lundy, fungi, ecology, biodiversity. INTRODUCTION Although detailed studies of the lichen fl ora of Lundy have been published (Noon & Hawksworth, 1972; lames et al., 1995, 1996), the fungi of Lundy have remained little studied. Mcist existing data consisted of a series of lists published in the Annual Report s of the Lundy Field Society, beginning in 1970. We could onl y trace three earli er records of fungi on Lundy, from 1965 and 1967, by visiting members of the British Mycological Society. The obj ect of the present study was to start a more systematic in ventory of the diversity of fungi on Lundy, and the habitats they occupy on the island, and to begin a database of Lundy fungi for entry in the British Mycological Society U.K. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M.