Hydroponic Farming

Total Page:16

File Type:pdf, Size:1020Kb

Hydroponic Farming Hydroponic Farming A farmer’s guide booklet Introduction Hydroponic, also known as aquaculture is a method of cultivating and growing plants without soil. It is a subset of hydro-culture, in which plants are grown using mineral nutrient solutions, in water in total absence of soil. It is one of the most rapidly growing sectors of agriculture that has the capability of dominating food production in the nearby future. In natural conditions, it has been observed that soil acts as a mineral nutrient reservoir, but the soil itself is not essential for any plant’s growth. Thus, when the same mineral nutrients were dissolved in water, plant roots are able to absorb them. So the technique of aquaculture has been introduced for artificial supply of minerals and necessary nutrients to the plants in which soil is no longer required for plants to thrive. Hydroponic Farming Fact If you are new to this modern gardening technique, you will definitely find the following hydroponic farming facts useful. Hydroponics is a novel method used to cultivate plants and herbs. It has helped budget conscious gardeners reap stunning yields without any soil or fertilizers! Hydroponic farming doesn’t follow traditional gardening strategies. For instance, you don’t need to water the plants frequently or douse your pricey crops with expensive pesticides. These are prominent benefits of hydroponic farming methods. Conversely, you can grow different kinds of plants using this method! From ornamental flowers, to vegetables, to bloomers, to fruits you can use hydroponic systems to add more color and tang to your homes! Revealing Top 5 Interesting Facts about Hydroponic Systems There are number of advantages that one can get from aquaculture systems. Thus, here revealing top 5 advantages that really prove to be as an interesting fact related to this technology: 1. Farmers claim that some of the aquaculture crops use 90% less water as compared to the same crops in traditional soil farming. As a result huge amount of water could be saved. 2. One can plant 4 times the amount of crops in the same space as that of traditional soil farming. So one can get more amounts of crops in limited space itself. 3. As these plants are grown in an inert medium without soil, they require perfectly balanced pH, nutrients solutions as well as highly oxygenated water that is being delivered directly into the roots. 4. Some of the crops can grow twice as fast in aquaculture due to getting exactly the appropriate amount of nutrients, oxygen as well as water. 5. Crops that are grown using aquaculture technique do not use a single trace of neither herbicide nor pesticide chemicals and so it significantly creates impact on environment as well as on our bodies The right environmental condition Hydroponic systems are maintained carefully between 50 to 70 degrees Fahrenheit! For some plants, the temperature should be maintained at 80 degrees Fahrenheit. Additionally, the plants are provided with 8 to 12 hours of direct sunlight every day. Some Benefits of Growing Hydroponically Controlled System for Optimal Growing Conditions Hydroponics utilize closed-circuit controlled systems which enable gardeners to maintain optimal growing conditions. In an indoor system, artificial electric lights replicate the sun’s natural light to enable photosynthesis. As plants require adequate air circulation to receive the carbon dioxide needed for photosynthesis, indoor hydroponic systems usually include fans or some sort of venting system. How it Works Plants grown hydroponically do not depend on soil to obtain nutrients. Instead, a pH- controlled nutrient-rich water provides what the plant needs to thrive by transporting the nutrition directly to the plant roots, where it’s rapidly absorbed. Herbicide-Free Crops No soil means no weeds, so plants grown hydroponically do not require any harmful herbicides. As soil often contains diseases which can be transmitted to plants, hydroponic plants tend to be more disease- and pest-resistant, although not completely. As in soil-based growing, hydroponic plants can attract pests. But pests tend to be minimal due to the controlled growing environment. Hydroponic plants are not necessarily organic, but growers can control pests using biological methods in lieu of harmful pesticides. ‘Drought-Friendly’ and Water-Conserving Since water is supplied through a recirculating system, hydroponics uses about 90% less water than traditional soil-based growing methods, thereby conserving water – a welcome concept during periods of drought. Great For Small-Space Living and Indoor Gardening Hydroponic systems are perfect for gardeners living in small spaces, as they require very little square footage. In the same amount of space, growing hydroponically produces four times the amount of crops of traditional soil-based techniques. Most home systems are easy to set up, and relocating the garden is no arduous task, as the systems are generally simple to move. Can Be Almost Maintenance-Free Some hydroponic systems are nearly plug-and-play, as they feature automatic controls which monitor water and nutrient levels, and a timer to manage irrigation and add Six Basic Hydroponic Systems There are four basic methods of hydroponic or soilless gardening – active, passive, recovery, and non-recovery – and six basic hydroponic systems which each function differently, but in all cases the plants receive their nutrients via some form of water (hydro) delivery system: drip (recovery or non-recovery), wick, water culture, ebb and flow or flood and drain, nutrient film technique (NFT), or aeroponic. 1. Drip Growing Systems One of the most common forms of hydroponics, recirculating or “recovery” drip growing systems recycle the excess nutrient solution from a reservoir. A timer controls a submersed pump which drips nutrient solution onto the base of each plant via a small drip line. 2. Wick System Maybe the simplest hydroponic system, the wick system involves no moving parts and can use a variety of growing media. In all cases the nutrient solution gets released onto the growing tray and delivered to the roots through a wick. 3. Water Culture and Aquaponic Systems In this system, the containers holding the plants sit inside a floating Styrofoam platform, through which the roots are suspended directly into the nutrient water. Aquaponic systems are a form of water culture that uses fish. The fish produce waste, which becomes nutrients to fertilize the plants. The plants then filter and purify the water, which gets recycled back to the fish in a continuous cycle. Fish can survive for weeks without feeding, and they only need what they can eat in about 5 minutes – a very small amount of fish food. The fish, often tilapia, can also end up on your dinner table. 4. Ebb and Flow or Flood and Drain An ebb and flow or flood and drain system utilizes a submerged pump connected to a timer to control the temporary flooding of the root zone’s grow tray with a nutrient solution which drains back into the reservoir. This system’s grow tray can use a variety of growing media, such as rocks, gravel, or granular rockwool. 5. Nutrient Film System The nutrient film system, aka NFT, involves a continuous flow of nutrients, eliminating the need for a timer. A pump forces the nutrient solution over the plant roots onto a grow tray, then the overflow drains into a reservoir. Typically grown in small pots, the plant’s roots are suspended in the nutrient solution without any additional growing medium other than air. 6. Aeroponics In an aeroponic system, sometimes referred to as fogponics, the roots are not suspended in water but hang in the air, where they receive a nutrient-rich growing medium via misting with a nutrient-rich solution Simple guide to prepare the garden Step 1: Assemble the Hydroponic System Step 2: Mix the Nutrients and Water in the Tank Step 3: Add Plants to the Growing Tubes Step 4: Tie the Plants to the Trellis Step 5: Turn on the Pump and Monitor the System Daily Step 6: Monitor Plant Growth Step 7: Inspect for Pests and Diseases Hydroponic systems only need a few basic parts to build Growing Chamber (or tray), The growing chamber is the part of the hydroponic system where the plants roots will be growing. Simply put, the growing chamber is the container for the root zone. This area provides plant support, as well as is where the roots access the nutrient solution. It also protects the roots from light, heat, and pests. It's important to keep the root zone cool and light proof. Prolonged light will damage the roots, and high temps in the root zone will cause heat stress for your plants, as well as cause fruit and flower drop as a result of heat stress. The temperature itself is very important part of keeping the roots and entire root zone comfortable for the plants. The size and shape of the growing chamber really just depends on the type of hydroponic system your building, as well as the type of plants you'll be growing in it. Bigger plants have bigger root systems, and need more space to hold them in. The designs here are endless. Almost anything can be used as the growing chamber, you just don't want to use anything made of metal or it could corrode or react with the nutrients. If you look around you'll get lots of ideas of what and how you can easily use many different things for building the growing chamber of your hydroponic system. Reservoir, The reservoir is the part of the hydroponic system that holds the nutrient solution. The nutrient solution consists of plant nutrients that are mixed in water. Depending on the type of hydroponic system, the nutrient solution can be pumped from the reservoir up to the growing chamber (root zone) in cycles using a timer, as well as continually without a timer, or the roots can even hang down into the reservoir 24/7, making the reservoir the growing chamber also.
Recommended publications
  • Ebb and Flow System Versus Overhead Sprinkler and Microirrigation for Container-Grown Woody Ornamental Production in Florida
    EBB AND FLOW SYSTEM VERSUS OVERHEAD SPRINKLER AND MICROIRRIGATION FOR CONTAINER-GROWN WOODY ORNAMENTAL PRODUCTION IN FLORIDA By LUIS CARLOS NOGUEIRA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Luis Carlos Nogueira This dissertation is dedicated to my beloved parents, Luiz Nogueira and Ana Colli Nogueira, who always showed love, patience, understanding and hard work. ACKNOWLEDGMENTS It is always a good time to thank GOD! for the beautiful and powerful nature, full of all resources, for us to work with and learn from. I am very thankful to Dr. Dorota Zofia Haman, a great person and a smart adviser, for the guidance, opportunity, friendship and huge support. Many thanks go to the professors of my committee, Dr. Michael Dukes, Dr. John Schueller, Dr. Robert Stamps and Dr. Thomas Burks, for all the valuable teachings, patience, understanding, and encouragement at all times. I thank them all so much for always telling me to move forward despite the obstacles I faced during my journey here. Also many thanks go to the technician Danny Burch and engineers Larry Miller and Wayne Williams, for lending me their dedicated expertise, patience, and willingness, during all phases of my research. We enjoyed many hours of good times together in lab work, fieldwork, and traveling. I need to express my gratitude to all of my friends, in and out of the University, people with whom I shared good and bad times, reminding me that there are other things in life.
    [Show full text]
  • *Ponics (Why Google Is Suspects That My Kids Are Drug Dealers and Why We’Re Looking for a Food-Safe Fencepost)
    *ponics (Why Google is suspects that my kids are drug dealers and why we’re looking for a food-safe fencepost) Roger Meike (pronounced “Mike,” FYI) PARC - but not what this project is about Saturday, July 20, 13 Roger Meike • Currently working at PARC • Technologist/Maker/Entrepreneur... Dork! • ..and I have the ham radio license to prove it! Saturday, July 20, 13 keyword: spaughts Saturday, July 20, 13 The challenge • Advice from Mike: Pick a topic that interests you • I now work on a software project at PARC, so I don’t have HW to talk about • I’m busy so I don’t do as much fun stuff at home as I would like • Everything I do in hardware these days is more sketchy than a sketch Saturday, July 20, 13 Slow Jam Sketch • If you use really slow material, is it still sketching? • i.e. working with biological and chemical constraints • The story: Why Google is pretty sure my kids are drug dealers and why I’m looking for a food-safe fencepost • Let the children lead the way • And so the story begins... Saturday, July 20, 13 Items of Interest KE6HFO KE6HFP Saturday, July 20, 13 Saturday, July 20, 13 Saturday, July 20, 13 Saturday, July 20, 13 Saturday, July 20, 13 Items of Interest KJ6KEB KI6TGN KE6HFO KE6HFP Saturday, July 20, 13 Saturday, July 20, 13 Hydroponics System Reservoir with pump and float switch Saturday, July 20, 13 Types of Hydroponic Systems • Ebb and flow system o Water level is fluctuated • Wick System o Simplest System • Drip system or Dutch Bucket o Bucket with a drip system type water supply • Deep water culture (DWC) o Roots
    [Show full text]
  • Development of Hydroponic Production Systems for Strawberry Production
    Development of Hydroponic Production Systems for Strawberry Production Principle Investigators and Cooperators: Principal Investigators: Lead PI Co-PI Dr. Michael Timmons Dr. Neil Mattson Professor, Cornell University Associate Professor, Cornell University Department of Biological & Department of Horticulture Environmental Engineering 49D Plant Science, Ithaca NY 14853 302 Riley-Robb Hall, Ithaca, NY 14853 (607) 255-0621 (607) 255-1630 [email protected] [email protected] Project Manager: Mr. Matthew Moghaddam Department of Horticulture, Cornell University [email protected] Background and Justification: New York consumers have limited access to fresh, high quality, locally grown produce at competitive pricing with imported product. It is well known that consumers place an added value on locally produced products. This then provides an opportunity for the small-scale producer and that opportunity can be partially addressed through aquaponics and product diversification. Strawberries are a highly favored fruit, yet almost all strawberries are imported into the New York State markets. NY ranked eighth in strawberry production in 2014 with 3.2 million pounds, but falls far behind the top five states (CA 2758 million lbs. per year, FL 207 M, OR 15, NC 15, WA 10, MI 4.5, WI 3.8, PA 3.3 M) (USDA, 2014). This domestic production comes from 56,000 acres of which only 22 acres are from greenhouse operations. This is in sharp contrast to Japan where 12,990 acres are greenhouse grown from a total country production of 14,876 acres. Historical production methods (field grown) need not prevent adaptation of new methods (greenhouse) as demonstrated in Mexico that had no history of strawberry production.
    [Show full text]
  • Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation
    horticulturae Review Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation Gina M. Riggio 1, Sarah L. Jones 2 and Kristen E. Gibson 2,* 1 Cellular and Molecular Biology Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 2 Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-479-575-6844 Received: 13 February 2019; Accepted: 7 March 2019; Published: 15 March 2019 Abstract: Controlled environment agriculture (CEA) is a growing industry for the production of leafy vegetables and fresh produce in general. Moreover, CEA is a potentially desirable alternative production system, as well as a risk management solution for the food safety challenges within the fresh produce industry. Here, we will focus on hydroponic leafy vegetable production (including lettuce, spinach, microgreens, and herbs), which can be categorized into six types: (1) nutrient film technique (NFT), (2) deep water raft culture (DWC), (3) flood and drain, (4) continuous drip systems, (5) the wick method, and (6) aeroponics. The first five are the most commonly used in the production of leafy vegetables. Each of these systems may confer different risks and advantages in the production of leafy vegetables. This review aims to (i) address the differences in current hydroponic system designs with respect to human pathogen internalization risk, and (ii) identify the preventive control points for reducing risks related to pathogen contamination in leafy greens and related fresh produce products. Keywords: hydroponic; leafy greens; internalization; pathogens; norovirus; Escherichia coli; Salmonella; Listeria spp.; preventive controls 1.
    [Show full text]
  • Aquaponics Systems and Management
    Introduction to Aquaponics Systems and Management Patricia Duncan, Ph.D. Georgia Center for Aquaculture Development Cooperative Extension Program, Fort Valley State University Fort Valley, GA What is Aquaponics? Aquaponics combines the culture of aquatic animals in recirculating aquaculture systems (RAS) with the hydroponic cultivation of plants. Hydroponics is the soilless culture of plants in a nutrient solution. Aquaponics vs Hydroponics In Hydroponics, a chemical nutrient solution is provided for the plants In aquaponics, by providing a nutritionally complete, formulated feed to the fish, the required nutrients and minerals will be supplied to the plants through the fish feeding and processing feed. As in all recirculating aquaculture systems (RAS), all the nutrients must be supplied to the fish in the feed since there are no pond organisms available as food. Requirements to Grow Plants in Hydroponic Systems Support for the plant above the solution Aeration of the solution Prevention of light reaching the solution so there will be no growth of algae Proper pH balance Proper nutrients Requirements to Grow Aquatic Animals in Recirculating Aquaculture Systems (RAS) Good Water Quality Optimum temperature Proper pH Sufficient Dissolved Oxygen Good Feed Means to treat animal waste Water Quality Parameters Important to Aquatic Animal Growth and Health Dissolved oxygen Temperature Ammonia Nitrite pH Alkalinity/Hardness Carbon Dioxide/Carbonate Cycle Solids (Total Suspended Solids) Aquaponic Systems which Support Dense
    [Show full text]
  • (NFT) and Deep Water Culture (DWC) Units
    57 When using timers for larger units a specific rule of thumb should be applied: ensure that at least the Fig. 4.54 The Mineralization Zone of a Grow Bed fish tank volume is pumped through the whole unit in 1 hour. Also, during warmer months of the year it is vital that you include an air pump into your fish tank to stabilize the oxygen levels as there are no 3) Mineralization Zone (The Wet Zone): bell siphons creating vast amounts of water aeration when using timer methods. Finally, make sure to flush the beds out once every week by temporarily removing the stand pipe and allowing the water This zone, the bottom 3-5cm of the bed, to drain out. remains permanently wet. In this zone, all the bacteria, red worms, water flies and other microorganisms thrive and consume all the solid waste, breaking E) Understanding the 3 Zones in Every Media Bed and Their Processes it into smaller fractions and molecules (Micro Eco-system) that can be absorbed by the plants. This manual has already discussed the nitrifying bacteria used for bio filtration, however in reality there is a whole ecosystem within every bed involving multiple types of bacteria, micro-organisms and tiny animals that all play their part in the breaking down of fish waste. It is not essential to be aware of all these organisms, but we will briefly explain their role in the 3 different zones of the bed in order to help you fully understand the benefits of this ecological process (Chapter 5: Bacteria, will also explain other key groups of bacteria involved).
    [Show full text]
  • Summary of Nutrient Film Technique
    Summary of Nutrient Film Technique Structure of greenhouse frame – A frame Model Type of selective covering – UV treated plastic or Open air Type of insect netting – Sara netting Angle of PVC guttering – 1:40 Length of PVC guttering – 30’ Depth of reservoir – 400 gallons Quantity of lettuce – 2,000 heads of ice-berg Volume - 400 gallons Flow rate - 1 liter per minute Changes in time - every cycle pH - 5.5 – 6.5 Air Temperature - 24°C Day/ 19 °C Day (75F/65F) H2O Temperature – no higher than 25°C, cool at 26°C, heat at 24°C Relative Humidity – minimum 50 and no higher than 70% CO2 – 1500ppm if light is available, ambient © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018 39 S. Mohammed, Tomorrow’s Agriculture, SpringerBriefs in Plant Science, https://doi.org/10.1007/978-3-319-99202-0 Appendix Table A.1 Showing progress tracker template Defects on Hold PROGRESS TRACKER GENERAL INFORMATION COST Description of Day Date Activities Manpower Material Machinery Management Total 1-365 actual generally actual direct procured direct others sum Eg. 1 10-01-14 Design system 1- --0 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018 41 S. Mohammed, Tomorrow’s Agriculture, SpringerBriefs in Plant Science, https://doi.org/10.1007/978-3-319-99202-0 42 Appendix Table A.2 Showing basic science information tracker GENERAL INFORMATION RESERVOIR Day Date Time PH EC Temp Weather Variations Water Level Added Lost 1-365 actual sec C gallons gallons gallons 112-1 6am 6.5 200028 sunnywindy 400-- Appendix 43 Table A.3 Showing pest and diseases tracker PEST AND DISEASES RESULTS Day Disturbance Treatment Period Actual Variations Cost Name Quantity 12 Algae Chlorine 20TT 44 Appendix Table A.4 Showing production of crops tracker GENERAL INFORMATION PRODUCTION OF FOOD CROPS Description of Day Date Activities Description of Vegetable Cost G Name of o B 1- vegetable Quantity Length/ Weight o a Price/su Profit/s 365 actual /no cm Colour /lb Size d d m um 24 lettuce 100 10cmgreen Appendix 45 Layout of Small Hydroponic Greenhouse References 1.
    [Show full text]
  • Dynamics of Root Microorganisms in Closed Hydroponic Cropping Systems
    Dynamics of Root Microorganisms in Closed Hydroponic Cropping Systems Anna Karin Rosberg Faculty of Landscape Architecture, Horticulture and Crop Production Science Department of Biosystems and Technology Alnarp Doctoral Thesis Swedish University of Agricultural Sciences Alnarp 2014 Acta Universitatis agriculturae Sueciae 2014:51 Cover: Tomato cropping system used in the thesis experiments (upper left), tomato roots inoculated with Pythium ultimum (upper right), agar plate with colonies of fluorescent pseudomonads illuminated with UV-light (lower left), sporangia of P. ultimum seen through microscope (lower right). (photo: Anna Karin Rosberg) ISSN 1652-6880 ISBN (print version) 978-91-576-8050-1 ISBN (electronic version) 978-91-576-8051-8 © 2014 Anna Karin Rosberg, Alnarp Print: SLU Repro, Alnarp 2014 Dynamics of Root Microorganisms in Closed Hydroponic Cropping Systems. Abstract Greenhouse production of vegetables in closed hydroponic cropping systems is a resource-efficient technique for the production of high-quality produce with a high yield per unit area. While this type of cropping system allows savings in terms of water and nutrient use, the recirculation of water increases the risk of pathogen dispersal. Oomycetous pathogens in particular, such as Pythium, thrive in aquatic environments and are among the most destructive pathogens. Root pathogen outbreaks could be controlled by sustaining a stable and high level of general microbiota. It is therefore of utmost importance to understand how biotic and abiotic factors affect the indigenous root-associated microbiota. In the present thesis, the impact of pathogen inoculation, plant age, nutrient availability and use of plant protection products on microbial communities associated with root and nutrient solution was investigated.
    [Show full text]
  • Growing Systems
    Choosing Your Growing Systems Aquaponics is the integration of recirculating aquaculture and hydroponics......in all of its forms. In this section, we consider the range of hydroponic growing systems that are available for use with aquaponics systems. Overview The choice of growing system will be largely driven by your resources and personal preferences. Other factors that will impact the choice of a growing system include: . the type of plants to be grown . how ‘hands on’ you want to be . the cultural needs of the plants The thing to remember is that no single growing system is ideally suited to all plants, so you’ll probably end up with more than one type of system….and you do have a wide range of choices. Aquaponics is the integration of recirculating aquaculture and hydroponic growing systems so (theoretically) any hydroponic system can be used for aquaponics. In practice, however, some hydro systems are better suited to urban aquaponics than others. For the purposes of aquaponics, hydroponic systems include the following: . Media-based Grow Beds – where various types of media are used to support the plants. Nutrient Flow Systems - where the plants are given direct access to the nutrient flow. Examples include nutrient film technique (NFT), deep water culture (DWC) and raft. Other options – generally include smaller systems like satellite pots, the Tray system and Autopot. Media-based Grow Beds Grow beds are the most popular growing system in use by backyard aquaponicists. They usually comprise a large waterproof tray that contains media which supports the plants. They may be made of fibreglass, plastic, corrugated steel and wood or plywood (fitted with a suitable liner).
    [Show full text]
  • Astro Gardentm Aeroponic Plant Growth System Design Evolution
    49th International Conference on Environmental Systems ICES-2019-195 7-11 July 2019, Boston, Massachusetts Astro GardenTM Aeroponic Plant Growth System Design Evolution Sam A. Moffatti, Robert C. Morrowii, and John P. Wetzeliii Sierra Nevada Corporation, Madison, WI, 53717, USA By providing dietary nutrients and unburdening physiochemical life support equipment, Hybrid Life Support Systems (HLSS) can be an attractive option for longer duration space exploration such as Mars transit missions. State of the art microgravity plant nutrient delivery utilizes a physical media in which the plant roots grow (e.g., clay-based arcillite). This added media increases the mass to orbit necessary for growing plants in space – limiting the appeal of large-scale plant growth systems in terms of Equivalent System Mass (ESM) when considering long duration mission architectures. Plants grown hydroponically or aeroponically represent a logistically favorable alternative for space-based plant growth systems, as nutrients are delivered without the added mass of a soil-like media. However, by removing the media material, controlling water delivery and recovery in a microgravity environment presents a challenge. Astro Garden is developed to provide a large- scale, space-based aeroponic plant growth system, leveraging modifications to current designs meant to operate within a gravitational environment. This paper details the design evolution of Astro Garden from the Phase 1 prototype through the upcoming ISS technology demonstration and future flight systems.
    [Show full text]
  • Controlled Environment Agriculture City Council Study Session August 1, 2017 Topics for Discussion
    Controlled Environment Agriculture City Council Study Session August 1, 2017 Topics for discussion • Environment • Operations • Market & Economics What is hydroponics? Hydroponics is a subset of hydroculture, the method of growing plants without soil, using mineral nutrient solutions in a water solvent. Why hydroponics? Utilize our resources • Take advantage of our abundant resources (sunlight and water) and turn them into a revenue source. Increased growth rate • Plants will mature up to 25% faster and produce up to 30% more than the same plants grown in soil. Controlled environment • Climate • Nutrients • Year-round growing season Fewer problems with disease, funguses, and bug infestations Will it work here? Yes!!! We have: • Abundance of sun and water • Level ground and room to scale • Climate conducive to optimal growth and production (example- Ontario, Canada) Tomatoes are grown on about 7,000 ha across the country, producing from 500,000 to 550,000 tons, valued at between $75 and $80 million. Ontario accounts for more than 98% of the production. Canada is the main producer of greenhouse tomatoes in North America. Our average temperatures and solar energy are comparable to that of Ontario. Average High and Low Temperature John Day Ontario, Canada The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures. Average Daily Incident Shortwave Solar Energy John Day Ontario, Canada The average daily shortwave solar energy reaching the ground per square meter (orange line), with 25th to 75th and 10th to 90th percentile bands.
    [Show full text]
  • Shallow Aggregate Ebb-And-Flow System for Greenhouse Lettuce Rp Oduction Joseph Chidiac University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2017 Shallow Aggregate Ebb-and-Flow System for Greenhouse Lettuce rP oduction Joseph Chidiac University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, and the Horticulture Commons Recommended Citation Chidiac, Joseph, "Shallow Aggregate Ebb-and-Flow System for Greenhouse Lettuce Production" (2017). Theses and Dissertations. 2514. http://scholarworks.uark.edu/etd/2514 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Shallow Aggregate Ebb-and-Flow System for Greenhouse Lettuce Production A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Horticulture by Joseph R. Chidiac University of Arkansas Bachelor of Science in Biological Engineering, 2011 December 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council _____________________ Dr. Michael R. Evans Thesis Director _____________________ _____________________ Dr. Craig Rothrock Dr. M. Elena Garcia Committee Member Committee Member _____________________ Dr. Douglas Karcher Committee Member ABSTRACT A novel soilless technique for the production of lettuce was developed and evaluated for its viability for ornamental greenhouse growers adapting their ebb-and-flood irrigation benching systems to diversify into growing lettuce, without having to purchase the conventional nutrient film technique (NFT) or deep flow technique (DFT) hydroponic systems. The experimental design was a three by four factorial, with three treatments for aggregate depth (19, 38, and 57 mm) and four treatments for irrigation frequency (once every 1, 2, 4, or 8 hours), for a total of twelve treatment combinations.
    [Show full text]