Astro Gardentm Aeroponic Plant Growth System Design Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Astro Gardentm Aeroponic Plant Growth System Design Evolution 49th International Conference on Environmental Systems ICES-2019-195 7-11 July 2019, Boston, Massachusetts Astro GardenTM Aeroponic Plant Growth System Design Evolution Sam A. Moffatti, Robert C. Morrowii, and John P. Wetzeliii Sierra Nevada Corporation, Madison, WI, 53717, USA By providing dietary nutrients and unburdening physiochemical life support equipment, Hybrid Life Support Systems (HLSS) can be an attractive option for longer duration space exploration such as Mars transit missions. State of the art microgravity plant nutrient delivery utilizes a physical media in which the plant roots grow (e.g., clay-based arcillite). This added media increases the mass to orbit necessary for growing plants in space – limiting the appeal of large-scale plant growth systems in terms of Equivalent System Mass (ESM) when considering long duration mission architectures. Plants grown hydroponically or aeroponically represent a logistically favorable alternative for space-based plant growth systems, as nutrients are delivered without the added mass of a soil-like media. However, by removing the media material, controlling water delivery and recovery in a microgravity environment presents a challenge. Astro Garden is developed to provide a large- scale, space-based aeroponic plant growth system, leveraging modifications to current designs meant to operate within a gravitational environment. This paper details the design evolution of Astro Garden from the Phase 1 prototype through the upcoming ISS technology demonstration and future flight systems. Nomenclature CEA = Controlled Environment Agriculture CFM = Cubic Feet per Minute DAQ = Data Acquisition System ECLS = Environmental Control and Life Support ESM = Equivalent System Mass HLSS = Hybrid Life Support Systems ISS = International Space Station LED = Light Emitting Diode LEO = Low-Earth Orbit NFT = Nutrient Film Technique NI = National Instruments PCB = Printed Circuit Board PPM = Parts Per Million SNC = Sierra Nevada Corporation TRL = Technology Readiness Level WCD = Water Capture Device WPM = Water Processing Module Zero-G = Zero Gravity Corporation I. Introduction lants have been grown in space for over 40 years1. Research payloads such as Astroculture, Advanced P Astroculture, Biomass Production System, Veggie and Advanced Plant Habitat have provided valuable tools for plant physiology research in a microgravity environment. These systems have almost exclusively relied on nutrient delivery through a soil-analog medium such as arcillite. Scaling these research systems towards food production systems becomes problematic due to increased mass requirements2. To achieve plant growth on the scale necessary for significant astronaut dietary supplementation, as well as Environmental Control and Life Support (ECLS) system i Mechanical Engineer, Sierra Nevada Corporation, and 1212 Fourier Dr. Madison, WI, 53717, USA ii Principal Scientist, Sierra Nevada Corporation, and 1212 Fourier Dr. Madison, WI, 53717, USA iii Program Manager, Sierra Nevada Corporation, and 1212 Fourier Dr. Madison, WI, 53717, USA © 2019 Sierra Nevada Corporation hybridization, alternate methods for nutrient delivery and recovery are highly desirable. Systems that eliminate the need for a rooting media interface present opportunities for significant mass reduction of large-scale plant production systems. The Astro Garden system is being designed in a phased approach. The Phase 2 Astro Garden prototype builds upon the Phase 1 design and parabolic flight testing data to create a large-scale plant growth system capable of the level of production necessary to meet the NASA salad-diet architecture3. This level of plant production also has the added benefit of increased ECLS system hybridization (supplementing physiochemical processes with biological processes). The Astro Garden prototype relies on conditioned inlet gas (controlled humidity & temperature as well as enriched CO2 levels) to provide optimal conditions for peak plant growth. In terms of ECLS hybridization, the system provides a means for additional oxygen production to supplement the traditional physiochemical systems and can provide a near potable water source through the recovery of transpired water. The modular, scalable nature of the Astro Garden design allows for plant growth in a variety of environments and potential mission scenarios, enabling future low-Earth orbit (LEO), cislunar, lunar surface, Mars transit or martian surface plant food production. II. Aeroponics in Space Aeroponics is a plant nutrient delivery mechanism that is characterized by spraying a nutrient solution directly on to plant roots, typically through use of pressurized nozzles. Aeroponics is a form of hydroponics where the roots are exposed directly to air (thus the aero-prefix) with the nutrient solution applied as a spray or mist. In more traditional hydroponic plant growth systems, the roots remain submerged in nutrient solution. Aeroponics has been used to grow and research plants on the ground dating back to the 1920s2. Commercialization and subsequent large-scale plant production through aeroponics took hold in the mid-1980s, beginning with systems such as GTI’s Genesis Machine4. Aeroponic plant growth offers a number of advantages over soil-based plant growth. From a research standpoint, aeroponics provides easy access to the plant roots, negating the need to remove soil for examination. Because of this access, roots are less likely to be damaged during the inspection process, allowing for quick, relatively undisturbed data collection throughout the growth cycle5. Aeroponics can also inherently isolate one plant from another, preventing the spread of disease through the soil medium. If disease does occur, the plant in question can be easily removed from the growth volume preventing further spread in the system. Aeroponically grown plants can also be grown faster. Because the roots are exposed directly to the nutrient solution, their absorption rate is typically higher than through a soil medium. When done in a recirculating mode, aeroponics is very efficient at regulating water delivery to the plants, decreasing the overall water needs for growth. Planting density can be increased through vertically stacked aeroponic nutrient delivery, requiring less overall volume. Because of the volume, water and nutrient absorption efficiencies, aeroponics is a highly desirable platform for urban plant growth, where space and water consumption are at a premium. Coupled with the reduction in mass through removing the soil medium, aeroponics presents an ideal solution for space- based agriculture. In addition to the benefits of using aeroponics on Earth, a number of space-focused attributes exist as well. Aeroponics can function the same in 1-g as it does in microgravity for nutrient delivery; because of the relative droplet size (~50 microns) and the velocity at which the droplet is discharged, the inherent momentum of the particle overcomes the effect of gravity acting on the particle mass. This has been demonstrated through numerous parabolic flight tests for various nozzle geometries and inlet pressures as noted in Section V. The nutrients are also typically delivered via a preset timed spray cycle. By determining the duration and frequency that a nozzle is effectively “on” and “off” a highly controllable quantity of nutrients can be delivered to plants roots without the use of additional sensors (such as pressure sensors used to control the level of negative pressure in porous media based systems). Nozzles can be easily replaced with the use of quick-disconnects, allowing fast on-orbit replacement when necessary. There are two primary concerns for using aeroponics in the absence of gravity: how to recover spray that does not impinge upon the roots, and how to prevent nutrient depleted water from adhering to the roots for extended periods. Removing depleted water from the roots is important to prevent blocking fresh nutrients from absorption sites and preventing oxygen uptake, resulting in a hypoxic condition. Without gravity acting upon the droplets, the solution will float as globules until coming into contact with a surface in the root zone. Depending on the wetting characteristics for that surface, and the capillary angle that the surfaces make with one another, the solution will adhere more or less strongly to that feature. Highly wetting materials and sharp angles will create regions that tend to collect more of the solution. Sealing becomes especially important as small, tight features can drive the solution to other regions over time through capillary action. Many of the challenges identified with microgravity aeroponics can be addressed through parabolic flight testing with Zero-G Corporation, but other challenges will need to be addressed through extended duration testing on the ISS. 2 International Conference on Environmental Systems III. Phase 1 Astro Garden Design and Testing The Phase 1 Astro Garden program included design of a modular, open loop plant growth system prototype intended to demonstrate future flight system packaging. The module design relied on readily available parts and materials in an effort to reduce complexity, cost, and development-time. The system received inlet air from a controlled environment room via internal fans and rejected plant chamber air back to the room. Nutrients were delivered aeroponically to the roots through an internal pump and accumulator system used to control nozzle delivery pressure. Gravity was the primary means to drain the
Recommended publications
  • Survey Paper on Aeroponics
    International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.134.06 Survey Paper on Aeroponics Ajay kumarD1, Namratha S.N2 1,2Assistant professor, Electronics and instrumentation, BMS college of Engineering, Bangalore, Karnataka, India Abstract- Almost all plants need soil for their growth. Nutrients present in soil help in the development of plants. Aeroponics is the method of growing plants in a medium without the use of soil. Here the plants are provided with a nutrient solution which circulates in the medium that holds the plant. The nutrient solution contains macronutrients and micronutrients which contribute to the healthy growth of plant. The Aeroponics is based on the opportunity of cultivating fruits & vegetables whose roots are not implanted in a bedrock (the case with hydroponics) or soil, but in ampules in which practices for spraying plant nutrition is delimited. In these containers, in our case pipe, roots can find the best ailment concerning oxygenation and moisture. These circumstances allow for healthier plant nutrition assimilation in a more balanced way, with consequential faster growth of the cultured plants. Keywords- Aeroponics, Hydroponics, Aquaponics, Aeroponics system, Aeroponics roots, Aeroponics growth. I. INTRODUCTION Aeroponics is the process of growing plants without using the substratum of soil. Aeroponics is a combination of two words „aero‟ and „ponic‟. „aero‟ meaning air and „ponic‟ meaning labour/growth. Therefore, aeroponics in whole suggests growing of plants in air. The plant is suspended in air using aeroponic system i.e. the roots are open and are in direct contact of air. Aeroponics culture varies from both the conformist hydroponics and aquaponics.
    [Show full text]
  • Aeroponics System of Cultivation in Horticultural Crops
    Vol.1 Issue-1, September,2020 Aeroponics System of Cultivation in Horticultural Crops Deeptimayee Sahoo Ph.D Research Scholar Dept. of Vegetable Sciences, Orissa University of Agriculture and Technology, BBSR, Odisha-751003 Mail- [email protected] ARTICLE ID: 007 Population of earth is expected to rise by 3 billion people. It is estimated that approximately 109 hectares of additional traditional land will be needed to feed them. Only 80% of the Earth’s arable land is suitable for farming now. A greater quantity of hectares with optimum inputs is needed every day to feed the rising population. This chain of high priority problems requires an improvement in the management of the use of resources so that human consumption has the priority in its use. To solve the problems mentioned, new farming methods have been searched, one of them being aeroponics. With this technique, the plants are held by certain structures that are maintained in a way that the roots are sustained up in the air. Aeroponic literally means “growing in air.” An aeroponic system is medium-less in that the roots of the plant are free hanging inside an open root-zone atmosphere. Aeroponics structure supplies optimum levels of water, nutrients and air to the growing chamber. Aeroponics is the process of growing plants in an air or mist environment without use of soil or an aggregate media. The word aeroponic is derived from the Latin word ‘aero’ (air) and ‘ponic’ means labour (work). This is an alternative method of soil-less culture in growth-controlled environments. The aeroponic culture technique is an optional device of soil-less culture in growth-controlled environments such as greenhouses.
    [Show full text]
  • A SWOT ANALYSIS of the VERTICAL FARM 2018, June 1
    BSC Thesis Name: Sanne van Asselt Registration number: 941120020100 Supervisor: J. H. Trienekens Chair group: Management Studies (MST) A SWOT ANALYSIS OF THE VERTICAL FARM 2018, June 1 Abstract The vertical farm is in its early state, leaving many questions unanswered and many open gaps in our current level of knowledge. There is at the moment not known what the opportunities and threats of a vertical farm are. To create more knowledge on vertical farms we conducted a SWOT analysis to answer the question: what are the most promising opportunities and most dangerous threats for the vertical farm? For the strengths we sought to find subjects that created a competitive advantage for the vertical farm by having a resource that greenhouse and conventional farm do not possess or any activity the vertical farm does better. For the weaknesses we looked for resources a vertical farm does not possess and activities a vertical farm is not doing well. Lastly the PESTLE analysis was used to find the opportunities and threats for the vertical farm. The high efficiency, the high quality, the innovative technology and the high costs are the most recurrent themes in the strengths, weaknesses, opportunities and threats of the vertical farm. The results of the SWOT analysis show that there are two most promising opportunities and three most dangerous threats. The first most promising opportunity is the environmental opportunity. A vertical farm can become a circular economy and also energy efficient by further enhancing their innovative technology. The second opportunity is the economic opportunity, which is the niche market and selling opportunities (both) based on the high quality and high level of food safety of the crops grown in a vertical farm.
    [Show full text]
  • Biomonapp's Sensing & Monitoring of Plants/Fish & Water Quality for Ag
    Biomonapp’s Sensing & Monitoring of Plants/Fish & Water Quality for Ag Biotech & Bio Monitoring Environments Christine M. Cunningham Owner Advanced Bioscience Sustainable Solutions LLC. Chatham University Eden Hall Sustainable Campus 6035 Ridge Rd., Gibsonia PA 15044 ABSTRACT FIELD OF INVENTION Advanced Bioscience Sustainable Solution’s biomonapp for bio The present invention generally relates to computer applications monitoring environments, especially the aquaponics and in the area of monitoring the quality of water and soil, and bio hydroponics industry. [4] The app will connect with a sensor or species, specifically to improve the quality of plants and fish. photo spectrometer to show nutrition and crop yield data. We The mobile App is useful for the agbiotech companies and are currently licensing with Biodynamics in Akron to merge a farmers, hobbyist & academics to grow healthy plants & fish. sensor with Biomonapp, and bundle with solar kits, Back to the The app can analyze physiological nutritional changes Roots tanks, and Husky aquatanks. Biomonapp can track and according to variance in effecting variable factors. monitor diverse species of plants and fish. The Family Garden in Jamaica will monitor with the app and sensors to show crop BACKGROUND OF THE SUSTAINABLE FARMING and nutritional yield value, and track data in a local zoo. We are WHAT IS HYDROPONICS? consulting with the Lettuce Do Good People who sell lettuce kits. We will conduct a market sampling with 600 clients in the Almost any plant can grow with hydroponics. The two main plant and fish industry from IBIS world. Virtual simulations types of hydroponics are solution culture and medium culture.
    [Show full text]
  • A Uacu Ture In. T E Next Centu
    a uacu ture in. t enext centu opportunities for growth challenges of sustainability George Chamberlain Harald Rosenthal In the last decade, aquaculture has been the only growth sector within fisheries and the prospects for continued growth appear excellent. Global per capita seafood consumption has been rising steadily since 1969, but landings from the capture fisheries reached a plateau in 1989, leaving aquaculture as l -i., the primary source of seafood production to meet this increasing demand. A substantial portion of the global increase in aquaculture production has come from coastal en­ I vironments, but as the human population grows and I I! expand~ its involvement in the coastal zones, there i will be increasing pre~sure to share the coastal I t resources among multiple users. In this environment some of our existing aquaculture practices will not be sustainable in their present form, but those that are designed to accommodate multiple resource use could grow rapidly. Examples range from the tradi­ tional farming systems in Southeast Asia, which benefit the community at large as well as the aquaculturists themselves, to modern high-tech re­ circulation systems. World Aquaculture 26( 1) March 1995 21 s the aquaculture industry As the population expands, air, water, lamination by aquaculture species grows, conflicts over water use and land pollution will become more. These steps will protect the environ will "intensify and competition severe. Controls will be necessary to menl and safeguard the aquaculture in A mitigate the greenhouse effect, acid dustry. will develop among users of the limited coastal resources. rain, toxic waste accumulation and eu­ These anticipated restrictions shoull At the recent AQUATECH '94 Confer­ trophication of coastal waters, and be viewed by the aquaculture industr·.
    [Show full text]
  • Plant Propagation for Successful Hydroponic Production
    Plant Propagation for Successful Hydroponic Production Hye-Ji Kim Assistant Professor of Sustainable Horticulture Crop Production Oct 14, 2017 What is Hydroponics? Hydroponics = hydros + ponos Water labor The cultivation of plants by placing the roots in liquid nutrient solutions rather than in soil; soilless growth of plants. Why hydroponics? . Crops can be produced on non-arable land including land with poor soils and/or high salinity levels. Efficient use of water and nutrients. High density planting = minimum use of land area. Year-round production. Local food. Direct and immediate control over the rhizosphere. Isolation from diseases or insect pests usually found in the soil. Higher yield, quality and storability of products. Ease of cleaning the systems. No weeding or cultivation is needed. Transplanting of seedlings is easy. Hydroponics Basics Types of Hydroponics: Water vs. Substrate-base Open vs. Closed Types of Hydroponics: Water vs. Substrate-base Water-based System Substrate-based System Deep water culture “Raft” system Ebb-and-flow Nutrient Film Techniques (NFT) Aeroponics Source: Chiwon Lee Drip irrigation Types of Hydroponics: Water vs. Substrate-base Water-based System Deep water culture “Raft” system Nutrient Film Techniques (NFT) Aeroponics Source: Chiwon Lee Source: hydrocentre.com.au Photos curtesy of Karlovec Media Group, Mobile channel system Facility of Great Lakes Growers, Burton, Ohio Types of Hydroponics: Water vs. Substrate-base Water-based System Deep water culture “Raft” system Nutrient Film Techniques (NFT) Aeroponics • Excellent aeration • 65% less water use than other Traveling plant, hydroponic systems Epcot Center, Disney World Source: http://www.mosesong.com/ Source: Chiwon Lee Source: Neiker-Tecnalia www.basqueresearch.com/new/2172 Source: Chiwon Lee Types of Hydroponics: Water vs.
    [Show full text]
  • Dry-Fog Aeroponics Affects the Root Growth of Leaf Lettuce (Lactuca Sativa L
    Original Paper Environ. Control Biol., 53 (4), 181187, 2015 DOI: 10.2525/ecb.53.181 Dry-fog Aeroponics Affects the Root Growth of Leaf Lettuce (Lactuca sativa L. cv. Greenspan) by Changing the Flow Rate of Spray Fertigation Yosuke HIKOSAKA, Michio KANECHI, Mizuki SATO and Yuichi UNO Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe , Hyogo 6578501, Japan (Received April 16, 2015; Accepted July 28, 2015) The growth characteristics and physiological activities of leaves and roots of lettuce cultivated in dry-fog aeroponics with different flow rates of nutrient dry-fog (FL, 1.0 m s1; NF, 0.1 m s1) were investigated under a controlled environment for two weeks and compared to lettuce cultivated using deep-flow technique (DFT). The growth of leaves of FL and DFT was not different and was significantly higher than that of NF. The amount of dry-fog particles adhering to the objects was higher in FL than in NF, so that the root growth in NF was significantly higher than that of FL. The respiration rate of roots was significantly higher in dry-fog aeroponics, but the dehydrogenase activity in the roots was significantly higher in DFT. There were no differences in the contents of chlorophyll and total soluble protein in the leaves or the specific leaf area. Photosynthetic rate and stomatal conductance were higher in dry-fog aeroponics. The contents of nitrate nitrogen, phosphate and potassium ions in the leaves were significantly higher in DFT, but the content of calcium ions was significantly higher in FL. Thus, changing the flow rate of the dry-fog in the rhizosphere can affect the growth and physiological activities of leaves and roots.
    [Show full text]
  • *Ponics (Why Google Is Suspects That My Kids Are Drug Dealers and Why We’Re Looking for a Food-Safe Fencepost)
    *ponics (Why Google is suspects that my kids are drug dealers and why we’re looking for a food-safe fencepost) Roger Meike (pronounced “Mike,” FYI) PARC - but not what this project is about Saturday, July 20, 13 Roger Meike • Currently working at PARC • Technologist/Maker/Entrepreneur... Dork! • ..and I have the ham radio license to prove it! Saturday, July 20, 13 keyword: spaughts Saturday, July 20, 13 The challenge • Advice from Mike: Pick a topic that interests you • I now work on a software project at PARC, so I don’t have HW to talk about • I’m busy so I don’t do as much fun stuff at home as I would like • Everything I do in hardware these days is more sketchy than a sketch Saturday, July 20, 13 Slow Jam Sketch • If you use really slow material, is it still sketching? • i.e. working with biological and chemical constraints • The story: Why Google is pretty sure my kids are drug dealers and why I’m looking for a food-safe fencepost • Let the children lead the way • And so the story begins... Saturday, July 20, 13 Items of Interest KE6HFO KE6HFP Saturday, July 20, 13 Saturday, July 20, 13 Saturday, July 20, 13 Saturday, July 20, 13 Saturday, July 20, 13 Items of Interest KJ6KEB KI6TGN KE6HFO KE6HFP Saturday, July 20, 13 Saturday, July 20, 13 Hydroponics System Reservoir with pump and float switch Saturday, July 20, 13 Types of Hydroponic Systems • Ebb and flow system o Water level is fluctuated • Wick System o Simplest System • Drip system or Dutch Bucket o Bucket with a drip system type water supply • Deep water culture (DWC) o Roots
    [Show full text]
  • Every Day, the Planet Has 219,000 More People to Feed. by the Year
    Every day, the planet has 219,000 more people to feed. hydroponics and aeroponics to turn a disused, eight Launching at MIF 2011 and culminating at MIF 2013, By the year 2050, it is estimated that nearly 80% of the storey office block in Wythenshawe into a productive this project is deliberately experimental. Exactly where world’s population will live in urban centres. Bringing food hub. it will take us is the really exciting bit… farming to the city could be a viable and innovative What we learn in this building could revolutionise the solution. way the world’s population could be fed. We will be With Alpha Farm we plan to explore how to retrofit learning as we go, seeing which farming methods work redundant, empty city buildings to grow food – using the best, what crops can be grown and how to get the pioneering new technologies such as aquaponics, community involved. 2010 2011 2012 2013 MIF 2011 MIF 2013 Launch Event Initial Feasibility study Community consultation Community engagement Schematic Design/ Detail Design Planning Application Clearance/ Installation Where next? Early works e r Growing e he r e a W The story so far... Utopian concepts The Harvest Green Vertical Farm Forwarding Dallas Dragonfly Vertical Farm Experimental Vertical Farm Vancouver - 2009 - Romses Architects Dallas - 2009 - Atelier Data & MOOV NYC Roosevelt Island - 2009 - Vincent Callebaut Santiago - 2009 - Claudio Palavecino Llanos Components of a vertical farm Verticrop: Light: Combining aquaculture and horticulture: Sewage/waste reuse: a Valcent product used
    [Show full text]
  • Hydro-Aeroponic Design Megan J
    The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Spring 2019 Hydro-Aeroponic Design Megan J. Doll [email protected] Nathan J. Boring The University of Akron, [email protected] Meredith B. Taylor The University of Akron, [email protected] Chancelor L. Sunkle The University of Akron, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Other Mechanical Engineering Commons Recommended Citation Doll, Megan J.; Boring, Nathan J.; Taylor, Meredith B.; and Sunkle, Chancelor L., "Hydro-Aeroponic Design" (2019). Williams Honors College, Honors Research Projects. 924. https://ideaexchange.uakron.edu/honors_research_projects/924 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Hydro-Aeroponic Design Honors Project Written by: Nathan Boring Megan Doll Chancelor Sunkle Meredith Taylor Advisor: Dr. Gopal Nadkarni Class Section: 4600:497-001 Date: April 26, 2019 Page | 2 Abstract: With the intention of combining the efficiency of aeroponics and the compactness of hydroponics, a hydro-aeroponic system was created to grow spinach and lettuce.
    [Show full text]
  • Development of Hydroponic Production Systems for Strawberry Production
    Development of Hydroponic Production Systems for Strawberry Production Principle Investigators and Cooperators: Principal Investigators: Lead PI Co-PI Dr. Michael Timmons Dr. Neil Mattson Professor, Cornell University Associate Professor, Cornell University Department of Biological & Department of Horticulture Environmental Engineering 49D Plant Science, Ithaca NY 14853 302 Riley-Robb Hall, Ithaca, NY 14853 (607) 255-0621 (607) 255-1630 [email protected] [email protected] Project Manager: Mr. Matthew Moghaddam Department of Horticulture, Cornell University [email protected] Background and Justification: New York consumers have limited access to fresh, high quality, locally grown produce at competitive pricing with imported product. It is well known that consumers place an added value on locally produced products. This then provides an opportunity for the small-scale producer and that opportunity can be partially addressed through aquaponics and product diversification. Strawberries are a highly favored fruit, yet almost all strawberries are imported into the New York State markets. NY ranked eighth in strawberry production in 2014 with 3.2 million pounds, but falls far behind the top five states (CA 2758 million lbs. per year, FL 207 M, OR 15, NC 15, WA 10, MI 4.5, WI 3.8, PA 3.3 M) (USDA, 2014). This domestic production comes from 56,000 acres of which only 22 acres are from greenhouse operations. This is in sharp contrast to Japan where 12,990 acres are greenhouse grown from a total country production of 14,876 acres. Historical production methods (field grown) need not prevent adaptation of new methods (greenhouse) as demonstrated in Mexico that had no history of strawberry production.
    [Show full text]
  • The Vertical Farm: a Review of Developments and Implications for the Vertical City
    buildings Review The Vertical Farm: A Review of Developments and Implications for the Vertical City Kheir Al-Kodmany Department of Urban Planning and Policy, College of Urban Planning and Public Affairs, University of Illinois at Chicago, Chicago, IL 60607, USA; [email protected] Received: 10 January 2018; Accepted: 1 February 2018; Published: 5 February 2018 Abstract: This paper discusses the emerging need for vertical farms by examining issues related to food security, urban population growth, farmland shortages, “food miles”, and associated greenhouse gas (GHG) emissions. Urban planners and agricultural leaders have argued that cities will need to produce food internally to respond to demand by increasing population and to avoid paralyzing congestion, harmful pollution, and unaffordable food prices. The paper examines urban agriculture as a solution to these problems by merging food production and consumption in one place, with the vertical farm being suitable for urban areas where available land is limited and expensive. Luckily, recent advances in greenhouse technologies such as hydroponics, aeroponics, and aquaponics have provided a promising future to the vertical farm concept. These high-tech systems represent a paradigm shift in farming and food production and offer suitable and efficient methods for city farming by minimizing maintenance and maximizing yield. Upon reviewing these technologies and examining project prototypes, we find that these efforts may plant the seeds for the realization of the vertical farm. The paper, however, closes by speculating about the consequences, advantages, and disadvantages of the vertical farm’s implementation. Economic feasibility, codes, regulations, and a lack of expertise remain major obstacles in the path to implementing the vertical farm.
    [Show full text]