Hydroponics, Aeroponic and Aquaponic As Compared with Conventional Farming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advanced Nutrients Iguana Juice Bloom 1 Liter 5200-14
Directions: Use 4 mL per Liter of water. Shake well to take full advantage of this product Organic Iguana Juice Bloom 4-3-6 and put it to work for you. Technical Support: 1-800-640-9605 Now Get Organic Flowers and One-Part Convenience www.advancednutrients.com/tech Iguana Juice Bloom is a one-part, all-organic bloom base that works in all WARNING: DO NOT SWALLOW types of hydroponics systems to provide your plants what they need for bloom KEEP OUT OF REACH OF CHILDREN phase energy production, flower development, and strong metabolism. Use Information regarding the contents and levels of metals in this product is available on the internet at Iguana Juice Bloom when you want the value-enhancing benefits of organic http://www.aapfco.org/metals.htm crops. Company Founders’ NO-RISK, 100% Money Back Iguana Juice Bloom has been specially designed for use with all hydroponics, GUARANTEE sphagnum and soil growing mediums. Iguana Juice Bloom was specifically built for growers just like you, who have very specific Iguana Juice Bloom has been developed for use with any and all hydroponic, demands and expectations from your hydroponics needs. When you use Iguana aeroponic, drip irrigation, NFT, flood & drain, drip emitters and continuous Juice Bloom it must perform flawlessly for liquid feed growing systems. you. You’ll find it will mix easily and quickly 4-3-6 into your reservoir and deliver the goods you’re looking for. GUARANTEED ANALYSIS: What’s more..., Iguana Juice Bloom will work Total Nitrogen (N)............................................................... 4% every time for you using any and all hydroponics, sphagnum and soil growing 4%................................. -
Integrated Irrigation and Aquaculture in West Africa: Concepts, Practices and Potential
CCOVEROVER [[Converted].aiConverted].ai 33-03-2006-03-2006 12:21:2012:21:20 INTEGRATED IRRIGATION AND AQUACULTURE INWESTAFRICA—Concepts,practicesandpotential ANDAQUACULTURE IRRIGATION INTEGRATED FAO This volume contains background documents and papers presented at the FAO-WARDA Workshop on Integrated Irrigation Aquaculture (IIA) held in Bamako, Mali, from 4 to 7 November 2003, as well as the findings of FAO expert missions on IIA in the West Africa region. The rationale for IIA development lies in its potential to increase productivity of scarce freshwater resources for improved livelihoods and to reduce pressure on natural resources, which is particularly important in the drought-prone countries of West Africa where water scarcity, food security and environmental degradation are priority issues for policy-makers. Irrigated systems, floodplains and inland valley bottoms are identified as C the three main target environments for IIA in West Africa. Many examples M of current practices, constraints and potential for development of IIA are Y provided. The concepts of economic analyses of IIA are reviewed, and an CM overview of regional and international research institutions and networks MY CY and their mandates as they relate to IIA is given. Key factors for successful CMY adoption of IIA – participation of stakeholders and support for local K development, an integrated, multisectoral approach to IIA and improved knowledge management and networking – indicate the way forward and are reflected in a proposal for IIA development in West Africa. INTEGRATED IRRIGATION AND AQUACULTURE IN WEST AFRICA Concepts, practices and potential ISBN 92-5-105491-6 9 7 8 9 2 5 1 0 5 4 9 1 8 TC/M/A0444E/1/3.06/2500 CCover-IIover-II [[Converted].aiConverted].ai 33-03-2006-03-2006 112:22:302:22:30 C M Y CM MY CY CMY K Cover page: FAO photos by A. -
Subsurface Drip Irrigation Why Choose a Netafim Drip Irrigation System?
SUBSURFACE DRIP IRRIGATION WHY CHOOSE A NETAFIM DRIP IRRIGATION SYSTEM? Pioneered by Netafim in 1965, drip irrigation is an established irrigation technology that delivers water and nutrients directly to the plant root zone, minimizing waste and improving crop performance. For decades, drip irrigation has been used as a proven method for watering high-value vegetable crops, but it wasn’t until the 1990s that drip irrigation expanded to larger scale use in row crops. Since 1995 over 30 billion feet of dripline has been installed into row crop fields in the United States. The success of drip irrigation has been attributed to many factors. The primary reason has been the evolution of equipment developed during the past 20 years - advanced equipment that allows a grower with little or no experience to succeed. WHAT IS DRIP IRRIGATION? Drip irrigation is more than an irrigation method, it is a management tool that allows producers to apply the precise amount of water directly to the root zone, to improve control of fertilizer application, eliminate run-off and evaporation and drive consistently higher yields through improved plant health. With a subsurface drip irrigation (SDI) system, driplines are buried below the soil surface enabling water and nutrients to easily reach each plant’s root zone. WHAT CAN DRIP IRRIGATION DO FOR MY FARM? As a field management tool, drip irrigation gives the grower control over the root zone environment of crops. Growers worldwide are experiencing the numerous benefits of drip irrigation both in the field and -
Survey Paper on Aeroponics
International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.134.06 Survey Paper on Aeroponics Ajay kumarD1, Namratha S.N2 1,2Assistant professor, Electronics and instrumentation, BMS college of Engineering, Bangalore, Karnataka, India Abstract- Almost all plants need soil for their growth. Nutrients present in soil help in the development of plants. Aeroponics is the method of growing plants in a medium without the use of soil. Here the plants are provided with a nutrient solution which circulates in the medium that holds the plant. The nutrient solution contains macronutrients and micronutrients which contribute to the healthy growth of plant. The Aeroponics is based on the opportunity of cultivating fruits & vegetables whose roots are not implanted in a bedrock (the case with hydroponics) or soil, but in ampules in which practices for spraying plant nutrition is delimited. In these containers, in our case pipe, roots can find the best ailment concerning oxygenation and moisture. These circumstances allow for healthier plant nutrition assimilation in a more balanced way, with consequential faster growth of the cultured plants. Keywords- Aeroponics, Hydroponics, Aquaponics, Aeroponics system, Aeroponics roots, Aeroponics growth. I. INTRODUCTION Aeroponics is the process of growing plants without using the substratum of soil. Aeroponics is a combination of two words „aero‟ and „ponic‟. „aero‟ meaning air and „ponic‟ meaning labour/growth. Therefore, aeroponics in whole suggests growing of plants in air. The plant is suspended in air using aeroponic system i.e. the roots are open and are in direct contact of air. Aeroponics culture varies from both the conformist hydroponics and aquaponics. -
Aeroponics System of Cultivation in Horticultural Crops
Vol.1 Issue-1, September,2020 Aeroponics System of Cultivation in Horticultural Crops Deeptimayee Sahoo Ph.D Research Scholar Dept. of Vegetable Sciences, Orissa University of Agriculture and Technology, BBSR, Odisha-751003 Mail- [email protected] ARTICLE ID: 007 Population of earth is expected to rise by 3 billion people. It is estimated that approximately 109 hectares of additional traditional land will be needed to feed them. Only 80% of the Earth’s arable land is suitable for farming now. A greater quantity of hectares with optimum inputs is needed every day to feed the rising population. This chain of high priority problems requires an improvement in the management of the use of resources so that human consumption has the priority in its use. To solve the problems mentioned, new farming methods have been searched, one of them being aeroponics. With this technique, the plants are held by certain structures that are maintained in a way that the roots are sustained up in the air. Aeroponic literally means “growing in air.” An aeroponic system is medium-less in that the roots of the plant are free hanging inside an open root-zone atmosphere. Aeroponics structure supplies optimum levels of water, nutrients and air to the growing chamber. Aeroponics is the process of growing plants in an air or mist environment without use of soil or an aggregate media. The word aeroponic is derived from the Latin word ‘aero’ (air) and ‘ponic’ means labour (work). This is an alternative method of soil-less culture in growth-controlled environments. The aeroponic culture technique is an optional device of soil-less culture in growth-controlled environments such as greenhouses. -
Creating an Inventory for Vertical Farming Cultivation Techniques Coupled to the Concept of People, Planet and Profit
Creating an inventory for vertical farming cultivation techniques coupled to the concept of people, planet and profit. Bachelor Thesis Business and Consumer Studies Student: Willem van Spanje Registration number: 940321788120 BSc program: BSC Bedrijfs- en Consumentenwetenschappen Supervisor: Emiel Wubben 2nd Supervisor: Verena Otter Course code: YSS-81812 Period: 3,4,5,6,1 Study load: 12 credits Date: 19-10-2020 1 Abstract This thesis aims to create insight for researchers, investors, and other stakeholders in the vertical farming business. Although a lot of research has been done regarding vertical farms and the cultivation techniques that can be used, a recent comprehensive literature review is missing. The aforementioned insight is created by analyzing the benefits and challenges of three different vertical farm cultivation techniques. These benefits and challenges are analyzed on a checklist with elements of the Triple-Layered Business Model Canvas. This way insight is created in how each vertical farming cultivation technique performs on multiple elements within the economic and environmental dimension of the checklist with elements of the Triple Layered Business Model Canvas. The methodology used in this thesis is a literature review. Papers from peer-reviewed journals are analyzed, used, and put into context. It was found that as of now there is one cultivation technique that performs better than other techniques concerning vertical farming, namely, aeroponics. This thesis also shows that aeroponics is the most promising cultivation technique. Furthermore, this thesis discusses that depending on a stakeholders priorities, their view of what is the optimal cultivation technique can differ from what other stakeholders might consider the optimal cultivation technique. -
A SWOT ANALYSIS of the VERTICAL FARM 2018, June 1
BSC Thesis Name: Sanne van Asselt Registration number: 941120020100 Supervisor: J. H. Trienekens Chair group: Management Studies (MST) A SWOT ANALYSIS OF THE VERTICAL FARM 2018, June 1 Abstract The vertical farm is in its early state, leaving many questions unanswered and many open gaps in our current level of knowledge. There is at the moment not known what the opportunities and threats of a vertical farm are. To create more knowledge on vertical farms we conducted a SWOT analysis to answer the question: what are the most promising opportunities and most dangerous threats for the vertical farm? For the strengths we sought to find subjects that created a competitive advantage for the vertical farm by having a resource that greenhouse and conventional farm do not possess or any activity the vertical farm does better. For the weaknesses we looked for resources a vertical farm does not possess and activities a vertical farm is not doing well. Lastly the PESTLE analysis was used to find the opportunities and threats for the vertical farm. The high efficiency, the high quality, the innovative technology and the high costs are the most recurrent themes in the strengths, weaknesses, opportunities and threats of the vertical farm. The results of the SWOT analysis show that there are two most promising opportunities and three most dangerous threats. The first most promising opportunity is the environmental opportunity. A vertical farm can become a circular economy and also energy efficient by further enhancing their innovative technology. The second opportunity is the economic opportunity, which is the niche market and selling opportunities (both) based on the high quality and high level of food safety of the crops grown in a vertical farm. -
Biomonapp's Sensing & Monitoring of Plants/Fish & Water Quality for Ag
Biomonapp’s Sensing & Monitoring of Plants/Fish & Water Quality for Ag Biotech & Bio Monitoring Environments Christine M. Cunningham Owner Advanced Bioscience Sustainable Solutions LLC. Chatham University Eden Hall Sustainable Campus 6035 Ridge Rd., Gibsonia PA 15044 ABSTRACT FIELD OF INVENTION Advanced Bioscience Sustainable Solution’s biomonapp for bio The present invention generally relates to computer applications monitoring environments, especially the aquaponics and in the area of monitoring the quality of water and soil, and bio hydroponics industry. [4] The app will connect with a sensor or species, specifically to improve the quality of plants and fish. photo spectrometer to show nutrition and crop yield data. We The mobile App is useful for the agbiotech companies and are currently licensing with Biodynamics in Akron to merge a farmers, hobbyist & academics to grow healthy plants & fish. sensor with Biomonapp, and bundle with solar kits, Back to the The app can analyze physiological nutritional changes Roots tanks, and Husky aquatanks. Biomonapp can track and according to variance in effecting variable factors. monitor diverse species of plants and fish. The Family Garden in Jamaica will monitor with the app and sensors to show crop BACKGROUND OF THE SUSTAINABLE FARMING and nutritional yield value, and track data in a local zoo. We are WHAT IS HYDROPONICS? consulting with the Lettuce Do Good People who sell lettuce kits. We will conduct a market sampling with 600 clients in the Almost any plant can grow with hydroponics. The two main plant and fish industry from IBIS world. Virtual simulations types of hydroponics are solution culture and medium culture. -
A Uacu Ture In. T E Next Centu
a uacu ture in. t enext centu opportunities for growth challenges of sustainability George Chamberlain Harald Rosenthal In the last decade, aquaculture has been the only growth sector within fisheries and the prospects for continued growth appear excellent. Global per capita seafood consumption has been rising steadily since 1969, but landings from the capture fisheries reached a plateau in 1989, leaving aquaculture as l -i., the primary source of seafood production to meet this increasing demand. A substantial portion of the global increase in aquaculture production has come from coastal en I vironments, but as the human population grows and I I! expand~ its involvement in the coastal zones, there i will be increasing pre~sure to share the coastal I t resources among multiple users. In this environment some of our existing aquaculture practices will not be sustainable in their present form, but those that are designed to accommodate multiple resource use could grow rapidly. Examples range from the tradi tional farming systems in Southeast Asia, which benefit the community at large as well as the aquaculturists themselves, to modern high-tech re circulation systems. World Aquaculture 26( 1) March 1995 21 s the aquaculture industry As the population expands, air, water, lamination by aquaculture species grows, conflicts over water use and land pollution will become more. These steps will protect the environ will "intensify and competition severe. Controls will be necessary to menl and safeguard the aquaculture in A mitigate the greenhouse effect, acid dustry. will develop among users of the limited coastal resources. rain, toxic waste accumulation and eu These anticipated restrictions shoull At the recent AQUATECH '94 Confer trophication of coastal waters, and be viewed by the aquaculture industr·. -
Drip Irrigation: an Introduction
SUSTAINABLE AGRICULTURE TECHNIQUES Drip irrigation provides slow, even application of low-pressure water to soil and plants using EM 8782 • Revised March 2013 plastic tubing placed in or near the plants’ root zone. It is an alternative to sprinkler or furrow methods of irrigating crops. Drip irrigation can Drip Irrigation: be used for crops with high or low water demands. An Introduction Why consider drip irrigation? C.C. Shock Drip irrigation can help you use water efficiently. A well-designed drip irrigation system loses practically no water to runoff, evaporation, or deep percolation in silty soils. Drip irrigation reduces water contact with crop leaves, stems, and fruit. Thus, conditions may be less favorable for disease development. Irrigation scheduling can be managed precisely to meet crop demands, holding the promise of increased yield and quality. Growers and irrigation professionals often refer to “subsurface drip irrigation,” or SDI. When a drip tape or tube is buried below the soil surface, it is less vulnerable to damage due to UV radiation, cultivation, or weeding. With SDI, water use efficiency is maximized because there is even less evaporation or runoff. Agricultural chemicals can be applied more efficiently through drip irrigation. Since only the Drip irrigation tubing used to irrigate wine crop root zone is irrigated, nitrogen already in the grapes. soil is less subject to leaching losses, and applied fertilizer can be used more efficiently. In the case of insecticides, less product might be needed. Make sure the insecticide is labeled for application through drip irrigation, and follow the label instructions. Additional advantages of drip irrigation include the following. -
Triggering Drip Irrigation Onset by Soil Water Tension Clinton C. Shock
Triggering drip irrigation onset by soil water tension Clinton C. Shock, Oregon State University Malheur Experiment Station, Ontario, Oregon [email protected] Feng-Xin Wang, China Agricultural University, Beijing, China, [email protected] Alan D. Campbell, SmartVineyards LLC, Portland, Oregon, [email protected] Hector Dominguez-Aguirre, SmartVineyards LLC, Portland, Oregon, [email protected] Sustainable irrigated agricultural production depends on high and stable productivity using limited inputs of water and nutrients. When irrigation events are triggered by soil water tension (SWT) criteria, the criteria should be adjusted to precisely meet plant needs and provide increments of applied water consistent with soil properties. Drip irrigation systems are often used for triggered irrigation due to the potential to precisely control the irrigation system. Here we review the processes of collecting, filtering, and using SWT data for irrigation onset. A compilation of the successful triggering of irrigation onset using SWT criteria for many crops is discussed. Introduction Precise irrigation is becoming extremely important due to the shortages of water, competition for water, increase in population, consumer preferences for consumption of meat in the developing countries, and environmental pollution resulting from the excessive application of irrigation water. There are several irrigation scheduling techniques that can be used to obtain excellent irrigation scheduling. These include the use of estimates of crop evapotranspiration, SWT, soil water content, or plant stress. In the following paragraphs we will discuss applications of the use of SWT for precise irrigation scheduling. Six years ago two of us (Shock and Wang, 2011) summarized the literature on the use of SWT as an irrigation onset criteria. -
Plant Propagation for Successful Hydroponic Production
Plant Propagation for Successful Hydroponic Production Hye-Ji Kim Assistant Professor of Sustainable Horticulture Crop Production Oct 14, 2017 What is Hydroponics? Hydroponics = hydros + ponos Water labor The cultivation of plants by placing the roots in liquid nutrient solutions rather than in soil; soilless growth of plants. Why hydroponics? . Crops can be produced on non-arable land including land with poor soils and/or high salinity levels. Efficient use of water and nutrients. High density planting = minimum use of land area. Year-round production. Local food. Direct and immediate control over the rhizosphere. Isolation from diseases or insect pests usually found in the soil. Higher yield, quality and storability of products. Ease of cleaning the systems. No weeding or cultivation is needed. Transplanting of seedlings is easy. Hydroponics Basics Types of Hydroponics: Water vs. Substrate-base Open vs. Closed Types of Hydroponics: Water vs. Substrate-base Water-based System Substrate-based System Deep water culture “Raft” system Ebb-and-flow Nutrient Film Techniques (NFT) Aeroponics Source: Chiwon Lee Drip irrigation Types of Hydroponics: Water vs. Substrate-base Water-based System Deep water culture “Raft” system Nutrient Film Techniques (NFT) Aeroponics Source: Chiwon Lee Source: hydrocentre.com.au Photos curtesy of Karlovec Media Group, Mobile channel system Facility of Great Lakes Growers, Burton, Ohio Types of Hydroponics: Water vs. Substrate-base Water-based System Deep water culture “Raft” system Nutrient Film Techniques (NFT) Aeroponics • Excellent aeration • 65% less water use than other Traveling plant, hydroponic systems Epcot Center, Disney World Source: http://www.mosesong.com/ Source: Chiwon Lee Source: Neiker-Tecnalia www.basqueresearch.com/new/2172 Source: Chiwon Lee Types of Hydroponics: Water vs.