Integrated Irrigation and Aquaculture in West Africa: Concepts, Practices and Potential

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Irrigation and Aquaculture in West Africa: Concepts, Practices and Potential CCOVEROVER [[Converted].aiConverted].ai 33-03-2006-03-2006 12:21:2012:21:20 INTEGRATED IRRIGATION AND AQUACULTURE INWESTAFRICA—Concepts,practicesandpotential ANDAQUACULTURE IRRIGATION INTEGRATED FAO This volume contains background documents and papers presented at the FAO-WARDA Workshop on Integrated Irrigation Aquaculture (IIA) held in Bamako, Mali, from 4 to 7 November 2003, as well as the findings of FAO expert missions on IIA in the West Africa region. The rationale for IIA development lies in its potential to increase productivity of scarce freshwater resources for improved livelihoods and to reduce pressure on natural resources, which is particularly important in the drought-prone countries of West Africa where water scarcity, food security and environmental degradation are priority issues for policy-makers. Irrigated systems, floodplains and inland valley bottoms are identified as C the three main target environments for IIA in West Africa. Many examples M of current practices, constraints and potential for development of IIA are Y provided. The concepts of economic analyses of IIA are reviewed, and an CM overview of regional and international research institutions and networks MY CY and their mandates as they relate to IIA is given. Key factors for successful CMY adoption of IIA – participation of stakeholders and support for local K development, an integrated, multisectoral approach to IIA and improved knowledge management and networking – indicate the way forward and are reflected in a proposal for IIA development in West Africa. INTEGRATED IRRIGATION AND AQUACULTURE IN WEST AFRICA Concepts, practices and potential ISBN 92-5-105491-6 9 7 8 9 2 5 1 0 5 4 9 1 8 TC/M/A0444E/1/3.06/2500 CCover-IIover-II [[Converted].aiConverted].ai 33-03-2006-03-2006 112:22:302:22:30 C M Y CM MY CY CMY K Cover page: FAO photos by A. Conti and M. Halwart FFrontespiziorontespizio [[Converted].aiConverted].ai 33-03-2006-03-2006 112:24:082:24:08 INTEGRATED IRRIGATION AND AQUACULTURE IN WEST AFRICA Concepts, practices and potential Edited by Matthias Halwart Fishery Resources Officer C FAO Fisheries Department M Rome, Italy Y CM MY CY Anne A. van Dam CMY Senior Lecturer K Department of Environmental Resources UNESCO-IHE Institute for Water Education Delft, Netherlands FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2006 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or of The Africa Rice Center concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 92-5-105491-6 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Publishing Management Service Information Division FAO Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to: [email protected] © FAO 2006 Disclaimer new.indd 1 3-03-2006 12:41:44 PREPARATION OF THIS DOCUMENT This document contains the proceedings, including 12 presented papers, as well as background documents and mission reports prepared for the FAO-WARDA Workshop on Integrated Irrigation Aquaculture held in Bamako, Mali, from 4 to 7 November 2003. Submitted presentations from the Bamako workshop were technically reviewed by the members of the Technical Secretariat of the Workshop (M. Halwart/FAO, I. Beernaerts/FAO, C. Brugère/FAO, P. Kiepe/WARDA and J.F. Moehl/FAO). All material, including the preparatory studies and analyses, were compiled and edited by M. Halwart and A.A. van Dam. Halwart, M.; Dam, A.A. van (eds) Integrated irrigation and aquaculture in West Africa: concepts, practices and potential. Rome, FAO. 2006. 181 pp. iii ABSTRACT This volume contains background documents and papers presented at the FAO-WARDA Workshop on Integrated Irrigation Aquaculture (IIA) held in Bamako, Mali, from 4 to 7 November 2003, as well as the findings of FAO expert missions on IIA in the West Africa region. The rationale for IIA development lies in its potential to increase productivity of scarce freshwater resources, enhance food security and poverty alleviation, and reduce pressure on natural resources, particularly in the drought-prone countries of West Africa. Irrigated systems, floodplains and inland valley bottoms are identified as the three main target environments for IIA in West Africa. In irrigated systems, aquaculture is a non-consumptive use of water that can increase water productivity. Pens and floating cages are often used to grow fish in the source, delivery and disposal subsystems of irrigation schemes (dams and canals). Rice-fish farming is the most common form of aquaculture in the use subsystem of irrigation schemes. Continuity of water supply, the effect of aquaculture on water conveyance and the use of agrochemicals are the main points of attention for aquaculture in irrigation systems. Apart from irrigation schemes, river floodplains and deltaic lowlands also offer opportunities for integration of aquaculture. By enclosing parts of these flooded areas and stocking them with aquatic organisms, food production can be enhanced. Examples of community-based rice-fish culture in Bangladesh and Viet Nam show that fish production can be increased by 0.6 to 1.5 tonnes per hectare annually. Another example is the use of seasonal ponds in the wetlands surrounding Lake Victora (East Africa) which are stocked with water and fish by natural flooding and are managed using locally available resources like animal manures and crop wastes. Following the first three chapters which set the stage for IIA in West Africa, the fourth chapter presents a review of IIA systems in 13 West African countries which demonstrates the considerable potential for further development. Traditional marsh aquaculture systems exist in many West African countries and should be developed further, together with fish culture in irrigation schemes. The following chapters deal with current practices and constraints in Burkina Faso, Mali, Niger, Nigeria and Senegal. In addition, examples of development approaches in Côte d'Ivoire and Guinea are given. Concepts of economic analyses of IIA are reviewed and illustrated through an example of integrated aquaculture in Madagascar. This is followed by an overview of regional and international research institutions and networks. The final two chapters summarize the key factors for successful adoption of IIA – participation of stakeholders and support for local development; an integrated, multisectoral approach to IIA; and improved knowledge management and networking – and indicate the way forward in the form of a proposal for IIA development in West Africa. iv CONTENTS Preparation of this document iii Abstract iv List of acronyms vii Foreword FAO ix Foreword WARDA x Introduction xi 1. Characterization of three key environments for integrated irrigation- 1 aquaculture and their local names P. Kiepe 2. A review of experience with aquaculture integration in large-scale 7 irrigation systems J. Gowing 3. Community-based fish culture in seasonal floodplains 17 M. Prein & M.M. Dey 4. A review of the development of integrated irrigation aquaculture 27 (IIA), with special reference to West Africa C. Brugère 5. The potential for development of aquaculture and its integration with 61 irrigation within the context of the FAO Special Programme for Food Security in the Sahel J. Miller 6. A feasibility study of rice-fish farming in Western Africa 75 D. Sanni & G. Juanich 7. The potential for integrated irrigation-aquaculture in Mali 79 J. Peterson & M. Kalende 8. The potential for integrated irrigation-aquaculture (IIA) in Senegal 95 J. Peterson, M. Kalende, D. Sanni & M. N'Gom 9. Integrated irrigation-aquaculture opportunities in Nigeria: the 117 Special Programme for Food Security and rice-fish farming in Nigeria J.Miller, T. Atanda, G. Asala & W.H. Chen 10. Aquaculture associations – rural development in tropical humid 125 Africa B. Bentz 11. Integrated pond aquaculture in Lake Victoria wetlands 129 A.A. van Dam, R.C. Kaggwa & J. Kipkemboi 12. Economics of integrated irrigation-aquaculture 135 C. Brugère v 13. International research support for integrated irrigation and 151 aquaculture development C. Brugère 14. The sustainable fisheries livelihoods programme (SFLP) and the fight 157 against poverty J.C. Njock 15. Integrating aquaculture into agroecosystems in West Africa: the 159 roles of WARDA – The Africa Rice Center and the Inland Valley Consortium P. Kiepe 16. The Worldfish Center and its relevance for integrated irrigation and 161 aquaculture M. Prein & R. Brummett 17. Wageningen University and Research Center's networks and the 165 future role of INREF-POND in integrated irrigation and aquaculture in West Africa R. Bosma, P. Windmeijer & H. Komen 18. The UNESCO-IHE Institute for Water Education: capacity building 167 and research in integrated water resources management A.A. van Dam 19. Development of integrated irrigation and aquaculture in West Africa: 169 the way forward M. Halwart &
Recommended publications
  • Report from the Cgiar Consortium of International Agricultural Research Centres to the Commission on Genetic Resources for Food and Agriculture
    CGRFA-14/13/Inf.22 March 2013 E Organización Food and Organisation des Продовольственная и de las Agriculture Nations Unies cельскохозяйственная Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la et l'agriculture United Nations Наций Agricultura n COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE Item 9 of the Provisional Agenda Fourteenth Regular Session Rome, 15 - 19 April 2013 REPORT FROM THE CGIAR CONSORTIUM OF INTERNATIONAL AGRICULTURAL RESEARCH CENTRES TO THE COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE TABLE OF CONTENTS Paragraphs I. Introduction 1-2 II. The State of the World’s Biodiversity for Food and Agriculture 3-10 III. Animal genetic resources 11-21 IV. Aquatic genetic resources 22-28 V. Forest genetic resources 29-36 VI. Micro-organisms and invertebrates 37-39 VII. Cross-sectorial matters Consideration of the need for and modalities of access and benefit- sharing arrangements for genetic resources for food and agriculture 40-47 Consideration of finalized roadmap or work programme on climate change and genetic resources for food and agriculture 48-53 Review of all relevant international targets and indicators for biodiversity for food and agriculture 54-55 Review of key issues on biodiversity and nutrition 56-59 This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org CGRFA-14/13/Inf.22 1 I.
    [Show full text]
  • Boosting Agricultural Efficiency and Output Through Targeted Interventions
    PA R T I V Boosting Agricultural Efficiency and Output through Targeted Interventions CHAPTER 1 5 Increasing Rice Productivity and Strengthening Food Security through New Rice for Africa (NERICA) Aliou Diagne, Soul-Kifouly Gnonna Midingoyi, Marco Wopereis, and Inoussa Akintayo espite Africa’s potentially rich land and water capita rice consumption in West Africa increased from resources, its farmers are among the poorest in the 14 kilograms in the 1970s to 22 kilograms in the 1980s and world. Because the vast majority of people in more than 39 kilograms in 2009. For Africa as whole, annual DAfrica der ive their livelihoods from agriculture, the weak per capita rice consumption increased from 11 kilograms in state of the sector has profound implications for poverty.1 the 1970s to 21 kilograms in 2009 (figure 15.1). Since the Agricultural innovation in Africa needs to internalize the early 1970s rice has been the number one source of caloric region’s biophysical, institutional, and socioeconomic con- intake in West Africa and the third most important source straints and establish efficient value chains to support sus- of calories (after maize and cassava) for the continent as a tainable growth and reduce poverty. whole (figure 15.2). Agricultural research can catalyze agricultural innova- Domestic rice production grew at the rate of 6 percent a tion and the development of the value chain. A prime exam- year between 2001 and 2005.5 But production still falls far ple is the New Rice for Africa (NERICA) varieties developed short of demand. As a result, Africa imports up to 40 per- by the Africa Rice Center (AfricaRice2) and partners, which cent of its rice consumption.
    [Show full text]
  • W Orking Paper
    Agricultural practices and technologies to enhance food security, resilience and productivity in a sustainable manner Messages to SBSTA 44 agriculture workshops Working Paper No. 146 CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Edited by: Dhanush Dinesh r International Research Institute for Climate and Society ape P w i s a t women in global science & technology Science with a human face ing k r o W Correct citation: Dinesh D (ed). 2016. Agricultural practices and technologies to enhance food security, resilience and productivity in a sustainable manner: Messages for SBSTA 44 agriculture workshops. CCAFS Working Paper no. 146. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Available online at: www.ccafs.cgiar.org Correct citation for individual chapters (e.g.): Cooper P, Nangia N, Sander O, Zwart S, McCartney M, Westermann O. Water Management. In: Dinesh D (ed). 2016. Agricultural practices and technologies to enhance food security, resilience and productivity in a sustainable manner: Messages for SBSTA 44 agriculture workshops. CCAFS Working Paper no. 146. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Available online at: www.ccafs.cgiar.org Titles in this Working Paper series aim to disseminate interim climate change, agriculture and food security research and practices and stimulate feedback from the scientific community. The CGIAR Research Program on Climate Change, Agriculture and Food
    [Show full text]
  • Advanced Nutrients Iguana Juice Bloom 1 Liter 5200-14
    Directions: Use 4 mL per Liter of water. Shake well to take full advantage of this product Organic Iguana Juice Bloom 4-3-6 and put it to work for you. Technical Support: 1-800-640-9605 Now Get Organic Flowers and One-Part Convenience www.advancednutrients.com/tech Iguana Juice Bloom is a one-part, all-organic bloom base that works in all WARNING: DO NOT SWALLOW types of hydroponics systems to provide your plants what they need for bloom KEEP OUT OF REACH OF CHILDREN phase energy production, flower development, and strong metabolism. Use Information regarding the contents and levels of metals in this product is available on the internet at Iguana Juice Bloom when you want the value-enhancing benefits of organic http://www.aapfco.org/metals.htm crops. Company Founders’ NO-RISK, 100% Money Back Iguana Juice Bloom has been specially designed for use with all hydroponics, GUARANTEE sphagnum and soil growing mediums. Iguana Juice Bloom was specifically built for growers just like you, who have very specific Iguana Juice Bloom has been developed for use with any and all hydroponic, demands and expectations from your hydroponics needs. When you use Iguana aeroponic, drip irrigation, NFT, flood & drain, drip emitters and continuous Juice Bloom it must perform flawlessly for liquid feed growing systems. you. You’ll find it will mix easily and quickly 4-3-6 into your reservoir and deliver the goods you’re looking for. GUARANTEED ANALYSIS: What’s more..., Iguana Juice Bloom will work Total Nitrogen (N)............................................................... 4% every time for you using any and all hydroponics, sphagnum and soil growing 4%.................................
    [Show full text]
  • Subsurface Drip Irrigation Why Choose a Netafim Drip Irrigation System?
    SUBSURFACE DRIP IRRIGATION WHY CHOOSE A NETAFIM DRIP IRRIGATION SYSTEM? Pioneered by Netafim in 1965, drip irrigation is an established irrigation technology that delivers water and nutrients directly to the plant root zone, minimizing waste and improving crop performance. For decades, drip irrigation has been used as a proven method for watering high-value vegetable crops, but it wasn’t until the 1990s that drip irrigation expanded to larger scale use in row crops. Since 1995 over 30 billion feet of dripline has been installed into row crop fields in the United States. The success of drip irrigation has been attributed to many factors. The primary reason has been the evolution of equipment developed during the past 20 years - advanced equipment that allows a grower with little or no experience to succeed. WHAT IS DRIP IRRIGATION? Drip irrigation is more than an irrigation method, it is a management tool that allows producers to apply the precise amount of water directly to the root zone, to improve control of fertilizer application, eliminate run-off and evaporation and drive consistently higher yields through improved plant health. With a subsurface drip irrigation (SDI) system, driplines are buried below the soil surface enabling water and nutrients to easily reach each plant’s root zone. WHAT CAN DRIP IRRIGATION DO FOR MY FARM? As a field management tool, drip irrigation gives the grower control over the root zone environment of crops. Growers worldwide are experiencing the numerous benefits of drip irrigation both in the field and
    [Show full text]
  • Effective Targeting of Research for Development
    CGIAR Rice C a en c t ri e f r A More effective targeting of C e e n u t q r i e r d f u l’A riz pour research for development Afr caR ce Africa Rice Center (AfricaRice) – Annual Report 2017 AfricaRice Headquarters, Côte d’Ivoire © Copyright Africa Rice Center (AfricaRice) 2018 01 BP 4029, Abidjan, Côte d’Ivoire AfricaRice encourages fair use of this material. Proper Telephone: (225) 22 48 09 10 citation is required. The designation used in the presentation Fax: (225) 22 44 26 29 of materials in this publication do not imply the expression Email: [email protected] of any opinion whatsoever by the Africa Rice Center (AfricaRice) concerning the legal status of any country, AfricaRice M’bé Research Station territory, city or area, or of its authorities, or concerning 01 BP 2551, Bouaké, Côte d’Ivoire the delimitation of its frontiers and boundaries. Telephone: (225) 22 48 09 20 Citation: Fax: (225) 31 63 25 78 Africa Rice Center (AfricaRice). 2018. Africa Rice Center Email: [email protected] (AfricaRice) Annual Report 2017: More effective targeting of research for development. Abidjan, Côte d’Ivoire: 40 pp. AfricaRice Regional Station for the Sahel, Senegal BP 96, Saint-Louis, Senegal ISBN: Telephone: (221) 33 962 64 41, 33 962 64 93 Print 978-92-9113-394-9 Fax: (221) 33 962 64 91 PDF 978-92-9113-395-6 Email: [email protected] Writing and editing: AfricaRice Nigeria Country Office c/o IITA, PMB 5320, Ibadan, Oyo State, Nigeria Green Ink (www.greenink.co.uk) Telephone: (234) 80 55 05 59 51, 80 34 03 52 81 Fax: (44) 20 87 11 37 86 Photo credits: Email: [email protected] Romaric Biaou, page 22; Mirian Hendriks, page 29.
    [Show full text]
  • Creating an Inventory for Vertical Farming Cultivation Techniques Coupled to the Concept of People, Planet and Profit
    Creating an inventory for vertical farming cultivation techniques coupled to the concept of people, planet and profit. Bachelor Thesis Business and Consumer Studies Student: Willem van Spanje Registration number: 940321788120 BSc program: BSC Bedrijfs- en Consumentenwetenschappen Supervisor: Emiel Wubben 2nd Supervisor: Verena Otter Course code: YSS-81812 Period: 3,4,5,6,1 Study load: 12 credits Date: 19-10-2020 1 Abstract This thesis aims to create insight for researchers, investors, and other stakeholders in the vertical farming business. Although a lot of research has been done regarding vertical farms and the cultivation techniques that can be used, a recent comprehensive literature review is missing. The aforementioned insight is created by analyzing the benefits and challenges of three different vertical farm cultivation techniques. These benefits and challenges are analyzed on a checklist with elements of the Triple-Layered Business Model Canvas. This way insight is created in how each vertical farming cultivation technique performs on multiple elements within the economic and environmental dimension of the checklist with elements of the Triple Layered Business Model Canvas. The methodology used in this thesis is a literature review. Papers from peer-reviewed journals are analyzed, used, and put into context. It was found that as of now there is one cultivation technique that performs better than other techniques concerning vertical farming, namely, aeroponics. This thesis also shows that aeroponics is the most promising cultivation technique. Furthermore, this thesis discusses that depending on a stakeholders priorities, their view of what is the optimal cultivation technique can differ from what other stakeholders might consider the optimal cultivation technique.
    [Show full text]
  • Importance of Pesticides for Growing Rice in Sub-Saharan Africa Leonard P
    International Pesticide Benefit Case Study 101 July, 2014 Importance of Pesticides for Growing Rice in Sub-Saharan Africa Leonard P. Gianessi ice is the most rapidly growing food commodity in Sub-Saharan Africa. Traditionally, rice was grown as a subsistence crop by R smallholders and largely consumed on the farm. In recent years, demand from urban consumers for rice as a storable and easily prepared food has increased tremendously. Greater use of pesticides on farms in Sub-Saharan Africa has great potential for increasing rice production. INTRODUCTION Portions of the grain head are white in contrast to the In Sub-Saharan Africa (SSA) total rice consumption over green or tan color of healthy grain. This “blasted” the period 2000-2012 increased from 12MT to 24MT. appearance is caused by sterile or blank grain. In SSA, a African rice production has not been able to keep up blast disease outbreak can cause the loss of about 35- with demand and nearly 37% of the rice consumed in 50% of rice yield, and in serious outbreaks, 100% rice 2 SSA is imported at a cost of US$5 billion per year yield losses have been recorded. Rice farmers have draining foreign currency reserves. This reliance on food abandoned imports is a very risky, expensive and unsustainable some inland strategy and it may lead to severe food insecurity and valleys in civil instability.1 The risks became clear in 2008 during SSA because food riots in major African capitals in protest against of high blast 3 high rice prices caused by rice-exporting countries pressure.
    [Show full text]
  • Worldfish Style Guide
    Photo credit: <Name>/<Organization> credit: Photo WorldFish Style Guide Version 3 April 2020 Table of contents Contents Table of contents i Introduction 1 Editorial style 2 1. Abbreviations 2 1.1. Acronyms and initialisms 2 1.2. Abbreviations for “species” 2 1.3. American states 2 1.4. Chemical elements 2 1.5. Geographic terms 2 1.6. Latin phrases 3 1.7. Periods in abbreviations 3 1.8. Project and program titles 3 1.9. Repeating units 3 1.10. Tables and reference materials 3 1.11. Truncations 3 1.12. Units of measurement 3 2. Annex versus appendix 4 3. Avoiding discriminatory language 4 3.1. Nonsexist language 4 3.2. Nonracist language 4 3.3. Language and disabilities 4 3.4. Language and age 5 4. Branding 5 5. Capitals 5 5.1. Geographic terms 5 5.2. Government 5 5.3. Headings 5 5.4. Hyphenated compounds 5 5.5. Initial words 6 5.6. Internet 6 5.7. Project and program titles 6 5.8. Small capitals 6 5.9. Titles 6 5.10. Titles of publications 6 i 6. Compound words 6 7. Copyright 7 8. Cross-references 7 9. Dates and times 7 10. Figures and illustrations 8 10.1. Figure captions 8 10.2. Numbering figures 8 10.3. Photo captions 8 11. Endnotes 8 12. Format 9 12.1. Headings 9 12.2. Order of elements in a publication 9 12.3. Paragraphs 9 13. Front matter/Preliminaries 9 13.1. Acknowledgments 9 13.2. Contents 9 13.3. Page numbering 9 14.
    [Show full text]
  • Key Assets and Benefits of CGIAR
    Established in 1971 as part of the worldwide response to rampant hunger in many developing countries, CGIAR (formerly known as the Consultative Group on International Agricultural Research) is today a global partnership that advances science and technology to reduce poverty, increase food security, improve health and nutrition, and ensure the sustainable management of natural resources. As the only international agricultural research body dedicated to meeting the needs of poor smallholders, CGIAR produces global public goods – including improved crop varieties, livestock vaccines, sustainable agroforestry and farming practices, and incisive policy analysis – that are freely available to all and adaptable to local needs and conditions. Despite nearly 40 years of achievements, in 2009 - 2010, CGIAR initiated far-reaching reforms to respond more effectively to a changing world and emerging challenges and opportunities, including climate change, growing water scarcity, land degradation, the growing role of the private sector, and new donor demands. The resulting business model streamlines operations for greater efficiencies, is impact-oriented, fosters stronger collaboration, and unites investors in a multi-donor trust fund – the largest public vehicle for financing the agricultural research advances needed to meet the food security challenges of the 21st century. The CGIAR Fund supports research carried out by a consortium of 15 international centers working closely with hundreds of partners, including national and regional research institutes, civil society, academia, and the private sector, through CGIAR Research Programs. Before receiving funding, programs set out their expected achievements and provide targets against which progress can be measured and monitored, giving donors better value for money and ensuring that research leads to tangible benefits for the poor.
    [Show full text]
  • Shifting the Goalposts—From High Impact Journals to High Impact Data
    WHITE PAPER Shifting the goalposts—from high impact journals to high impact data Anja Gassner1, Luz Marina Alvare2, Zoumana Bamba3, Douglas Beare4, Marichu Bernardo5, Chandrashekhar Biradar6, Martin van Brakel7, Robert Chapman8, Guntuku Dileepkumar9, Ibnou Dieng10, Sufiet Erlita11, Richard Fulss12, Jane Poole13, Mrigesh Kshatriya11, Guvener Selim14 Reinhard Simon14, Kai Sonder12, Nilam Prasai2, Maria Garruccio8, Simone Staiger Rivas14, Maya Rajasekharan14 , Chukka Srinivasa Rao9 1 World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, PO Box 30677 Nairobi 00100 Kenya 2 International Food Policy Research Institute (IFPRI), 2033 K St, NW, Washington, DC 20006-1002 USA 3 International Institute of Tropical Agriculture (IITA), HQ-PMB 5320, Ibadan, Oyo State Nigeria 4 WorldFish, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang, Malaysia, PO Box 500 GPO, 10670 Penang, Malaysia 5 International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila 1301, Los Baños, Philippines 6 International Center for Agricultural Research in the Dry Areas (ICARDA, "Dalia Building 2nd Floor, Bashir El Kassar Street, Verdun, Beirut, Lebanon 1108-2010 P.O. Box 114/5055 Beirut, Lebanon" 7 International Water Management Institute (IWMI), P. O. Box 2075, Colombo, Sri Lanka, 127, Sunil Mawatha, Pelawatte, Battaramulla, Sri Lanka 8 Bioversity International, "HQ- Via dei Tre Denari 472/a 00057 Maccarese (Fiumicino) Rome, Italy" 9 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324 Andhra Pradesh, India 10 Africa Rice Center (AfricaRice) 01 B.P. 2031, Cotonou, Benin 11 Center for International Forestry Research (CIFOR), HQ- Jalan CIFOR, Situ Gede Bogor (Barat) 16115, Indonesia, Mailing-P.O. Box 0113 BOCBD Bogor 16000, Indonesia" 12 International Maize and Wheat Improvement Center (CIMMYT), Km.
    [Show full text]
  • Drip Irrigation: an Introduction
    SUSTAINABLE AGRICULTURE TECHNIQUES Drip irrigation provides slow, even application of low-pressure water to soil and plants using EM 8782 • Revised March 2013 plastic tubing placed in or near the plants’ root zone. It is an alternative to sprinkler or furrow methods of irrigating crops. Drip irrigation can Drip Irrigation: be used for crops with high or low water demands. An Introduction Why consider drip irrigation? C.C. Shock Drip irrigation can help you use water efficiently. A well-designed drip irrigation system loses practically no water to runoff, evaporation, or deep percolation in silty soils. Drip irrigation reduces water contact with crop leaves, stems, and fruit. Thus, conditions may be less favorable for disease development. Irrigation scheduling can be managed precisely to meet crop demands, holding the promise of increased yield and quality. Growers and irrigation professionals often refer to “subsurface drip irrigation,” or SDI. When a drip tape or tube is buried below the soil surface, it is less vulnerable to damage due to UV radiation, cultivation, or weeding. With SDI, water use efficiency is maximized because there is even less evaporation or runoff. Agricultural chemicals can be applied more efficiently through drip irrigation. Since only the Drip irrigation tubing used to irrigate wine crop root zone is irrigated, nitrogen already in the grapes. soil is less subject to leaching losses, and applied fertilizer can be used more efficiently. In the case of insecticides, less product might be needed. Make sure the insecticide is labeled for application through drip irrigation, and follow the label instructions. Additional advantages of drip irrigation include the following.
    [Show full text]