Contents Stony Or Gravelly Soils

Total Page:16

File Type:pdf, Size:1020Kb

Contents Stony Or Gravelly Soils REPORT Fish of Walnut Lake.......................................................25 OF THE Condition of fish. ..........................................................25 STATE BOARD OF GEOLOGICAL SURVEY Species, relative numbers and economic importance OF MICHIGAN of the fish......................................................................25 FOR THE YEAR 1907 Methods of fishing. .......................................................26 Annotated list of fish in Walnut Lake............................26 ALFRED C. LANE The Flora, by C. A. Davis...............................................36 STATE GEOLOGIST Relations of plants to animals ......................................36 OCTOBER, 1908 Requirements of plants ................................................36 BY AUTHORITY Adaptation of plants .....................................................36 LANSING, MICHIGAN Law governing plant distribution...................................37 WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS Types of water plants and their associations...............37 1908 Factors controlling plant distribution in a given lake ....37 A BIOLOGICAL SURVEY OF The lake a desert .........................................................37 Walnut Lake, Michigan. Reasons for zonal arrangement of plants ....................37 Invariable order of the zones........................................37 BY Limits of the different zones .........................................37 THOMAS L. HANKINSON. Zones above the water level ........................................38 WITH CHAPTERS ON THE PHYSIOGRAPHY, GEOLOGY Ideal classification of the plant zones of the region AND FLORA OF THE REGION BY CHARLES A. DAVIS; AND about Walnut Lake .......................................................38 A PAPER ON THE AQUATIC INSECTS OF THE LAKE BY JAMES G. NEEDHAM. Reasons for variation from the ideal arrangement.......38 The plant zones of a lake affected by the soils of the A REPORT OF THE BIOLOGICAL SURVEY OF THE STATE OF MICHIGAN, bottom ..........................................................................38 PUBLISHED BY THE STATE BOARD OF GEOLOGICAL Application of principles to the flora of Walnut Lake ....38 SURVEY AS A PART OF THE REPORT FOR 1907. Relations of soils to zonal distribution..........................39 Marl ..............................................................................39 Contents Stony or gravelly soils ..................................................39 Black mud or impure peat ............................................39 Letter of transmittal. ....................................................... 2 Effects of aquatic and marsh plant associations on Introduction. .................................................................... 3 their habitat...................................................................39 The plant zones represented in the lake......................40 Acknowledgments ......................................................... 4 The sedge zone ...........................................................40 Equipment and methods of work................................... 4 The bulrush zone .........................................................41 Nomenclature and measurements ................................ 5 The pond-weed zone ...................................................41 Physiography and Geology, by C. A. Davis. ................ 5 The water-lily zone .......................................................42 Location and description of Walnut Lake ...................... 5 Water crowfoot .............................................................42 The bed rock.................................................................. 6 Other zones..................................................................42 Glacial Geology of the region ........................................ 6 Flora of the highlands...................................................43 Post-glacial history of the region ................................... 8 List of plants collected at Walnut Lake.........................43 Marl................................................................................ 9 The Fauna of Walnut Lake. ...........................................45 Peat ............................................................................... 9 Human agencies............................................................ 9 Summary and conclusions ...........................................49 Soils of the drainage basin of Walnut Lake ................. 10 Appendix I. Description of apparatus and methods Physiographic features of the lake shores .................. 10 of recording observations. ...........................................50 Field stations. ................................................................ 11 Collecting apparatus. ...................................................50 Barren shoal type. ....................................................... 11 Equipment for making observations.............................52 Bulrush-covered shoal type......................................... 16 Equipment for making records. ....................................52 Swamp loosestrife-fringed type. .................................. 17 Appendix II. Data on stomach contents of fish taken Marsh bay type. ........................................................... 18 in Walnut Lake................................................................53 Bulrush shoal type. ...................................................... 20 Swampy shore type..................................................... 21 Deep water type. ......................................................... 22 Annual Report for 1907 / Walnut Lake – Page 1 of 66 Appendix III. Notes on the aquatic insects of Walnut Lake with especial reference to a few species of considerable importance as fish food, by James G. LETTER OF TRANSMITTAL. Needham. ....................................................................... 56 OFFICE OF THE STATE GEOLOGIST, LANSING, MICHIGAN. Figures To the Honorable, the Board of Geological Survey of the State of Michigan. Figure 18. Diagram showing results of gas analyses ............24 Hon. Fred M. Warner, President. Figure 19. Chironomus albistria Walker. m, The Hon. D. M. Ferry, Jr. epipharyngeal comb of the larva; n, the labial border; both x 55.................................................................................58 Hon. L. L. Wright, Secretary. Figure 20. Unknown Chironomus larvæ from stomach of Gentlemen:—I have the honor to transmit herewith, whitefish; p, epipharyngeal comb, x 310; q, labial border, received from Chief Field Naturalist, A. G. Ruthven, for x 55.................................................................................59 publication as a part of the Annual Report for 1907, a report on the results of a biological survey of Walnut Figure 21. Semi-diagrammatic figure of the buccal apparatus of the larva of Chironomus viridicollis V. d. W., viewed Lake, Michigan, by Thomas L. Hankinson and from below, the mandibles, x, and maxillæ, y, spread out associates. This report is a contribution from the laterally, and the top of the mouth moved a little anteriorly Biological Survey of the State of Michigan, which the so as to show all of the epipharyngeal armature (based on Legislature authorized you to supervise and execute by drawings by Mr. H. R. Stewart). The line i i represents the Act No. 250 of the session of 1905. It consists of a labral margin of the mouth; the parts above it are on the report on the fauna (particularly the fish) of Walnut Lake, front of the head, outside the mouth; the parts below it are and contains much of a practical nature on the economic in the roof of the mouth. The ill defined fringe of fine relations, habits and distribution of the several species, bristles along this margin has sometimes been designated special attention being given to the occurrence of the as the anterior comb. f, the pedunculate palps (only their peduncles are shown in Miall and Hammond's The white fish in this lake. Harlequin Fly Fig 16), g, frontal sensory hairs; h, h, labral This report was undertaken very largely at the or external rakers; i, i, lateral papillæ; k, epipharyngeal (or suggestion of Captain Clark of Northville, with the hopes posterior) comb; I, I, epipharyngeal or internal rakers; m, of obtaining a practical result in connection with the pure m, lateral arms; n, n, anterior cross bar ;1 o, o, U-bar; p, maxillary palpus; q, lacinia of the maxilla; r, scientific treatment. We hoped to find out why white-fish hypopharynx?; z, the labial border, heavily chitinized (in flourished in this lake, what it was in the surroundings situ, the mandibles swing obliquely downward against this that made them thrive, so that we might know where border)............................................................................59 whitefish might be successfully planted and raised. Figure 22. Gall-bearing petioles of Nymphæa advena. a, The answer seems to be that it depends on the external views of the gall; the dotted circle marks the presence of oxygen in the deep "abyssal" part of the epidermal window, through which the adult emerges. b, lake, both for the whitefish and their food, the larvæ of the gall cut open, showing the larva of Hydromyza certain midges. confluens within..............................................................66 Very respectfully, Figure 23. The larva of Hydromyza confluens. a, side view of the whole larva; b, the caudal peritreme spine, greatly ALFRED C. LANE,
Recommended publications
  • Diptera, Empidoidea) 263 Doi: 10.3897/Zookeys.365.6070 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 365: 263–278 (2013) DNA barcoding of Hybotidae (Diptera, Empidoidea) 263 doi: 10.3897/zookeys.365.6070 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea) Zoltán T. Nagy1, Gontran Sonet1, Jonas Mortelmans2, Camille Vandewynkel3, Patrick Grootaert2 1 Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny (JEMU), Rue Vautierstraat 29, 1000 Brussels, Belgium 2 Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny (Ento- mology), Rue Vautierstraat 29, 1000 Brussels, Belgium 3 Laboratoire des Sciences de l’eau et environnement, Faculté des Sciences et Techniques, Avenue Albert Thomas, 23, 87060 Limoges, France Corresponding author: Zoltán T. Nagy ([email protected]) Academic editor: K. Jordaens | Received 7 August 2013 | Accepted 27 November 2013 | Published 30 December 2013 Citation: Nagy ZT, Sonet G, Mortelmans J, Vandewynkel C, Grootaert P (2013) Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea). In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (Eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365: 263–278. doi: 10.3897/zookeys.365.6070 Abstract Empidoidea is one of the largest extant lineages of flies, but phylogenetic relationships among species of this group are poorly investigated and global diversity remains scarcely assessed. In this context, one of the most enigmatic empidoid families is Hybotidae. Within the framework of a pilot study, we barcoded 339 specimens of Old World hybotids belonging to 164 species and 22 genera (plus two Empis as outgroups) and attempted to evaluate whether patterns of intra- and interspecific divergences match the current tax- onomy.
    [Show full text]
  • Diptera: Empidoidea), with a Redefinition of the Tribe Ocydromiini
    © Copyright Australian Museum, 2000 Records of the Australian Museum (2000) Vol. 52: 161–186. ISSN 0067–1975 Revision of the Genus Apterodromia (Diptera: Empidoidea), With a Redefinition of the Tribe Ocydromiini BRADLEY J. SINCLAIR1 AND JEFFREY M. CUMMING 2 1 Zoologisches Forschungsinstitut und Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany [email protected] 2 Systematic Entomology Section, ECORC, Agriculture and Agri-Food Canada, K.W. Neatby Building, C.E.F., Ottawa, ON, Canada K1A 0C6 [email protected] ABSTRACT. The Australian endemic genus Apterodromia Oldroyd (Diptera: Empidoidea) is revised and includes four apterous species (A. evansi Oldroyd, A. minuta n.sp, A. setosa n.sp., and A. tasmanica n.sp.) and eight fully winged species (A. aurea n.sp., A. bickeli n.sp., A. irrorata n.sp., A. monticola n.sp., A. pala n.sp., A. spilota n.sp., A. tonnoiri n.sp., and A. vespertina n.sp.). The male of A. evansi is described and zoogeographic patterns of the genus are discussed. On the basis of wing venation and male terminalia Apterodromia is transferred from the Tachydromiinae to the tribe Ocydromiini (subfamily Ocydromiinae). The Ocydromiini is redefined, two new genera (Neotrichina n.gen. and Leptodromia n.gen.) are described, and all included genera are listed. Keys to major lineages of Australian Empidoidea and Southern Hemisphere genera of Ocydromiini are provided. The following new combinations are listed: Hoplopeza tachydromiaeformis (Bezzi), Leptodromia bimaculata (Bezzi), Neotrichina abdominalis (Collin), N. digna (Collin), N. digressa (Collin), N. distincta (Collin), N. elegans (Bigot), N. fida (Collin), N. indiga (Collin), N.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • Observations on the Ecology of Water Striders
    * RILEY f : Observations on the Ecology of Water Stridors Zoology M. S. 1912 MS/TV. <>V THE UNIVERSITY OF ILLINOIS LIBRARY ^5 OBSERVATIONS ON THE ECOLOGY OF WATER STRIDERS BY CHARLES FREDERICK CURTIS RILEY A. B. Doane College, 1901 A. B. University of Michigan, 1905 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ZOOLOGY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1912 TH5 \vi_ r-4S UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL 19JT2J 1 HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY C: 31 C OIL* . ENTITLED IaJoJjjx- ^tX^MlA^ BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF In Charge of Major Work Recommendation concurred in: Committee on Final Examination Digitized by the Internet Archive in 2014 http://archive.org/details/observationsonecOOrile Observations on the Ecology of Water Stridors. Table of Contents. I. Introduction. II. Running Water Habitats 1. Ravines. 2. Springs. 5. Small Temporary Streams. a. Tile-drains and Temporary Streams. 4. Permanent Brooks. a. Behavior During Flood Conditions. b. Drought Conditions. c. Behavior During Conditions of Severe Drought. 5. Creeks. a. Dralnage-di tc h. 6. Rivers. a. Ox-bow Ponds. II. Food and Food Relations. I. Nature and Source of Focd. Food During Captivity. Transportation of Food by Water Currents. Time of Feeding. Response to Water Currents and its Relation to Food. Trial Method of Response to Moving Objects and Its Relation to Food. IV. Summary. V. Bibliography. -3- OESERVATIONS ON THE ECOLOGY OF WATER STRIDERS. I. Introduction. The present paper treats of some of the general ecological relations of water striders.
    [Show full text]
  • Monitoring Wilderness Stream Ecosystems
    United States Department of Monitoring Agriculture Forest Service Wilderness Stream Rocky Mountain Ecosystems Research Station General Technical Jeffrey C. Davis Report RMRS-GTR-70 G. Wayne Minshall Christopher T. Robinson January 2001 Peter Landres Abstract Davis, Jeffrey C.; Minshall, G. Wayne; Robinson, Christopher T.; Landres, Peter. 2001. Monitoring wilderness stream ecosystems. Gen. Tech. Rep. RMRS-GTR-70. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 137 p. A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitor- ing protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the detail and frequency of the measurements. Stage 4 supplements analyses of stream biotic structure with measurements of stream function: carbon and nutrient processes. Standard methods are presented that were selected or modified through extensive field applica- tion for use in remote settings. Keywords: bioassessment, methods, sampling, macroinvertebrates, production The Authors emphasize aquatic benthic inverte- brates, community dynamics, and Jeffrey C. Davis is an aquatic ecolo- stream ecosystem structure and func- gist currently working in Coastal Man- tion. For the past 19 years he has agement for the State of Alaska. He been conducting research on the received his B.S. from the University long-term effects of wildfires on of Alaska, Anchorage, and his M.S. stream ecosystems. He has authored from Idaho State University. His re- over 100 peer-reviewed journal ar- search has focused on nutrient dy- ticles and 85 technical reports.
    [Show full text]
  • Download Download
    Tropical Natural History 20(1): 16–27, April 2020 2020 by Chulalongkorn University Endemism, Similarity and Difference in Montane Evergreen Forest Biodiversity Hotspots: Comparing Communities of Empidoidea (Insecta: Diptera) in the Summit Zones of Doi Inthanon and Doi Phahompok, Thailand ADRIAN R. PLANT1*, DANIEL J. BICKEL2, PAUL CHATELAIN3, CHRISTOPHE DAUGERON3 AND WICHAI SRISUKA4 1Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Mahasarakham 44150, THAILAND 2Australian Museum, Sydney, NSW 2010, AUSTRALIA 3Muséum national d’Histoire naturelle, 57 rue Cuvier, CP 50, F-75005 Paris, FRANCE 4Entomology Section, Queen Sirikit Botanic Garden, Mae Rim, Chiang Mai 50180, THAILAND * Corresponding author. Adrian R. Plant ([email protected]) Received: 7 August 2019; Accepted: 12 November 2019 ABSTRACT.– Composition and structure of communities of the Diptera superfamily Empidoidea (30,481 individuals of 511 species in 55 genera in the families Empididae, Dolichopodidae, Hybotidae and Brachystomatidae) were compared in Upper Montane Forests on Doi Inthanon and Doi Phahompok in northern Thailand. Based on taxon similarity (α-, β-diversity), structural diversity (the species abundance distribution and importance of dominant species), cluster analysis of community composition and the relative importance of inferred Oriental and Palaearctic influences, it was concluded that communities in Upper Montane Forest at 2,036 – 2,105 m near the summit of Doi Phahompok were most similar to those at 1,639 – 2,210 m on Doi Inthanon. Approximately 33% of species recorded at 2,036 – 2,105 m on Doi Phahompok were endemic to the mountain. Upper Montane Forest is a rare, dispersed and isolated habitat in southeastern Asia with scattered patches likely to experience comparable levels of β-diversity and endemism as found here.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need
    Prepared by Wisconsin Department of Natural Resources with Assistance from Conservation Partners Natural Resources Board Approved August 2005 U.S. Fish & Wildlife Acceptance September 2005 Wisconsin’s Strategy for Wildlife Species of Greatest Conservation Need Governor Jim Doyle Natural Resources Board Gerald M. O’Brien, Chair Howard D. Poulson, Vice-Chair Jonathan P Ela, Secretary Herbert F. Behnke Christine L. Thomas John W. Welter Stephen D. Willet Wisconsin Department of Natural Resources Scott Hassett, Secretary Laurie Osterndorf, Division Administrator, Land Paul DeLong, Division Administrator, Forestry Todd Ambs, Division Administrator, Water Amy Smith, Division Administrator, Enforcement and Science Recommended Citation: Wisconsin Department of Natural Resources. 2005. Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need. Madison, WI. “When one tugs at a single thing in nature, he finds it attached to the rest of the world.” – John Muir The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington D.C. 20240. This publication can be made available in alternative formats (large print, Braille, audio-tape, etc.) upon request. Please contact the Wisconsin Department of Natural Resources, Bureau of Endangered Resources, PO Box 7921, Madison, WI 53707 or call (608) 266-7012 for copies of this report. Pub-ER-641 2005
    [Show full text]
  • Arthropods Associated with Above-Ground Portions of the Invasive Tree, Melaleuca Quinquenervia, in South Florida, Usa
    300 Florida Entomologist 86(3) September 2003 ARTHROPODS ASSOCIATED WITH ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, MELALEUCA QUINQUENERVIA, IN SOUTH FLORIDA, USA SHERYL L. COSTELLO, PAUL D. PRATT, MIN B. RAYAMAJHI AND TED D. CENTER USDA-ARS, Invasive Plant Research Laboratory, 3205 College Ave., Ft. Lauderdale, FL 33314 ABSTRACT Melaleuca quinquenervia (Cav.) S. T. Blake, the broad-leaved paperbark tree, has invaded ca. 202,000 ha in Florida, including portions of the Everglades National Park. We performed prerelease surveys in south Florida to determine if native or accidentally introduced arthro- pods exploit this invasive plant species and assess the potential for higher trophic levels to interfere with the establishment and success of future biological control agents. Herein we quantify the abundance of arthropods present on the above-ground portions of saplings and small M. quinquenervia trees at four sites. Only eight of the 328 arthropods collected were observed feeding on M. quinquenervia. Among the arthropods collected in the plants adven- tive range, 19 species are agricultural or horticultural pests. The high percentage of rare species (72.0%), presumed to be transient or merely resting on the foliage, and the paucity of species observed feeding on the weed, suggests that future biological control agents will face little if any competition from pre-existing plant-feeding arthropods. Key Words: Paperbark tree, arthropod abundance, Oxyops vitiosa, weed biological control RESUMEN Melaleuca quinquenervia (Cav.) S. T. Blake ha invadido ca. 202,000 ha en la Florida, inclu- yendo unas porciones del Parque Nacional de los Everglades. Nosotros realizamos sondeos preliminares en el sur de la Florida para determinar si los artópodos nativos o accidental- mente introducidos explotan esta especie de planta invasora y evaluar el potencial de los ni- veles tróficos superiores para interferir con el establecimento y éxito de futuros agentes de control biológico.
    [Show full text]
  • MORPHOLOGY of ACERCARIA: INVESTIGATIONS of the OVIPOSITOR and INTERNAL ANATOMY by CHIP AUSTIN THESIS Submitted in Partial Fulfil
    MORPHOLOGY OF ACERCARIA: INVESTIGATIONS OF THE OVIPOSITOR AND INTERNAL ANATOMY BY CHIP AUSTIN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Adviser: Professor Christopher H. Dietrich ABSTRACT Acercaria, which includes Psocodea, Thysanoptera and Hemiptera, is a group that encompasses substantial diversity and has generated equally substantial debate about its higher-level phylogeny. The advent of molecular phylogenetics has done little to resolve arguments about the placement of various infraorders within Hemiptera, in spite of general confidence about their monophyly, which illustrates the need to take integrative approaches that include morphology as well as conduct more analyses across these higher groups as a whole. This thesis will attempt to address some of these issues in hemipteroid morphological research through projects covering two main topics. The first chapter reviews and updates previously described morphology with a treatment focusing on the ovipositor. By comparing ovipositors among representatives of Hemiptera’s infraorders and describing their character states using a common lexicon for homologous structures, it became apparent that “laciniate” (plant-piercing) ovipositors vary in such a way that implies such a phenotype was independently derived in the lineages that have them. This not only demonstrates the limited usefulness in the terms “laciniate” and “platelike” to describe hemipteran ovipositor types, but also provides support to the historically-held hypothesis that the earliest heteropterans had substantially different a life history and reproductive ecology from its relatives in Cicadomorpha and Fulgoromorpha. The second chapter describes an effort to investigate digestive and nerve tissue morphology, which has previously been hypothesized to be phylogenetically informative ii in acercarians (Goodchild 1966; Niven et al 2009).
    [Show full text]