Observations on the Ecology of Water Striders

Total Page:16

File Type:pdf, Size:1020Kb

Observations on the Ecology of Water Striders * RILEY f : Observations on the Ecology of Water Stridors Zoology M. S. 1912 MS/TV. <>V THE UNIVERSITY OF ILLINOIS LIBRARY ^5 OBSERVATIONS ON THE ECOLOGY OF WATER STRIDERS BY CHARLES FREDERICK CURTIS RILEY A. B. Doane College, 1901 A. B. University of Michigan, 1905 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ZOOLOGY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1912 TH5 \vi_ r-4S UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL 19JT2J 1 HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY C: 31 C OIL* . ENTITLED IaJoJjjx- ^tX^MlA^ BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF In Charge of Major Work Recommendation concurred in: Committee on Final Examination Digitized by the Internet Archive in 2014 http://archive.org/details/observationsonecOOrile Observations on the Ecology of Water Stridors. Table of Contents. I. Introduction. II. Running Water Habitats 1. Ravines. 2. Springs. 5. Small Temporary Streams. a. Tile-drains and Temporary Streams. 4. Permanent Brooks. a. Behavior During Flood Conditions. b. Drought Conditions. c. Behavior During Conditions of Severe Drought. 5. Creeks. a. Dralnage-di tc h. 6. Rivers. a. Ox-bow Ponds. II. Food and Food Relations. I. Nature and Source of Focd. Food During Captivity. Transportation of Food by Water Currents. Time of Feeding. Response to Water Currents and its Relation to Food. Trial Method of Response to Moving Objects and Its Relation to Food. IV. Summary. V. Bibliography. -3- OESERVATIONS ON THE ECOLOGY OF WATER STRIDERS. I. Introduction. The present paper treats of some of the general ecological relations of water striders. The species that were studied are Gerris remigis Say and Gerri s marginatus Say. The observations recorded are not only with reference to the water striders themselves, but also with reference to the physical conditions of the environment to which the animals respond as they exist near Urbana, Muncie, and White Heath, Illinois. The work was done at the University of Illinois. It was suggested by Doctor C. C. Adams, and was under his immediate direction. The writer is indebted to hio for free access to his library, and also for valuable suggestions. Thanks are due to Professor H. B. Ward, Head of the Department of Zoology, for the use of books from his private library. Thanks are also due Mr. C. A. Hart, of the Illinois State Laboratory of Natural History, for identification of various insects, particularly those used as food by the water striders. The writer appreciates the assistance rendered by Professor J. B. Burrill, of the Department of Botany, in identifying certain plants, the fruit of which is used as food by Gerri s remigis . II. Running Water Habitats. In the discussion of aquatic habitats, it is obvious that some definite scheme of grouping is useful. It assists in the comparison of one sort of habitat with that of another, and it also helps to avoid confusion. Therefore In our -4- ccnsideratlon of water strlder habitats we shall speak of the ravine-brook-creek-rl ver series, as these represent stages in the ideal development of the stream environment. The evolution of the environment toward permanent stream conditions will be traced through as many stages as are found In this vicinity. The physical conditions that seem to be necessary for the existence of water striders will be pointed out, and attention will be directed to the earliest appearance of the water striders In the developing stream series. i. Ravines. The ravine Is the earliest stage in the evelopment of the stream environment. Good examples are found near Urbana, Muncie, and White Heath. These ravines are found on both steep and gentle slopes. About 2 km, north east of Urbana are many ravines, in various stages of development on the steep sides of a deep "gravel pit. In this locality the soil is a sandy clay and is easily eroded by the rains; frost and wind are also agents which aid in this degradation to some extent. The ravines in the earlier stages of formation are shallow, being but .60 cm. — I m. deep, and they have cut back from the gravel pit a few meters only. Others, in later stages of development, have eroded channels, in some instances, to a depth of 4 m. or more, and they extend back from the gravel pit for a distance of about 85 m. In the younger ravines the banks are steep, while in the older ones, they tend to have a somewhat more gradual slope. Such ravines owe their existence chiefly to heavy rain storms. During a severe downpour a considerable volume of water rushes down the larger ravines. The slope being so steep, this surface water quickly passes off after the storm s -5- ceases. At such tines the process of erosion is much in evidence, and the ravines are cut back rapidly. These ravines have no connection with permanent water bodies. The water that flows down their channels passes into the gravel pit. In many of them, holes are formed, which are due ta the combined agency of the current and the grinding .process of the coarser debris. In such places pools of water frequently linger for several days after a rain, and make possible temporary habitats for water striders. It has been mentioned that the ravine represents a very early stage of development in a stream habitat. Running water is present during rains only, and is therefore a temporary condition. Pools exist for a short time after the rain is over. The ravines described are not connected with permanent streams, therefore Gerri s remigi , which is a 1 wingless form , cannot reach such. pools. Gerri s marginatus , being a winged form, can readily migrate to such a location. It is possible for it to live there just so long as the conditions - water and food - remain favorable. From evidence that will be di scusseA later, the writer believes that Gerri s marginatus would be found occasionally In the temporary pools of the larger ravines, if it were not for the meager food supply. The sandy clay banks of the gravel pit are bare of vegetation, and there is little insect life that would be likely to form floating food for water striders. G. marginatus is found in considerable 1. The writer has found two winged specimens during a year of collecting. J numbers not more than 300 . distant from To ; ravel pit, and C. rer.tir;is la also occasi nally taken. However, neither species have been observed in any o£ these ravines connected with the Gravel pit, al nourh those pools have been examined after rains. About 1,5 kin. north east of Muncie, there are high clay bluffs on the north hank of Stony Creel:. The general physio- graphic conditions closel y resemble those described at the rr.wol pit near Urban a. '"ore are also seen -he initial stares or s '.ream development. There are ravines Which have "been cut by the erosion of rains, much in the same '/ay as in the -ravel bank already described. .Tome of these have reached a depth of l.t m. , with a total length a proximately of 50 m. The bluffs are perhaps 17 m. or more in height and very steep. ' he jater from the ravines flons dl c ' V~ into Stony Creel:. The eastern portion of the bluffs is deltoid of veeeta- tion, "out at the top, avid extending back from the creek is an abundance of crass and co: lion neado • plants^ In this verctalional zone erosion is not taking place so rapidly. The ravines arc not of sufficient depth to form, anything more than tTe smallest and most temporary pools. Farther vast the bluffs are hi -her, but not so steep, reccdi ;-..<; from the creel: more yradually. "ere the ravines arc of somewhat greater length, and small temporary pools are some times formed. There is considerable vegetation on the Tr.cc of this slope, cordis tine of forest trees, bushes, and herbaceous plants. In both situations v;here vegetation is found there is con si d oral le insect life. Tone of the ravines have really processed far enough in stares of stream development to form suitable ra' er strider -7- habitats, although on one occasion a stray Gerri s marginatum was found about 6 m. from the edge of the creek on the less steep slope farther to the west, in one of the larger ravine pools. These pools in the ravines are too small and of too temporary a character, and the streams are too swift, existing during rains only. However, there is a plentiful food supply, and this would be in favor of the water striders; but with the one exception, the writer has not observed water striders in any of these situations. wever, it is not difficult to predict, with a considerable degree of accuracy, the changes that will result from the continued process of erosion. These ravines will have so far developed toward the permanent stream stage that their channels will be much deeper and broader. They will retain more of the surface water and for a longer period of time, as their courses will be less steep. In the course of years they will have cut deep enough to receive ground water through seepage. Such a stage of development will tend to make these ravines more favorable habitats for water striders, as there will be a larger amount of water present, and it will be more permanent. There are several small streams, of more or less permanence, emptying into Stcny Creek, in this immediate vicinity, which have already passed through such stages as have been described.
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Heteroptera: Gerromorpha) in Central Europe
    Shortened web version University of South Bohemia in České Budějovice Faculty of Science Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe RNDr. Tomáš Ditrich Ph.D. Thesis Supervisor: Prof. RNDr. Miroslav Papáček, CSc. University of South Bohemia, Faculty of Education České Budějovice 2010 Shortened web version Ditrich, T., 2010: Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe. Ph.D. Thesis, in English. – 85 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Annotation Ecology of Veliidae and Mesoveliidae (Hemiptera: Heteroptera: Gerromorpha) was studied in selected European species. The research of these non-gerrid semiaquatic bugs was especially focused on voltinism, overwintering with physiological consequences and wing polymorphism with dispersal pattern. Hypotheses based on data from field surveys were tested by laboratory, mesocosm and field experiments. New data on life history traits and their ecophysiological consequences are discussed in seven original research papers (four papers published in peer-reviewed journals, one paper accepted to publication, one submitted paper and one communication in a conference proceedings), creating core of this thesis. Keywords Insects, semiaquatic bugs, life history, overwintering, voltinism, dispersion, wing polymorphism. Financial support This thesis was mainly supported by grant of The Ministry of Education, Youth and Sports of the Czech Republic No. MSM 6007665801, partially by grant of the Grant Agency of the University of South Bohemia No. GAJU 6/2007/P-PřF, by The Research Council of Norway: The YGGDRASIL mobility program No. 195759/V11 and by Czech Science Foundation grant No. 206/07/0269. Shortened web version Declaration I hereby declare that I worked out this Ph.D.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • Characterisation of Pristine Polish River Systems and Their Use As Reference Conditions for Dutch River Systems
    1830 Rapport 1367.qxp 20-9-2006 16:49 Pagina 1 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tonczyk´ Malgorzata Klukowska Alterra-rapport 1367, ISSN 1566-7197 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Commissioned by the Dutch Ministry of Agriculture, Nature and Food Quality, Research Programme ‘Aquatic Ecology and Fisheries’ (no. 324) and by the project Euro-limpacs which is funded by the European Union under2 Thematic Sub-Priority 1.1.6.3. Alterra-rapport 1367 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tończyk Małgorzata Klukowska Alterra-rapport 1367 Alterra, Wageningen 2006 ABSTRACT Nijboer, Rebi, Piet Verdonschot, Andrzej Piechocki, Grzegorz Tończyk & Małgorzata Klukowska, 2006. Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems. Wageningen, Alterra, Alterra-rapport 1367. 221 blz.; 13 figs.; 53 tables.; 26 refs. A central feature of the European Water Framework Directive are the reference conditions. The ecological quality status is determined by calculating the distance between the present situation and the reference conditions. To describe reference conditions the natural variation of biota in pristine water bodies should be measured. Because pristine water bodies are not present in the Netherlands anymore, water bodies (springs, streams, rivers and oxbow lakes) in central Poland were investigated. Macrophytes and macroinvertebrates were sampled and environmental variables were measured. The water bodies appeared to have a high biodiversity and a good ecological quality.
    [Show full text]
  • Diet of Feral Xenopus Laevis (Daudin) in South Wales, U.K
    J. Zool., Lond. (1998) 246, 287±298 # 1998 The Zoological Society of London Printed in the United Kingdom Diet of feral Xenopus laevis (Daudin) in South Wales, U.K. G. J. Measey School of Biological Sciences, University of Bristol, Bristol BS8 1UG, U.K. (Accepted 30 March 1998) Abstract African clawed frogs (Xenopus laevis) in a South Wales pond ate a wide variety and size range of prey. Zoobenthos and zooplankton made the greatest contribution to diets, both numerically and by weight. Terrestrial invertebrates made up a small proportion of the diet numerically but a large proportion of the diet mass during the spring and summer. Nektonic prey were present throughout the year but made up a very small proportion of diet. Cannibalism was important when eggs and larvae were present in the pond. Electivity values were consistently positive for chironomids (larvae and pupae) and daphnids but were consistently negative for tubi®cids. In addition, electivity increased for larger sizes and pupae of Chironomus plumosus, but was low for the largest size class (>12 mm). Electivity of other taxa showed an increase when densities of chironomids and daphnids were reduced. Mean sizes of daphnids and cyclopods were consistently larger in frog stomach contents than in the water column, indicating that predation on zooplankton by Xenopus laevis is size-selective. Key words: African clawed frogs, ecology, benthic invertebrates, invasive amphibians, predation, diet selectivity INTRODUCTION analysis (Denton & Beebee, 1994). Most studies show that anurans are typically opportunistic generalist pre- Predation in aquatic communities is now widely consid- dators of invertebrates (Duellman & Trueb, 1986).
    [Show full text]
  • Concurrent Phenologies of Three Semiaquatic Bugs (Heteroptera: Gerridae, Veliidae) on a Small River in Central Illinois, USA
    Hindawi Publishing Corporation Psyche Volume 2009, Article ID 562471, 5 pages doi:10.1155/2009/562471 Research Article Concurrent Phenologies of Three Semiaquatic Bugs (Heteroptera: Gerridae, Veliidae) on a Small River in Central Illinois, USA Steven J. Taylor Illinois Natural History Survey, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820-6953, USA Correspondence should be addressed to Steven J. Taylor, [email protected] Received 14 March 2009; Accepted 11 May 2009 Recommended by David Denlinger The phenology of three species of Gerroidea (Heteroptera), Metrobates hesperius Uhler (Gerridae), Rhagovelia oriander Parshley (Veliidae), and Rhematobates tenuipes Meinert (Gerridae), was studied on a river in central Illinois (USA). Metrobates hesperius was the most abundant species, and was active from mid-May through mid-October. It was bivoltine and overwintered as eggs. Matinig and oviposition of M. hesperius were observed in mid-July. Rhagovelia oriander was present from mid-May to mid-November. This species was bivoltine (or possibly trivoltine), overwintering as eggs. Rheumatobates tenuipes was not active until early August, and was present to mid-November and was univoltine. It overwinters as adults and possibly as nymphs, and may undergo an extended early season diapause. The three species occupied differing microhabitats and differed in periods of peak abundance, with M. hesperius being most abundant from mid-May through the first of August, and R. tenuipes being most abundant from early August to mid-November. Copyright © 2009 Steven J. Taylor. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Predator Strike Shapes Antipredator Phenotype Through New Genetic Interactions in Water Striders
    ARTICLE Received 26 May 2015 | Accepted 23 Jul 2015 | Published 1 Sep 2015 DOI: 10.1038/ncomms9153 OPEN Predator strike shapes antipredator phenotype through new genetic interactions in water striders David Armise´n1,*, Peter Nagui Refki1,*, Antonin Jean Johan Crumie`re1,Se´verine Viala1, William Toubiana1 & Abderrahman Khila1 How novel genetic interactions evolve, under what selective pressures, and how they shape adaptive traits is often unknown. Here we uncover behavioural and developmental genetic mechanisms that enable water striders to survive attacks by bottom-striking predators. Long midlegs, critical for antipredator strategy, are shaped through a lineage-specific interaction between the Hox protein Ultrabithorax (Ubx) and a new target gene called gilt. The differences in leg morphologies are established through modulation of gilt differential expression between mid and hindlegs under Ubx control. Furthermore, short-legged water striders, generated through gilt RNAi knockdown, exhibit reduced performance in predation tests. Therefore, the evolution of the new Ubx–gilt interaction contributes to shaping the legs that enable water striders to dodge predator strikes. These data show how divergent selection, associated with novel prey–predator interactions, can favour the evolution of new genetic interactions and drive adaptive evolution. 1 Institut de Ge´nomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supe´rieure, Universite´ Claude Bernard, 46 Alle´e d’Italie, 69364 Lyon Cedex 07, France. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to A.K. (email: [email protected]). NATURE COMMUNICATIONS | 6:8153 | DOI: 10.1038/ncomms9153 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Morphological Study of the Antennal Sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera)
    Title: Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera) Author: Agnieszka Nowińska, Jolanta Brożek Citation style: Nowińska Agnieszka, Brożek Jolanta. (2017). Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera). "Zoomorphology" (vol. 136, iss. 3 (2017), s. 327-347), doi 10.1007/s00435-017-0354-y Zoomorphology (2017) 136:327–347 DOI 10.1007/s00435-017-0354-y ORIGINAL PAPER Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera) 1 1 A. Nowin´ska • J. Brozek_ Received: 23 January 2017 / Revised: 10 April 2017 / Accepted: 11 April 2017 / Published online: 28 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract The external morphology and distribution of the The antennae of Gerromorpha belong to the same antennal sensilla of 21 species from five families of morphological type as those found in other heteropteran semiaquatic bugs (Gerromorpha) were examined using insects. The scapus and pecicel are one antennomer while scanning electron microscopy. Nine main types were dis- the flagellum consists of four antennomers (Andersen tinguished based on their morphological structure: sensilla 1982; Schuh and Slater 1995). A significant part of the trichoidea, sensilla chaetica, sensilla leaflike, sensilla sensory system of insects consists of a large number of campaniformia, sensilla coeloconica, sensilla ampullacea, highly diverse organs called sensilla. These sensory organs sensilla basiconica, sensilla placoidea and sensilla bell- are located in the antennae, mouthparts (labium, labial and mouthed. The specific morphological structure of one type maxillary palps and proboscis (a food-sucking tubular of sensilla (bell-mouthed sensilla) was observed only in appendage), genitalia, legs and wings (Peregrine 1972; Aquarius paludum.
    [Show full text]
  • The A47/A11 Thickthorn Junction Development Consent Order 202[X]
    A47/A11 Thickthorn Junction Environmental Statement Appendix Infrastructure Planning Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 The A47/A11 Thickthorn Junction Development Consent Order 202[x] ENVIRONMENTAL STATEMENT APPENDICES Appendix 8.3 – Aquatic Macroinvertebrate Survey Report Regulation Number: Regulation 5(2)(a) Planning Inspectorate Scheme TR010037 Reference Application Document Reference TR010037/APP/6.3 BIM Document Reference HE551492-GTY-EBD-000-RP-LB-30010 Author: A47/A11 Thickthorn Junction Project Team, Highways England Version Date Status of Version Rev 0 March 2021 Application Issue Planning Inspectorate Scheme Ref: TR010037 Application Document Ref: TR010037/APP/6.3 A47/A11 Thickthorn Junction Aquatic macroinvertebrate survey report 2020 Carried out for: SWECO Prepared by: Abrehart Ecology The Barn, Bridge Farm Friday Street Brandeston Suffolk IP13 7BP Tel: e-mail: [email protected] www.abrehartecology.com Issue/revision 1 2 Remarks Draft Final Prepared by AJK Date 30/09/2020 01/10/2020 Checked by DB TRA Authorised TRA A47/A11 Thickthorn Junction Aquatic macroinvertebrate survey 2020 Table of Contents 1 Summary ............................................................................................................................................................... 1 2 Introduction ......................................................................................................................................................... 2 3 Methods
    [Show full text]
  • Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need
    Prepared by Wisconsin Department of Natural Resources with Assistance from Conservation Partners Natural Resources Board Approved August 2005 U.S. Fish & Wildlife Acceptance September 2005 Wisconsin’s Strategy for Wildlife Species of Greatest Conservation Need Governor Jim Doyle Natural Resources Board Gerald M. O’Brien, Chair Howard D. Poulson, Vice-Chair Jonathan P Ela, Secretary Herbert F. Behnke Christine L. Thomas John W. Welter Stephen D. Willet Wisconsin Department of Natural Resources Scott Hassett, Secretary Laurie Osterndorf, Division Administrator, Land Paul DeLong, Division Administrator, Forestry Todd Ambs, Division Administrator, Water Amy Smith, Division Administrator, Enforcement and Science Recommended Citation: Wisconsin Department of Natural Resources. 2005. Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need. Madison, WI. “When one tugs at a single thing in nature, he finds it attached to the rest of the world.” – John Muir The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington D.C. 20240. This publication can be made available in alternative formats (large print, Braille, audio-tape, etc.) upon request. Please contact the Wisconsin Department of Natural Resources, Bureau of Endangered Resources, PO Box 7921, Madison, WI 53707 or call (608) 266-7012 for copies of this report. Pub-ER-641 2005
    [Show full text]
  • Waterbugs (Heteroptera: Nepomorpha, Gerromorpha) As Sources of Essential N-3
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository 1 Waterbugs (Heteroptera: Nepomorpha, Gerromorpha) as sources of essential n-3 2 polyunsaturated fatty acids in Central Siberian ecoregions 3 4 Nadezhda N. Sushchik1,2, Yuri A. Yurchenko3,4, Olga E. Belevich3, Galina S. Kalachova1, 5 Angelika A. Kolmakova1, Michail I. Gladyshev1,2 6 7 1 Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, 8 50/50, Krasnoyarsk 660036, Russia 9 2 Siberian Federal University, Svobodny av., 79, Krasnoyarsk 660041, Russia 10 3 Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of 11 Sciences, Frunze str. 11, Novosibirsk 630091, Russia 12 4 Institute of Biology, Ecology, Soil, Agriculture and Forest Sciences, Tomsk State University, 13 Lenin av. 36, Tomsk 634050, Russia 14 15 Running title: Fatty-acid composition of Siberian waterbugs 16 Key words: waterbugs, essential fatty acids, Heteroptera, water-land transfers, subsidies; 17 terrestrial consumers 18 19 Correspondence: N.N. Sushchik, Institute of Biophysics, Akademgorodok 50/50, 20 Krasnoyarsk 660036, Russia. Tel.+7 3912 49 52 53 Fax +7 3912 43 34 00 21 E-mail address: [email protected] 22 23 Summary 24 1. Aquatic systems are considered a main source of essential long-chain n-3 polyunsaturated 25 fatty acids (PUFA), which are preferentially synthesized by microalgae and transferred 26 along food chains to terrestrial consumers. Emerging aquatic insects comprise a 27 significant part of this transfer of the essential PUFA from water to land. Quantitative 28 data on PUFA content and composition are available mainly for rheophilic insects while 29 taxa that are characteristic of wetlands and stagnant water bodies, such as aquatic 30 Heteroptera, remain relatively unstudied.
    [Show full text]
  • Seasonal Life-History Adaptation in the Water
    SEASONAL LIFE -HISTORY ADAPTATION IN THE WATER STRIDER GERRIS LACUSTRIS DISSERTATION ZUR ERLANGUNG DES NATURWISSENSCHAFTLICHEN DOKTORGRADES DER BAYERISCHEN JULIUS -MAXIMILIANS -UNIVERSITÄT WÜRZBURG VORGELEGT VON BRENDA PFENNING AUS MARKTHEIDENFELD WÜRZBURG 2008 Eingereicht am: 11. Februar 2008 Mitglieder der Prüfungskommission: Vorsitzender: Prof. Dr. Martin J. Müller Erstgutachter: Prof. Dr. Hans Joachim Poethke Zweitgutachter: Prof. Dr. Jürgen Tautz Tag des Promotionskolloquiums: .............................................. Doktorurkunde ausgehändigt am: ............................................ Table of Contents Chapter 1 General Introduction 1 1.1 LIFE -HISTORY ADAPTATIONS TO VARIATIONS IN SEASON LENGTH ....... 4 1.2 ADAPTATIONS OF WATER STRIDERS TO SEASONALITY .............................. 9 1.3 OUTLINE OF THE THESIS .................................................................................. 12 Chapter 2 Species and Study Area 15 2.1 THE COMMON POND -SKATER GERRIS LACUSTRIS ...................................... 17 2.2 STUDY AREA ....................................................................................................... 20 Chapter 3 Variability in the life history of the water strider Gerris lacustris (Heteroptera: Gerridae) across small spatial scales 23 3.1 INTRODUCTION ................................................................................................. 26 3.2 METHODS ........................................................................................................... 28 Wing length pattern
    [Show full text]