Morphological Study of the Antennal Sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera)

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Study of the Antennal Sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera) Title: Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera) Author: Agnieszka Nowińska, Jolanta Brożek Citation style: Nowińska Agnieszka, Brożek Jolanta. (2017). Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera). "Zoomorphology" (vol. 136, iss. 3 (2017), s. 327-347), doi 10.1007/s00435-017-0354-y Zoomorphology (2017) 136:327–347 DOI 10.1007/s00435-017-0354-y ORIGINAL PAPER Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera) 1 1 A. Nowin´ska • J. Brozek_ Received: 23 January 2017 / Revised: 10 April 2017 / Accepted: 11 April 2017 / Published online: 28 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract The external morphology and distribution of the The antennae of Gerromorpha belong to the same antennal sensilla of 21 species from five families of morphological type as those found in other heteropteran semiaquatic bugs (Gerromorpha) were examined using insects. The scapus and pecicel are one antennomer while scanning electron microscopy. Nine main types were dis- the flagellum consists of four antennomers (Andersen tinguished based on their morphological structure: sensilla 1982; Schuh and Slater 1995). A significant part of the trichoidea, sensilla chaetica, sensilla leaflike, sensilla sensory system of insects consists of a large number of campaniformia, sensilla coeloconica, sensilla ampullacea, highly diverse organs called sensilla. These sensory organs sensilla basiconica, sensilla placoidea and sensilla bell- are located in the antennae, mouthparts (labium, labial and mouthed. The specific morphological structure of one type maxillary palps and proboscis (a food-sucking tubular of sensilla (bell-mouthed sensilla) was observed only in appendage), genitalia, legs and wings (Peregrine 1972; Aquarius paludum. Several subtypes of sensilla are Backus 1985; Brozek_ and Bourgoin 2013; Brozek_ 2013; described, differentiated by number, location and type of Brozek_ and Zettel 2014; de Bruyne and Baker 2008; sensillum characteristic for each examined taxon. The Guerenstein and Hildebrand 2008; Nichols and Vogt 2008; present study provides new data about the morphology and Devetak et al. 2004; Kanturski et al. 2016) as well as on distribution of the antennal sensilla in Gerromorpha. other parts of the body (Catala´ 1996). However, the antennae are the primary insect peripheral olfactory system Keywords Morphology Á Heteroptera Á Antennae Á (Chapman 1998; Keil 1999; de Bruyne and Baker 2008). In Sensilla Á Gerromorpha many cases, insect antennae have evolved into sophisti- cated shapes, such as feather- and club-shaped structures, in order to maximize the area that carries the odour Introduction detecting organs (Keil 1999). According to their sensory modality, the sensilla of Gerromorpha, or semiaquatic bugs, are predatory insects insects are classified into four main groups—olfactory, that are associated with water. They live on the surface of gustatory, mechanosensory and those that have hygro- and the water, near water reservoirs or on aquatic plants (An- thermoreceptors. Numerous sensilla occur on antennae in dersen 1982). This taxon consists of 1900 species in eight the form of hairs, pegs, pits or cones. Depending on the families (Andersen 1982; Schuh and Slater 1995; Carde´ cuticular structure, the sensilla are classified into different and Resh 2012). types (Slifer 1970; Altner and Prillinger 1980; Hallberg and Hansson 1999). The most common types are trichoid sensilla, long hairlike sensilla, basiconic sensilla (also & A. Nowin´ska hairlike but normally shorter and thicker than the trichoid [email protected] sensilla), placoid sensilla, platelike and coeloconic sen- silla (short peg-like structures that are situated in pits) 1 Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, (Hallberg and Hansson 1999; Shields 2010). Several 40-007 Katowice, Poland studies have also shown a variety of sensilla in insects 123 328 Zoomorphology (2017) 136:327–347 that are based on the presence of pores (Altner and Materials and methods Prillinger 1980; Zacharuk 1980; Shields 2010). Altner and Prillinger (1980) classified them into three main groups— The morphology and distribution of the antennal sensilla of no pores (aporous), terminal pores (uniporous) and wall Gerromorpha were investigated in five of the eight families pores (multiporous). Each group is allocated to a different of Gerromorpha. Sexual dimorphism was not observed. function. Sensilla with no pores are typically The species were not washed and dehydrated before the mechanoreceptors (McIver 1975; Altner and Prillinger microscopic observation. Therefore, we assume that single 1980). They can be also responsible for thermo- and openings (deep pore), are sensilla ampulaceae found on the hygroreception (Steinbrecht 1997; Hallberg et al. 2003). surface of the antennae and not the apertures of tegumen- Sensilla that have pores are chemoreceptors. Uniporous tary glands. Canals of tegumentary glands are usually sensilla are responsible for contact chemoreception or covered by fluid, rendering them invisible, so the material gustation, while multiporous sensilla are olfactory sensilla should be cleaner before observation. Moreover, in other (Schneider and Steinbrecht 1968; Zacharuk 1980). The insect species, a canal of tegumentary glands is distin- sensilla system of insects shows a remarkable morpho- guished when surrounded by small, porous plates. logical diversity. This diversity probably reflects selection This study is based on the dry material of 21 species pressures for high sensitivity, phylogenetic and/or devel- from 13 subfamilies. Species of the families Para- opmental constraints and the physical environment in phrynoveliidae, Macroveliidae and Hermatobatidae were which the evolution took place, rather than adaptations not included. All of the material was coated with a gold designed to detect specific volatile chemicals (Hansson film and photographed using a Hitachi scanning electron and Stensmyr 2011). microscope in the scanning microscopy laboratory of the The majority of information regarding the antennal Faculty of Biology and Environmental Protection of Sile- sensilla in Heteroptera is mainly based on hematophagous sian University in Katowice. The species that were exam- species of the family Reduviidae (Catala´ 1997; Gracco and ined were obtained from the Natural History Museum in Catala´ 2000; Guerenstein and Guerin 2001; Carbajal de la Vienna. Fuente and Catala´ 2002; Slu 1980). Antennal sensilla have Examined species also been studied in phytophagous families such as Miridae Mesoveliidae: Mesoveliinae: Mesovelia furcata Mulsant (Chinta et al. 1997), Alydidae (Rani and Madhavendra & Rey, 1852. 2005; Ventura and Panizzi 2005), Lygaeidae (Rani and Hebridae: Hebrinae: Hebrus philippinus Zettel, 2006. Madhavendra 2005), Pentatomidae (Rani and Madhaven- Hydrometridae: Hydrometrinae: Hydrometra stagnorum dra 1995; Bre´zot et al. 1997; Sinitsina and Chaika 1998; Linnaeus, 1758. Ahmad et al. 2016) and Coreidae (Akent’eva 2008). Veliidae: Halovelinnae: Halovelia esakii Andersen, 1989; Antennal sensilla in predatory gerromorphan species have Strongylovelia philippinensis Lansbury and Zettel, 1997. not yet been identified. The knowledge of types and mor- Microveliinae: Microvelia douglasi Scott, 1874; Pseu- phologies of sensilla contributes to a better understanding dovelia pusilla Hecher, 1997; Neoalardus typicus Distant, of the role that these structures play in the selection of a 1912. host. Rhagoveliinae: Rhagovelia kawakamii Matsumura, 1913; In previous studies on Gerromorpha, the labial tip Perittopinae: Perittopus asiaticus Zettel, 2001; sensilla were investigated in detail (Brozek_ and Zettel Veliinae: Velia caprai Timanini, 1947; Paravelia basalis 2014) and the sensilla (mechanosensilla) of some parts Spinola, 1837. of the body surface (Andersen 1982). Hence, in the Gerridae: Trepobatinae: Pseudohalobates inobonto Pol- present study, we examined the external morphology of hemus & Polhemus 1996; the antennal sensilla of the same taxon. Such an Gerrinae: Gerris lacustris Linnaeus, 1758; Aquarius approach allows the exploration of a specific sensitivity paludum Fabricius, 1794; profile in Gerromorpha, a taxa which occupies a differ- Eotrechinae: Amemboa javanica Lundblad, 1933; Amem- ent ecological niche compared to other groups of boa cristata Polhemus & Andersen, 1984; Heteroptera. Amemboa brevifasciata Miyamoto, 1967; Onychotrechus The aim of this study was therefore to investigate the esakii Andersen, 1980; diversity of antennal sensilla in Gerromorpha in order to Ptilomerinae: Rheumatogonus luzonicus Kirkaldy, 1909; (1) report on their disparity and (2) to compare it with what Halobatinae: Metrocoris nigrofascioides Chen & Nieser, is already known is other Heteroptera taxa. 1993. 123 Zoomorphology (2017) 136:327–347 329 Results 2. Sensilla trichoidea 2 (ST2) These are 15–66 lm long and aporous, the sensilla are Sensilla types in the examined species ribbed, curved at the tip and embedded in flexible sockets (Figs. 2, 3b). These sensilla Based on size, shape, presence or absence of pores, their are densely and uniformly distributed on the distribution and cuticular attachment (flexible or inflexible first and third antennomers and were only socket), nine types (I–IX) of antennal sensilla were identified observed in the subfamily Eotrechinae (Ger- in the
Recommended publications
  • Morphology and Adaptation of Immature Stages of Hemipteran Insects
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes.
    [Show full text]
  • Water Measurer | Buglife Page 1 of 5
    Water measurer | Buglife Page 1 of 5 Join Buglife Donate Volunteer Membership costs just £2 per month Saving the small things that run the planet Follow us Search Sign in Register for free My basket (0) Contact Home About Bugs What We Do Get Involved News & Blog Advice Shop You are here: Home > About Bugs > Water measurer See more bugs Water measurer Select species Fast facts Buglife Latin name: Hydrometra stagnorum e-newsletter Notable feature: These animals have hydrophobic Keep up to date on (water fearing) hairs on campaigns, events and their undersides or on news with the Buglife their legs e-newsletter Rarity in UK: Rare / Common Sign up here Common water-measurer (Hydrometra stagnorum) Oil beetle hunt © (c) Entomart Your sightings Water-measurers are so called because they can be Log in to submit your watched slowly walking around on the surface of Seefindings the map ditches and ponds, apparently pacing out the distances between points! Water-measurers are part of the insect Bug identifier ‘boat’ community - whirligig beetles, water crickets, pond skaters and water-measurers all live on top of https://www.buglife.org.uk/bugs-and-habitats/water-measurer 24/02/2016 Water measurer | Buglife Page 2 of 5 What's that the water surface. All these animals have hydrophobic bug? (water fearing) hairs on their undersides or on their Use our Q&A legs. The repulsive force between the water and these to identify UK hair are sufficient to support the weight of the insects Identifybugs. bugs on the water surface. Bug facts 60% of all invertebrate species are declining More bug facts For younger bug lovers Download Bug Buddies Packed with fun activities, guides and Downloadbug info (PDF) https://www.buglife.org.uk/bugs-and-habitats/water-measurer 24/02/2016 Water measurer | Buglife Page 3 of 5 These insects are scavengers or carnivores which feed on bodies of small animals which land on or rise up to the water’s surface - dead or alive.
    [Show full text]
  • Hemiptera: Gerromorpha: Gerridae) from Tamil Nadu, India, with a Key to the Species
    Zootaxa 3186: 64–68 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Lathriobates manohardasi sp. nov. (Hemiptera: Gerromorpha: Gerridae) from Tamil Nadu, India, with a key to the species KAILASH CHANDRA1 & E. EYARIN JEHAMALAR2 Zoological Survey of India, New Alipore, Kolkata- 700 053, India. E-mail: [email protected]; [email protected] Abstract Lathriobates manohardasi sp. nov. is described and compared with known congeners. A key to the species of the genus of world is included. Key words: Trepobatinae, Kannyakumari District, Tamil Nadu, India Introduction Gerridae comprises a group of semi-aquatic bugs that spend almost their entire lives skating above the water sur- face of lentic and lotic environments. Approximately 750 species are distributed among 60 genera and 9 subfami- lies of Gerridae (Moreira, 2011). Thirumalai (2002) reported one species each of Calyptobates, Gnomobates, Lathriobates, and Naboandelus of the subfamily Trepobatinae from India. The world fauna of Lathriobates includes four species: L. obscures Miyamoto, L. rufus Polhemus & Polhemus, L. johorensis Polhemus & Polhemus and L. raja Distant. A fifth species Lathriobates manohardasi sp. nov. is described here. The genus Cryptobates Esaki, 1929 (Gerridae: Heteroptera) is a junior homonym of Cryptobates Fairmaire, 1882 of the family Tenebrionidae (Coleoptera), so the name Lathriobates was proposed as a replacement name by Polhemus (2004), with type species Gerris raja Distant, 1910. Material and methods Study area: Kannyakumari is regarded as the southern most district of Tamil Nadu. The district lies between 77° 15` and 77° 36` E longitude and 8° 03` and 8° 35` N latitude.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Synopsis of the Hydrometridae of Arkansas George L
    Journal of the Arkansas Academy of Science Volume 39 Article 37 1985 Synopsis of the Hydrometridae of Arkansas George L. Harp Arkansas State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Harp, George L. (1985) "Synopsis of the Hydrometridae of Arkansas," Journal of the Arkansas Academy of Science: Vol. 39 , Article 37. Available at: http://scholarworks.uark.edu/jaas/vol39/iss1/37 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 39 [1985], Art. 37 General Notes LITERATURE CITED FARRIS, J. L.,and G. L. HARP. 1982. Aquatic macroinvertebrates HARP, G. L., and P. A. HARP. 1980. Aquatic macroinvertebrates ofthree acid bogs onCrowley's Ridge innortheast Arkansas. Proc. of Wapanocca National Wildlife Refuge. Proc. Ark. Acad. Sci. Ark. Acad. Sci. 36:23-27. 34:115-117. FOTI, T. L.1974. Natural divisions ofArkansas, p. 15. In: Arkansas HUGGINS, J. A., and G. L. HARP. 1983. Aquatic macroinvertebrates Natural Area Plan.
    [Show full text]
  • A Check List of Gerromorpha (Hemiptera) from India
    Rec. zool. Surv. India: 100 (Part 1-2) : 55-97, 2002 A CHECK LIST OF GERROMORPHA (HEMIPTERA) FROM INDIA G. THIRUMALAI Zoological Survey of India, Southern Regional Station, Chennai 600 028. INTRODUCflON The Infraorder Gerromorpha comprises of semi-aquatic bugs characterised by long conspicuous antennae, longer than head and inserted in front of eyes. They are distributed in all kinds of climatic zones, except the coldest and driest parts. This infraorder contains 8 families namely, Gerridae, Veliidae, Hydrometridae, Mesoveliidae, Hebridae, Macroveliidae, Paraphrynoveliidae and Hennatobatidae (Andersen, 1982a). Knowledge of Indian semi-aquatic Hemiptera is limited to the taxonomic preliminaries, recording species from different parts of the country. (Distant, 1903a; 1910 a&b; Annandale, 1919; Bergroth, 1915a; Paiva, 1919a & b; Dover, 1928; Hafiz & Mathai, 1938; Hafiz & Riberio, 1939; Hafiz & Pradhan, 1947; Pradhan, 1950a, b& 1975; Gupta, 1981; Selvanayagam, 1981; Roy et al. 1988; Ghosh et al. 1989; Polhenlus & Starmuhlner, 1990; Bal & Basu, 1994 & 1997; Chen & Zettel, 1999). The revisionary work of Andersen (1975, 1980, 1990 & 1993); Den Boer (1969); Hungerford & Matsuda (1958a & b, 1960, 1962b & 1965); Herring (1961); Polhemus & Andersen (1984); Andersen & Foster (1992); Andersen & Chen (1993); Chen & Nieser (1993a & b); Polhemus & Karunaratne (1993); Polhemus (1994); Polhemus & Polhemus (1994 & 1995a) on a few genera of Gerridae; Lundblad (1936) on the genera Rhagovelia Mayr and Tetraripis Lundblad; Andersen (1981 b, 1983 & 1989); Polhemus
    [Show full text]
  • Hemiptera: Gerromorpha: Veliidae) from Tamil Nadu, India: the First Species of the Genus Described from the Indian Subcontinent
    Zootaxa 4033 (2): 287–292 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4033.2.9 http://zoobank.org/urn:lsid:zoobank.org:pub:06E745FD-594D-4720-8E90-5F05FF87CE6E Strongylovelia lillyae sp. nov. (Hemiptera: Gerromorpha: Veliidae) from Tamil Nadu, India: the first species of the genus described from the Indian subcontinent E. EYARIN JEHAMALAR Zoological Survey of India, New Alipore, Kolkata- 700053, India. E-mail: [email protected] Abstract Strongylovelia lillyae sp. nov. is described from Kanyakumari district, Tamil Nadu, India and constitutes the first species of the genus from Indian subcontinent. The new species is closely related to Strongylovelia setosa Zettel & Tran and S. vasarhelyii Zettel & Tran from Vietnam. A distribution map and photographs of S. lillyae sp. nov. are presented here. Key words: Haloveliinae, taxonomy, Kanyakumari district Introduction Members of the limnic genus Strongylovelia Esaki (1924), are very small tear-shaped water striders, ranging in size between 0.89 mm and 1.80 mm, and belonging to the subfamily Haloveliinae of family Veliidae. The subfamily Haloveliinae contains five known genera, of which, three are marine - Halovelia Bergroth (1893), Xenobates Esaki (1927) and Haloveloides Andersen (1992) - and two are freshwater - Strongylovelia Esaki (1924) and Entomovelia Esaki (1930). The members of Strongylovelia are distributed across the Indomalayan (Sri Lanka, India, southern and southwest China, Vietnam, Thailand, Indonesia, Borneo, Malaysia and Philippines) and Australasian (New Britain and New Guinea) regions. Presently, 27 species and 2 subspecies are recognized, including the new species described here (Esaki, 1924, 1926, Lundblad, 1933, Polhemus, 1979, Lansbury, 1993, Lansbury & Zettel, 1997, Zettel, 2003a,b, Chen et al.
    [Show full text]
  • Heteroptera: Gerromorpha) in Central Europe
    Shortened web version University of South Bohemia in České Budějovice Faculty of Science Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe RNDr. Tomáš Ditrich Ph.D. Thesis Supervisor: Prof. RNDr. Miroslav Papáček, CSc. University of South Bohemia, Faculty of Education České Budějovice 2010 Shortened web version Ditrich, T., 2010: Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe. Ph.D. Thesis, in English. – 85 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Annotation Ecology of Veliidae and Mesoveliidae (Hemiptera: Heteroptera: Gerromorpha) was studied in selected European species. The research of these non-gerrid semiaquatic bugs was especially focused on voltinism, overwintering with physiological consequences and wing polymorphism with dispersal pattern. Hypotheses based on data from field surveys were tested by laboratory, mesocosm and field experiments. New data on life history traits and their ecophysiological consequences are discussed in seven original research papers (four papers published in peer-reviewed journals, one paper accepted to publication, one submitted paper and one communication in a conference proceedings), creating core of this thesis. Keywords Insects, semiaquatic bugs, life history, overwintering, voltinism, dispersion, wing polymorphism. Financial support This thesis was mainly supported by grant of The Ministry of Education, Youth and Sports of the Czech Republic No. MSM 6007665801, partially by grant of the Grant Agency of the University of South Bohemia No. GAJU 6/2007/P-PřF, by The Research Council of Norway: The YGGDRASIL mobility program No. 195759/V11 and by Czech Science Foundation grant No. 206/07/0269. Shortened web version Declaration I hereby declare that I worked out this Ph.D.
    [Show full text]
  • A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
    Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • Observations on the Ecology of Water Striders
    * RILEY f : Observations on the Ecology of Water Stridors Zoology M. S. 1912 MS/TV. <>V THE UNIVERSITY OF ILLINOIS LIBRARY ^5 OBSERVATIONS ON THE ECOLOGY OF WATER STRIDERS BY CHARLES FREDERICK CURTIS RILEY A. B. Doane College, 1901 A. B. University of Michigan, 1905 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ZOOLOGY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1912 TH5 \vi_ r-4S UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL 19JT2J 1 HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY C: 31 C OIL* . ENTITLED IaJoJjjx- ^tX^MlA^ BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF In Charge of Major Work Recommendation concurred in: Committee on Final Examination Digitized by the Internet Archive in 2014 http://archive.org/details/observationsonecOOrile Observations on the Ecology of Water Stridors. Table of Contents. I. Introduction. II. Running Water Habitats 1. Ravines. 2. Springs. 5. Small Temporary Streams. a. Tile-drains and Temporary Streams. 4. Permanent Brooks. a. Behavior During Flood Conditions. b. Drought Conditions. c. Behavior During Conditions of Severe Drought. 5. Creeks. a. Dralnage-di tc h. 6. Rivers. a. Ox-bow Ponds. II. Food and Food Relations. I. Nature and Source of Focd. Food During Captivity. Transportation of Food by Water Currents. Time of Feeding. Response to Water Currents and its Relation to Food. Trial Method of Response to Moving Objects and Its Relation to Food. IV. Summary. V. Bibliography. -3- OESERVATIONS ON THE ECOLOGY OF WATER STRIDERS. I. Introduction. The present paper treats of some of the general ecological relations of water striders.
    [Show full text]
  • Characterisation of Pristine Polish River Systems and Their Use As Reference Conditions for Dutch River Systems
    1830 Rapport 1367.qxp 20-9-2006 16:49 Pagina 1 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tonczyk´ Malgorzata Klukowska Alterra-rapport 1367, ISSN 1566-7197 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Commissioned by the Dutch Ministry of Agriculture, Nature and Food Quality, Research Programme ‘Aquatic Ecology and Fisheries’ (no. 324) and by the project Euro-limpacs which is funded by the European Union under2 Thematic Sub-Priority 1.1.6.3. Alterra-rapport 1367 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tończyk Małgorzata Klukowska Alterra-rapport 1367 Alterra, Wageningen 2006 ABSTRACT Nijboer, Rebi, Piet Verdonschot, Andrzej Piechocki, Grzegorz Tończyk & Małgorzata Klukowska, 2006. Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems. Wageningen, Alterra, Alterra-rapport 1367. 221 blz.; 13 figs.; 53 tables.; 26 refs. A central feature of the European Water Framework Directive are the reference conditions. The ecological quality status is determined by calculating the distance between the present situation and the reference conditions. To describe reference conditions the natural variation of biota in pristine water bodies should be measured. Because pristine water bodies are not present in the Netherlands anymore, water bodies (springs, streams, rivers and oxbow lakes) in central Poland were investigated. Macrophytes and macroinvertebrates were sampled and environmental variables were measured. The water bodies appeared to have a high biodiversity and a good ecological quality.
    [Show full text]