Functionally Referential Alarm Calls in Tamarins (Saguinus Fuscicollis and Saguinus Mystax) – Evidence from Playback Experiments Janna Kirchhof* & Kurt Hammerschmidt

Total Page:16

File Type:pdf, Size:1020Kb

Functionally Referential Alarm Calls in Tamarins (Saguinus Fuscicollis and Saguinus Mystax) – Evidence from Playback Experiments Janna Kirchhof* & Kurt Hammerschmidt Ethology Functionally Referential Alarm Calls in Tamarins (Saguinus fuscicollis and Saguinus mystax) – Evidence from Playback Experiments Janna Kirchhof* & Kurt Hammerschmidt * Department of Neurobiology Cognitive Ethology, German Primate Center, Kellnerweg 4, Go¨ ttingen, Germany Correspondence Abstract Kurt Hammerschmidt, Cognitive Ethology, German Primate Center, Kellnerweg 4, 37077 Studies on primate vocalisation have revealed different types of alarm Go¨ ttingen, Germany. call systems ranging from graded signals based on response urgency to E-mail: [email protected] functionally referential alarm calls that elicit predator-specific reactions. In addition, alarm call systems that include both highly specific and Received: December 9, 2004 other more unspecific calls have been reported. There has been consis- Initial acceptance: April 3, 2005 tent discussion on the possible factors leading to the evolution of differ- Final acceptance: June 26, 2005 (L. Sundstro¨ m) ent alarm call systems, among which is the need of qualitatively doi: 10.1111/j.1439-0310.2006.01165.x different escape strategies. We studied the alarm calls of free-ranging saddleback and moustached tamarins (Saguinus fuscicollis and Saguinus mystax) in northeast Peru. Both species have predator-specific alarm calls and show specific non-vocal reactions. In response to aerial predators, they look upwards and quickly move downwards, while in response to terrestrial predators, they look downwards and sometimes approach the predator. We conducted playback experiments to test if the predator- specific reactions could be elicited in the absence of the predator by the tamarins’ alarm calls alone. We found that in response to aerial alarm call playbacks the subjects looked significantly longer upwards, and in response to terrestrial alarm call playbacks they looked significantly longer downwards. Thus, the tamarins reacted as if external referents, i.e. information about the predator type or the appropriate reaction, were encoded in the acoustic features of the calls. In addition, we found no differences in the responses of S. fuscicollis and S. mystax whether the alarm call stimulus was produced by a conspecific or a heterospecific caller. Furthermore, it seems that S. fuscicollis terrestrial alarm calls were less specific than either S. mystax terrestrial predator alarms or either species’ aerial predator alarms, but because of the small sample size it is difficult to draw a final conclusion. example for a functionally referential alarm call sys- Introduction tem (Struhsaker 1967; Seyfarth et al. 1980; Evans Although animals do not intend to provide informa- 1997). Vervet monkeys give acoustically distinct tion for their conspecifics, there are many examples alarm calls in response to different types of predators demonstrating that listeners are able to acquire such as aerial and terrestrial predators or snakes. information from vocal signals (Seyfarth & Cheney When conspecific listeners hear these alarm calls 2003). Vervet monkey alarm calls are the classical they respond with the adequate escape strategy. In Ethology 112 (2006) 346–354 ª 2006 The Authors 346 Journal compilation ª 2006 Blackwell Verlag, Berlin J. Kirchhof & K. Hammerschmidt Functionally Referential Alarm Calls in Tamarins the case of an aerial alarm call vervet monkeys climb As former studies of alarm call systems have all down the tree and scan the sky. In the case of a ter- been carried out on lemurs or cercopithecines, some restrial alarm call they climb up into trees, and in of whom are closely related to each other, it seems the case of a snake alarm call they often stand bipe- important and useful to gain similar knowledge also dal and scan the ground. Regardless of whether or on New World monkeys. These have undergone an not the caller has an intention to communicate the independent radiation within the order primates and presence of a certain predator, evidently these calls differ in essential socio-ecological and life-history serve a referential function for the listeners. characteristics from the other primate taxa (Strier Further studies on nonhuman primate vocalisa- 1994; Kappeler & Heymann 1996). Therefore, acous- tions have revealed other types of alarm call systems, tic studies on New World monkeys cannot only fill a such as a continuum of graded signals with the usage taxonomic gap, but also lead, in comparison with based on response urgency (chacma baboons: Fischer prosimians and Old World monkeys, to a deeper et al. 2001) or mixed systems (redfronted lemurs and understanding of alarm call systems in general. white sifakas: Fichtel & Kappeler 2002) with one Tamarins of the New World genus Saguinus, and functionally referential call and other unspecific calls. most other callitrichids, suffer from a severe preda- Scientists have identified two factors that appear to tion pressure because of their small body size. Most explain the evolution of such different alarm call sys- important among their predators are large raptors, tems: the presence or absence of different types of but also felids, mustelids, and snakes have been predators and hence the presence or absence of dif- reported to prey on callitrichids (e.g. Terborgh 1983; ferent escape strategies in a certain species (Macedo- Emmons 1987; Heymann 1987). In field studies, it nia 1990; Pereira & Macedonia 1991). Following has been observed that saddleback and moustached Macedonia & Evans (1993) animals with different tamarins show distinct behavioural reactions towards escape strategies, like ring-tailed lemurs (Lemur catta), different types of predators (Heymann 1990; Peres tend to have a functionally referential alarm call sys- 1993). In response to aerial predators, they look tem, while animals with similar or only one escape upwards and quickly fall or climb downwards, while strategy, like ruffed lemurs (Varecia variegata), tend to in response to terrestrial predators, they look down- have a gradual or urgency-based system. Subsequent wards and sometimes approach the predator. Tama- studies on several Old World monkeys confirmed this rins live in dense forest habitats with limited hypothesis. Diana monkeys (Cercopithecus diana: visibility and therefore need to maximize the effi- Zuberbu¨ hler et al. 1997) and Campbell’s monkeys ciency of their acoustic communication. This is espe- (Cercopithecus campbelli: Zuberbu¨ hler 2001) show dif- cially true in the case of anti-predatory behaviour, ferent locomotive patterns towards eagles and leop- where quick and appropriate reactions are required. ards and have functionally referential call types for Hence, tamarins are very suitable subjects for the these predators. On the contrary, larger and predom- investigation of acoustic warning signals. inantly terrestrial primates like chacma baboons In this study, we conducted playback experiments seem to fulfil the prediction that primates without to test if the acoustic information of aerial and ter- specific escape strategies encode arousal or escape restrial alarm calls is sufficient to elicit the predator- urgency in their alarm calls. Field studies on chacma specific reactions in saddleback and moustached baboons in the Okavango delta in Botswana have tamarins. In accordance with the reactions observed shown that these primates have no distinct alarm call during natural predator encounters we established types in their repertoire (Fischer et al. 2001). Their the test paradigm: in response to the playback of alarm calls continuously grade into ‘lost calls’, calls aerial alarm calls the focal animal should look signi- that are uttered when an individual has lost contact ficantly longer upwards, while in response to the with other group members. Of course, the same spe- playback of terrestrial alarm calls the focal animal cies may have acoustically discrete, predator-specific should look significantly longer downwards. alarm calls that show urgency-based acoustic grada- tion within each class. Manser (2001) demonstrated Methods experimentally that suricates give acoustically dis- tinct alarm calls to terrestrial predators, avian preda- Study Site and Subjects tors, and snakes, and within each class have high urgency and low urgency variants that reflect the The study was carried out from May to Nov. 2001 immediacy of danger and elicit stronger or weaker and Oct. to Nov. 2002 at the Estacio´ n Biolo´ gica responses. Quebrada Blanco (EBQB) in northeast Peru. The Ethology 112 (2006) 346–354 ª 2006 The Authors Journal compilation ª 2006 Blackwell Verlag, Berlin 347 Functionally Referential Alarm Calls in Tamarins J. Kirchhof & K. Hammerschmidt station is located at 4°21¢S73°09¢W, approximately mate II’ (BOSE Corporation, Framingham, MA, 90 km southeast of Iquitos, near the river (Quebra- USA) loudspeaker. The loudspeaker was positioned da) Blanco. The rain forest is of the ‘terra-firme’ type at approximately 8–12 m distance from the focal ani- (Encarnacio´ n 1985, 1993) and has a canopy height mal and tied to the trunk of a tree at approximately ranging from 25 to 30 m with some outstanding 1.5 m of height, presumably invisible to the mon- trees rising up to 40 m. The study site is approxi- key. The subject’s behaviour was recorded with a mately 1.5 km2 large and run through by a system CANON UC-X50 Hi 8 mm video camcorder (Canon, of parallel trails in north–south and west–east direc- Tokya, Japan). tion, with a 100 m spacing in between. For details of The playback was performed only when the focal the study site see also Heymann (1995). There is not
Recommended publications
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 RAPID PHYSICAL DEVELOPMENT AND MATURATION, DELAYED BEHAVIORAL MATURATION, AND SINGLE BIRTH IN YOUNG ADULT CALLTMICO: A REPRODUCTIVE STRATEGY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Philosophy in the Graduate School of The Ohio State University By Donald P.
    [Show full text]
  • Decreto N? 76.623, De 17 De Novembro De 1975
    Decreto n? 76.623/75 Decreto n? 76.623, de 17 de novembro de 1975 Promulga a convencao sobre comercio internacional das especies da flora e fauna selvagem em perigo de extincao o Presidente da Republica, Havendo 0 Congresso Nacional aprovado, pelo Decreto Legislativo n? 54, de 24 dejunho de 1975, a Convencao sobre Comercio Internacional das Especies da Flora e Fauna Selvagens em Perigo de Extincao, concluf­ da em Washington, a 3 de marco de 1973; E havendo a referida convencao entrado em vigor, para 0 Brasil, em 4 de novembro de 1975; Decreta que a Convencao, apensa por c6pia ao presente Decreto, seja executada e cumprida tao inteiramente como nela se contern '. Ernesto Geisel Antonio Francisco Azeredo da Silveira (DOD de 19.11.75 - RET. 28.11.75) ! Ancxos I c 2 das cspccics conslanlc da rcfcrida convcncao. 372 Decreto n? 76.623175 BRAZIL - Annex 1 / Anexo 1 Native CITES Species / Especies Nativas CITES Common Name / Nombrc Cormin Scientific Name / Nombrc Cicntifico English / Ingles Portuguese / Portugucs Appendix I/ Apcndicc I: Mammals / Mamiferos: Balaenoptera glaeialis Black right whale Balaenoplera edeni Brydc's whale Balaenoptera physalus Fin whale Blastoccrus diehotomus Marsh deer Cervo do pantanal Braehyteles araehnoides Woolly spider monkey Mono, miriqui, muriqui, mono car­ vociro Caeajao ealvus White uakari Uacari braneo Caeajao mclanocephalus Black-headed uakari Uacari-dc-cabcca-prcta Callimico gocldii Gocldi's marmoset Calimico CalJithrix aurita White-cared marmoset Sagiii Call ithrix Ilaviccps Bully headed marmoset Sagiii
    [Show full text]
  • Taxonomy, Phylogeny and Distribution of Tamarins (Genus Saguinus, Hoffmannsegg 1807)
    Göttinger Zentrum für Biodiversitätsforschung und Ökologie ‐Göttingen Centre for Biodiversity and Ecology‐ TAXONOMY, PHYLOGENY AND DISTRIBUTION OF TAMARINS (GENUS SAGUINUS, HOFFMANNSEGG 1807) Dissertation zur Erlangung des Doktorgrades der Mathematisch‐Naturwissenschaftlichen Fakultäten der Georg‐August‐Universität zu Göttingen vorgelegt von Dipl.‐Biol. Christian Matauschek aus München Göttingen, Dezember 2010 Referent: Prof. Dr. Eckhard W. Heymann Koreferent: Prof. Dr. Peter M. Kappeler Tag der mündlichen Prüfung: i Contents 1 GENERAL INTRODUCTION.........................................................................................................1 1.1 THE TAMARINS OF THE GENUS SAGUINUS (HOFFMANNSEGG 1807)....................................................... 2 1.2 OVERVIEW OF THE CURRENT STATUS OF TAMARIN TAXONOMY ............................................................... 2 1.3 GEOGRAPHIC ORIGIN AND DISPERSAL OF SAGUINUS........................................................................... 10 1.4 SPECIFIC QUESTIONS .................................................................................................................... 13 2 COMPLETE MITOCHONDRIAL GENOME DATA REVEAL THE PHYLOGENY OF CALLITRICHINE PRIMATES AND A LATE MIOCENE DIVERGENCE OF TAMARIN SPECIES GROUPS ..............................15 2.1 INTRODUCTION ........................................................................................................................... 17 2.2 METHODS .................................................................................................................................
    [Show full text]
  • Report of the Presence of Wild Animals
    Report of the Presence of Wild Animals The information recorded here is essential to emergency services personnel so that they may protect themselves and your neighbors, provide for the safety of your animals, ensure the maximum protection and preservation of your property, and provide you with emergency services without unnecessary delay. Every person in New York State, who owns, possesses, or harbors a wild animal, as set forth in General Municipal Law §209-cc, must file this Report annually, on or before April 1, of each year, with the clerk of the city, village or town (if outside a village) where the animal is kept. A list of the common names of animals to be reported is enclosed with this form. Failure to file as required will subject you to penalties under law. A separate Report is required to be filed annually for each address where a wild animal is harbored. Exemptions: Pet dealers, as defined in section 752-a of the General Business Law, zoological facilities and other exhibitors licensed pursuant to U.S. Code Title 7 Chapter 54 Sections 2132, 2133 and 2134, and licensed veterinarians in temporary possession of dangerous dogs, are not required to file this report. Instructions for completing this form: 1. Please print or type all information, using blue or black ink. 2. Fill in the information requested on this page. 3. On the continuation sheets, fill in the information requested for each type of animal that you possess. 4. Return the completed forms to the city, town, or village clerk of each municipality where the animal or animals are owned, possessed or harbored.
    [Show full text]
  • Responses to the Audio Broadcasts of Predator Vocalizations by Eight Sympatric Primates in Suriname, South America
    RESPONSES TO THE AUDIO BROADCASTS OF PREDATOR VOCALIZATIONS BY EIGHT SYMPATRIC PRIMATES IN SURINAME, SOUTH AMERICA A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Arts by Orin J. Neal August, 2009 Thesis written by Orin J. Neal B.A., Stony Brook University, 2003 M.A., Kent State University, 2009 Approved by: __________________________________________ Dr. Marilyn Norconk Advisor __________________________________________ Dr. Richard Meindl Chair, Department of Anthropology __________________________________________ Dr. Timothy Moerland Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………… v LIST OF TABLES……………………………………………………………….. vii ACKNOWLEDGEMENTS……………………………………………………… ix ABSTRACT……………………………………………………………………… 1 INTRODUCTION………………………………………………………………. 2 Predation risk in the neotropics…………………………………………… 4 Predation risk versus predation rate………………………………………. 8 Primate alarm vocalizations………………………………………………. 9 Vigilance………………………………………………………………….. 11 Habitat use………………………………………………………………… 12 Playback studies………………………………………………………….. 13 Hypotheses……………………………………………………………….. 13 METHODS………………………………………………………………………. 16 Study area………………………………………………………………… 16 Study subjects…………………………………………………………….. 17 Alouatta…………………………………………………………… 18 Ateles……………………………………………………………… 18 Cebus……………………………………………………………… 19 Chiropotes………………………………………………………… 20 Pithecia…………………………………………………………… 20 Saguinus………………………………………………………….. 21 Saimiri……………………………………………………………. 21 Predation
    [Show full text]
  • Vigilance in a Cooperatively Breeding Primate
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Int J Primatol (2010) 31:95–116 DOI 10.1007/s10764-009-9385-7 Vigilance in a Cooperatively Breeding Primate Mojca Stojan-Dolar & Eckhard W. Heymann Received: 25 March 2009 /Revised: 30 July 2009 /Accepted: 1 August 2009 / Published online: 2 February 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Collective vigilance is considered a major advantage of group living in animals. We investigated vigilance behavior in wild mustached tamarins (Saguinus mystax), small, arboreal, cooperatively breeding New World primates that form stable mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We aimed 1) to investigate whether vigilance patterns change according to individual activity and 2) to examine whether there is a social component of vigilance in their cooperative and nonaggressive society. We studied 11 factors that may influence vigilance and used this data to interpret the possible functions of vigilance. We observed 44 individuals in 3 mixed-species and 2 single-species groups of 2 populations that differed in population density and home range sizes. Vigilance changed greatly when individuals were engaged in different activities and individual vigilance was affected by different sets of factors depending on the activity. As vigilance decreased in proximity of conspecifics and heterospecifics when feeding, and in larger mixed-species groups when resting, we conclude that the predominant function of vigilance in mustached tamarins is predator related. However, the absence of the group size effect in very large single-species groups suggests that it may also function to maintain group cohesion.
    [Show full text]
  • Callitrichines 85
    PIPC02b 11/7/05 17:20 Page 85 Callitrichines 85 Niemitz, C. (1984). Biology of Tarsiers. Gustav Fischer, Stuttgart. Schultz, A. (1948). The number of young at a birth and the number Niemitz, C., Nietsch, A., Warter, S., and Rumpler, Y. (1991). of nipples in primates. Am. J. Phys. Anthropol. 6:1–23. Tarsius dianae: a new primate species from central Sulawesi Shekelle, M. (2003). Taxonomy and biogeography of eastern (Indonesia). Folia Primatol. 56:105–116. Tarsiers [PhD thesis]. Washington University, St. Louis. Nietsch, A. (1999). Duet vocalizations among different popu- Shekelle, M., Leksono, S., Ischwan, L., and Masala, Y. (1997). lations of Sulawesi tarsiers. Int. J. Primatol. 20:567–583. The natural history of the tarsiers of north and central Sulawesi. Nietsch, A., and Kopp, M. (1998). The role of vocalization in species Sulawesi Prim. News. 4:4–11. differentiation of Sulawesi tarsiers. Folia Primatol. 69:371–378. Sherman, P., Braude, S., and Jarvis, J. (1999). Litter sizes and Nietsch, A., and Niemitz, C. (1992). Indication for facultative poly- mammary numbers of naked mole-rats: breaking the one-half gamy in free-ranging Tarsius spectrum, supported by morpho- rule. J. Mammal. 80:720–733. metric data. In: International Primatological Society Abstracts. Simons, E., and Bown, T. (1985). Afrotarsius chatrathi, the first International Primatological Society, Strasbourg. p. 318. tarsiiform primate (Tarsiidae) from Africa. Nature 313:4750– Pallas, P. S. (1778). Novae Species quad e Glirium Ordinae cum 477. Illustrationibus Variis Complurium ex hoc Ordinae Animalium, Simpson, G. G. (1945). The principles of classification and a W. Walther, Erlangen. classification of mammals.
    [Show full text]
  • Expedition Report
    EXPEDITION REPORT Expedition dates: 20 – 2 August 2014 Report published: July 2015 Amazonian plethora: biodiversity monitoring of jaguars, pumas, primates and other flagship species of the Peruvian Amazon s o t n a s o D o d e r f l A ) c ( e g a m i r e v o C BEST BEST FOR TOP BEST NEW TRIP BEST IN ENVIRONMENT TOP HOLIDAY VOLUNTEERING GREEN-MINDED RESPONSIBLE USA SUSTAINABLE AWARD FOR NATURE ORGANISATION TRAVELLERS HOLIDAY TRAVEL Germany Germany UK UK UK USA EXPEDITION REPORT Amazonian plethora: biodiversity monitoring of jaguars, pumas, primates and other flagship species of the Peruvian Amazon Expedition dates: 20 July – 2 August 2014 Report published: July 2015 Authors Alfredo Dosantos Santillán Tahuayo River Amazon Research Center Marcelo Mazzolli & Matthias Hammer (editors) Biosphere Expeditions 1 © Biosphere Expeditions, an international not-for-profit conservation organisation registered in England, Germany, France, Australia and the USA Officially accredited member of the United Nations Environment Programme’s Governing Council & Global Ministerial Environment Forum Officially accredited member of the International Union for the Conservation of Nature Abstract An expedition to the Tamshiyacu Tahuayo Community Regional Conservation Area (TTCRCA) (Loreto Region, Peru) was conducted with Biosphere Expeditions in 2014 with aim of determining patterns of distribution and frequency of wild felids, primates and other flagship species in the study area. This was the third annual Biosphere Expeditions survey in the area and sampling took place 22 - 25 July and 27 July - 2 August 2014 in two groups. Sixteen layperson citizen scientists were trained, in two groups, to help collect data.
    [Show full text]
  • Control Over Possession, Trade and Movement of Proclaimed Pest Animals
    June, 1998 A guide for the control over the LC0303 possession, trade and movement of ISSN 1329-833X declared pest animals Ross Williamson, Melbourne On the 13 February 1997, declarations within the The Pest Animal Advisory Committee provisions of the Catchment and Land Protection Act The Pest Animal Advisory Committee (PAAC) was 1994 came into effect which classified exotic/pet animals established in 1996 under the CLP Act and will be into specific categories depending on the threat that abolished on 31 January 1999. Its role is to advise the particular types of animals pose primary production, Secretary and the Minister on the control of the movement, Crown land, the environment or community health. importation, trade and keeping of pest animals, as well as to determine the classifications of pest animals. The Need for control The Committee categorised pest species according to the One of the main objectives of the Catchment and Land categories outlined in the CALP Act. In preparing this list, Protection Act 1994 (CALP Act) is to protect primary the PAAC had regard to the relevant classifications under production, Crown land, the environment and community the laws of the Commonwealth, and the need for national health from the effects of pest animals. Over millions of uniformity in the classification of pest animals as required years of isolation Australian ecosystems have developed by the CALP Act. complex and unique inter-relationships. The introduction of exotic species into these ecosystems has had major The National Vertebrate Pests Committee impacts. In the two hundred years since European The primary guidance for the classification process was the settlement, many species of pest animals have become categorisation used by the Vertebrate Pests Committee established due to deliberate or accidental releases.
    [Show full text]
  • Evidence from a Thirteen-Year Study of a Marked Population
    American Journal of Primatology 3857-83 (1996) Saddle- Back Tam a r i n (Saguinus fuscicollis) Reprod u ct ive Strategies: Evidence From a Thirteen-Year Study of a Marked Population A.W. GOLDIZEN,' J. MENDELSON,' M. VAN VLAARDINGENr AND J. TERBORGH4 'Department ofZoology, University of Queensland, Brisbane, Australia; *Diuision of Enuzronmental Studies, University of California, Dauis; 3Cusco, Peru; *Center for Tropical Conseruation, Duke Uniuersity, Durham, NC We monitored a population of four to seven groups of individually marked saddle-back tamarins (Saguinus fuscicollis; Callitrichidae) at the Cocha Cashu Biological Station in Peru's Manu National Park every year from 1979 through 1992. In this paper we use data on life histories, group compositions, group formations, and dispersal patterns collected during these 13 years to examine the reproductive strategies of males and fe- males. Group compositions and mating patterns were quite variable in this population, with both monogamy and cooperative polyandry common. In polyandrous groups, two males shared a female's copulations and coop- eratively cared for her young. Although most groups contained a single breeding female, we recorded four cases in which secondary females suc- cessfully reared young. Most young females appeared to wait in their natal groups for the first opportunity to fill a primary breeding position in their own or a neighboring group. Females that acquired primary breeding po- sitions maintained those positions for a mean of 3 years. No female was observed to transfer between groups a second time. Variation in female lifetime reproductive success was high. Half of the females marked as juveniles never bred; the other half produced an average of 3.5 young.
    [Show full text]
  • Bioacoustics of Aotus Nigriceps
    Neotropical Primates 24(1), June 2018 29 Soziobiologie, Deutsches Primatenzentrum, Kellnerweg 4, Weisser, W. W. 2001. The effects of predation on dispersal. D-37077 Göttingen, Germany. In: Dispersal, J. Clobert, E. Danchin, A. A. Dhont and J. D. Nichols (eds.), pp. 180–188. Oxford University Press, References Oxford. Baker, A. J. and Dietz, J. M. 1996. Immigration in wild groups of golden lion tamarins (Leontopithecus rosalia). BIOACOUSTICS OF THE BLACK-HEADED NIGHT Am. J. Primatol. 38: 47–56. MONKEY, AOTUS NIGRICEPS Clutton-Brock, T. H., Russell, A. F., Sharpe, L. L., Broth- erton, P. N. M., McIlrath, G. M. and Cameron, E. Z. William D. Helenbrook 2001. Effects of helpers on juvenile development and Leigh Preston survival in meerkats. Science. 293: 2446–2449. Noah A. Linck Culot, L., Lledo Ferrer, Y., Hoelscher, O., Muñoz Lazo, Megan Quirk F. J. J., Huynen, M. C. and Heymann, E. W. 2011. Re- Jessica A. Suarez productive failure, possible maternal infanticide and can- Introduction nibalism in wild moustached tamarins, Saguinus mystax. Primates. 52: 179–186. Only three studies have assessed Aotus vocalizations (known Garber, P. A., Moya, L., and Malaga, C. 1984. A prelimi- as either owl or night monkeys). None of these studies nary field study of the moustachedtamarin monkey (Sa- have assessed the black-headed night monkey (A. nigriceps) guinus mystax) in northeastern Peru: questions concerned found in southeastern Peru, northern Bolivia, and cen- with the evolution of a communal breeding style. Folia tral-western Brazil, nor have they focused on bioacoustics of Primatol. 42: 17–32. Aotus spp. in the wild.
    [Show full text]
  • Zeitschrift Für Säugetierkunde
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Z. Säugetierkunde 54 (1989) 265-275 © 1989 Verlag Paul Parey, Hamburg und Berlin ISSN 0044-3468 Muzzle rubbing in the moustached tamarin, Saguinus mystax (Primates: Callitrichidae) - behavioural and histological aspects By E. W. Heymann, U. Zeller and M. H. Schwibbe Deutsches Primatenzentrum, Göttingen and Abteilung Morphologie, Zentrum Anatomie der Universität Göttingen Receipt of Ms. 27. 1. 1988 Abstract Muzzle rubbing (rubbing of the oro-nasal region against the Substrate) was studied in a pair of moustached tamarins, Saguinus mystax mystax, in an outdoor enclosure. Muzzle rubbing was frequently associated temporally and spatially with anogenital and suprapubical marking and urina- tion. Specialized mono- and polyptychic skin glands were found above the anterior nasal cupula and in the surrounding skin. From this evidence and the comparison with other primates the hypothesis is developed that muzzle rubbing is envolved in scent marking. In the female moustached tamarin, longterm cyclic changes in frequencies of muzzle rubbing were found which are possibly related to the oestrous cycle. Therefore, it is suggested that muzzle rubbing plays a role in the communication of the reproductive Status of the female. Introduction Communication by chemical signals plays an important role in the social and reproductive behaviour of primates (Epple 1986). Among the New World monkeys, in marmosets and tamarins (Callitrichidae) secretions from scent gland organs in the circumgenital and sternal regions, and urine are suggested to be the main carriers of olfactory informations (Epple 1974, 1978; Zeller et al. 1988). They are deposited at the environment by means of scent-marking behaviours like anogenital, suprapubical and sternal marking.
    [Show full text]