INSIGHT Into Nuclear Decommissioning

Total Page:16

File Type:pdf, Size:1020Kb

INSIGHT Into Nuclear Decommissioning ISSUE 10 2012 INSIGHT into nuclear decommissioning Delivering progress across the UK WASTE MANAGEMENT Contents p2 Magnox and RSRL £4-5 billion competition competition p3 Research Board Chair’s view under way p4-5 Remote technology in action The formal process is now under way to appoint p6 Cumbrian councils’ decision p7 Sweden’s underground lab a new Parent Body Organisation for the two p8-9 New opportunities on track companies that operate 12 of the NDA’s historic p10-11 Dounreay shaft and silo nuclear sites. clean-up p12 Marine energy park p13 Storage guidance launch p14-15 Dragon work restarts p16 Wylfa keeps generating p17 Check out these barcodes p18-19 Asbestos removed p20 Ponds progress Valued at £4-5 billion over the next seven The two RSRL sites at Harwell and years, the contract represents one of the Winfrith are former research centres UK’s largest public procurement exercises that housed some of the UK’s earliest Front cover: Asbestos stripping and will see ownership of Magnox Ltd and experimental reactors but are well requires complete protection for Research Sites Restoration Ltd transfer advanced in their decommissioning workers, page 18-19 to a new organisation with the skills and programmes. RSRL is currently owned experience to take decommissioning by Babcock International Group. forward. Steve Dixon, the NDA’s Competition Welcome to the autumn Following a bidders’ conference in Manager, said: “The Magnox and RSRL 2012 edition of Insight, the Manchester for interested organisations sites played a unique role in the UK’s news magazine where we aim and the submission of pre-qualifi cation pioneering nuclear past and we are to provide a snapshot of some questionnaires, the next step in the two- seeking to ensure they continue to forge of the developments across year process will be an invitation to take an important path in demonstrating the the NDA estate. part in a period of dialogue with the NDA. very best in decommissioning practice.” Competition is central to the NDA’s Earlier this year, ownership of Dounreay If you have any comments, strategy for securing world-class Site Restoration Limited which operates please contact the editor experience. The new PBO will oversee the NDA’s Dounreay site in Caithness Deborah Ward on management of decommissioning was transferred to a specially created 01925 832280 or activities, taking ownership of shares in the private-sector consortium, Babcock [email protected] two SLCs for the period of the contract, Dounreay Partnership. The new contract and key PBO staff will be seconded in to has created the opportunity to secure provide business leadership, innovation savings of more than £1 billion for the and ensure value for money. UK taxpayer and cut up to 16 years off decommissioning timeframes. Nine of the Magnox sites are in various stages of decommissioning, while Wylfa on Anglesey, is still generating electricity Photograph: Head of Competition but is expected to cease generation by Graeme Rankin addresses the bidders’ 2014. Magnox Ltd is currently owned by conference. EnergySolutions. 2 GUEST VIEWPOINT Last year, Stan Gordelier, former Head of the Nuclear Development Division of The Organisation for Economic Co-operation and Development Nuclear Energy Agency, became the fi rst independent Chair of the NDA’s restructured Research Board. He has more than 40 years experience in the nuclear sector and is a specialist in waste management and decommissioning. Research is vital – and we need more of it Let me start with a little personal refl ection. Given the scale of UK liabilities (NDA this has been immensely improved by the I started my professional career with 10 liabilities alone are currently estimated at Board and the work of the Nuclear Waste years nuclear energy research. Many around £50 billion in discounted terms), Research Forum. years and roles later I spent 15 years in anything that can be done to improve This new approach for the UK is in line senior positions in waste management and safety and environmental performance and with the conclusions of last year’s hard- decommissioning. So for me it was a great reduce costs is extremely benefi cial. hitting House of Lords report, which pleasure to be invited to chair the NDA’s Research and Development is the key to recommended that more must be done to Research Board, allowing me to bring improvement in each of these areas, and develop a long-term strategy for nuclear these two career ends together. Not only this impacts far more than just clearing R&D, including a roadmap to close that, of course, but R&D in this area is so up the past. If the UK is to achieve research gaps and re-establish the UK’s important. its objective of a signifi cant nuclear international credentials. contribution to the nation’s energy mix The report noted that the UK’s existing again, we must demonstrate effective strengths were based on past investments management capability for the new that would soon be depleted as many liabilities that will arise. experts reach the end of their careers. In this context it is important to emphasise We are fully aware of this and are keen that the Research Board, while focused to inspire new blood into R&D, building on the NDA mission, now also takes a a generation of experts who will play wider view across the UK as a whole to an important role in ensuring that the help ensure alignment. Our responsibilities UK remains a vital player in the global cover the legacy facilities that form the nuclear industry, supporting job creation core of the NDA’s mission, together with and reducing our reliance on imported the current fl eet of still-generating plants technology. and defence-related facilities. Our interests The Board, originally formed in 2006, also extend to decommissioning the next was restructured in 2011 to include generation of nuclear plants that support representatives from all across the UK the Government’s long-term vision for UK nuclear sector and the international energy provision. community, in recognition of its much Our intent is to ensure that the right work is strengthened remit. It is a measure of its carried out, with funding focused on areas important role, and the high reputation of greatest priority, bringing together the of the NDA, that all of those invited to be diverse but individual strands of research members accepted the invitation. Let me that have hitherto been conducted fi nish by expressing my sincere thanks to independently. those members for their help and support in this important work. When, after my second period on the UKAEA Board, I left the UK to work with the OECD Nuclear Energy Agency in Stan Gordelier, former Head of the Paris, there was no such linkage. On my Nuclear Development Division of the return, it is a great pleasure to see how OECD Nuclear Energy Agency “Building a generation of experts who will play an important role in ensuring that the UK remains a vital player in the global nuclear industry” INSIGHT OCTOBER 2012 3 Spotlight on Research and Development Sellafield excited by remote possibilities The challenges at Sellafi eld are numerous, complex and hazardous, with environments that often rule out sending in a human taskforce. Instead, solutions must be developed successfully used in both production Dr Melanie Brownridge, NDA Head that allow machines to do the dirty plants and decommissioning operations. of R&D, said: “These examples work and ensure workers remain safe. Typical examples include remotely demonstrate the importance of robust Wherever possible, the approach is to operated vehicles for surveying work, technical underpinning to deliver use tried and tested technology adapted master-slave manipulators (hand-like decommissioning. Sellafi eld R&D from other industries, rather then mechanisms controlled by an operator) spans early academic research through bespoke equipment which is expensive and takes time to develop. working in enclosed cells, remote diggers to development in adapting novel for demolition and robots used more technologies to the nuclear market Many innovations involve robotics, commonly in car manufacturing. and technology transfer from other or remote technologies, which are industries.” Among the ongoing projects being developed are four promising applications that have the potential to support work in high-radiation areas. Welcome to a virtual world Off-the-shelf gaming technology is data, photographs and plant items. This being used to help decommission offers Sellafi eld the ability to build a redundant facilities. Virtual environments walkthrough of any plant. that replicate a number of Sellafi eld “The potential applications are huge; plants have already been constructed. in particular it’s an effective means of These enable a user to simulate plant providing plant familiarisation, operator walkthroughs from their own PC, similar training and job planning. All of this can to a conventional computer game – but be done safely in front of a computer without the monsters! screen, which is particularly valuable Steve Hepworth, Decommissioning where the reality would be to visit a high- Technical Manager, said: “We’ve built radiation area.” virtual environments using gaming software to which we’ve attached plant Roundabout way to track radiation A new radiation detection device has also gloveboxes and hard-to-access facilities been trialled at Sellafi eld which shows undergoing decommissioning.” tremendous promise. The UK’s National The RadBall® is a passive device Nuclear Laboratory (NNL) developed the needing no power source and can be RadBall® which uses innovative radiation- deployed into a high-radiation area by sensitive materials to identify radiation a robot or manually in a lower-activity sources. area. It is about the size of a grapefruit Phil Reeve, Head of Decommissioning and contains layers of radiation-sensitive Technical, said: “The RadBall® trial fi lms which change to a rather fetching results at Sellafi eld have already green opaque colour when exposed to demonstrated that it could be valuable radiation.
Recommended publications
  • Download a Copy
    Cover image: Courtesey of EDF Energy — www.edfenergy.com/energy CONTENTS... 1 AT A GLANCE... 2 A BRIEF HISTORY OF NUCLEAR ENERGY... 4 BENEFITS OF NUCLEAR ENERGY... 5 WHAT THE PUBLIC THINK... 6 HOW NUCLEAR CREATES ENERGY... 7 HOW A REACTOR WORKS... 8 THE NUCLEAR FUEL CYCLE... 9 MANAGING WASTE... 10 RADIATION EXPLAINED... 12 NUCLEAR AROUND THE WORLD... 14 UK NUCLEAR SITES... 16 NUCLEAR NEW BUILD... 17 NEW BUILD IN NUMBERS... 18 LOOKING TO THE FUTURE... 19 DECOMMISSIONING... 20 CAREERS IN NUCLEAR... 21 FUTHER INFORMATION... AT A GLANCE... Nuclear is a major part of our energy mix. Today it accounts for 21% of electricity generated in the UK and has been providing secure low carbon electricity for over 60 years. Low carbon energy, including There are 15 nuclear power and renewables, nuclear power account for almost 51% of the reactors operating UK’s generation electricity mix across eight sites in the UK In 2016 nuclear energy avoided 22.7 million metric tonnes of CO2 emissions in the UK BEIS,Digest of UK Energy Statistics 2018 That’s equivalent to taking around a third of all cars in the UK off the road Civil nuclear contributes over £6 billion to the jobs in the UK civil nuclear sector UK economy as much as aerospace manufacturing 12,159 Women in civil nuclear 1,981 People on apprenticeships Three quarters of the public 914 believe nuclear should be part People on graduate schemes of the clean energy mix Jobs Map figures generated from participating NIA members 1 This simple timeline charts some of the key people, events and legislation A BRIEF HISTORY OF NUCLEAR ENERGY..
    [Show full text]
  • Nuclear Decommissioning (LT) Nuclear Decommissioning Assistance Programme of the Ignalina Nuclear Power Plan in Lithuania
    Security and Defence Nuclear Decommissioning (LT) Nuclear Decommissioning Assistance Programme of the Ignalina Nuclear Power Plan in Lithuania Challenge (depending on the waste category), including the completion of the waste management COUNCIL REGULATION The decommissioning of a nuclear installation such as infrastructure where necessary; establishing the nuclear a power plant or research reactor is the final step in 4. implementation of the building demolition decommissioning assistance its lifecycle. It involves activities from shutdown and programme; programme of the Ignalina removal of nuclear material to the environmental nuclear power plant in Lithuania 5. obtaining the decommissioning licence once Unit 1 restoration of the site. The whole process is long and and Unit 2 of the Ignalina nuclear power plant are and repealing Regulation (EU) No complex: it typically takes 20 to 30 years. It is also 1369/2013 defueled; fraught with technical, technological and financiall 6. downgrading of radiological hazards. Council Regulation (EU) 2021/101 challenges. The EU legal framework sets the highest safety standards for all activities regarding nuclear Furthermore, knowledge and experience gained and Period of Application installations, including their decommissioning. lessons learnt under the programme with regard to 2021–2027 the decommissioning process shall be disseminated In application of its Act of Accession to the Union, among Union stakeholders, thus enhancing the EU Lithuania anticipated the shutdown of the two nuclear added value of the programme. reactors in Ignalina within the agreed deadlines (2004 and 2009). RELEVANT WEBSITE FOR MORE Actions INFORMATION The Union committed to provide financial support for The actions to be funded by the Ignalina programme https://europa.eu/!bC66CU the decommissioning, in accordance with approved plans, while keeping the highest level of safety.
    [Show full text]
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • Memorandum Forwarding Memorandum from the Director Of
    1 0-I AEc 755/36 Februar 27, 1661 COPY,-NO.A.L ATOMIC ENERGY COMMISSION REPORT BY DR. LOUIS B. WERNER, ABC SCIENTIFIC REP•ESENTATIV, LONDON Note by the Secretary The General Manager has requested that the attached memorandum and enclosures from the Director of International Affairs be circulated for the information of the Commission. W, B. McCool Secretary DISTRIBUTION COPY NO. DISTRIBUTION COPY NO. Secretary 1 International Affairs 29 - 39 Commissioners 2 - 6,81 Licensing & Regulation 40 - 41 General Manager 7 Operations Analysis 42 Deputy Gen. Mgr. 8 Production 43 - 44 Asst. Gen. Mgr. 9- 10 Raw Materials 45 - 46 Asst. Gen. Mgr. IA 11 Reactor Development 5 - 55 Asst. Gen. Mgr. Mfg. 12 Research Asst. Gen. Mgr. R&S 13 Security 56 Asst. Gen. Mgr. R&ID 14 Special Projects Asst. Gen. Mgr. Adm. 15 Albuquerque Oprns. 58 5-7 60 Asst, to the GM 16 Chicago Oprns. 61 - 62 General Counsel 17 - 20 Hanford Oprns. 63 Biology & Medicine 21 Idaho Oprns. 64 - 65 Classification 22 New York Oprns. 66 Congr. Relations 23 Oak Ridge Oprns. 67-69 Health & Safety 24 San Francisco Oprns. 70 Isotope Development 25 Savannah River Oprns. 71 - 72 Public Information 26 - 27 D. C. Office 73 - 75 Intelligence 28 Secretariat 76 - 80 When sen enclosures3 ha . LASSIFIED fit, CMEN qITH CONTAINS CLA FENSE INFORMATION RRNTOREBILII'TRAL FILES ROOM 016 UNITED STATES GOVERNMENT Memorandum TO : A. R. Luedecke, General Hianaj2pr DATE: FEB 13 16 THRU: John A. Hall, AGMIIA fl.' FROM. : A. A. Wells, i o Division of I~ e a SUBJECT: REPORT PREPARED BY DR.
    [Show full text]
  • 小型飛翔体/海外 [Format 2] Technical Catalog Category
    小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history.
    [Show full text]
  • Radiation Hazard Location
    Radiation Hazard Location Radiation Detector JS Stanley US Patent 8,399.859 B2 March 19, 2013 Using semi spherical PRESAGE with a lead collimator to detect contaminated Hot Cells Improving the Presage Polymer Radiosensitivity for Hot Cell and Glovebox 3D Characterization Adamovics, John; Farfan, Eduardo B.; Coleman, J. Rusty Health Physics (2013), 104(1), 63-67. RadBall is a novel, passive, radiation detection device that provides 3D mapping of radiation from areas where measurements have not been possible previously due to lack of access or extremely high radiation doses. This kind of technol. is beneficial when decommissioning and decontamination of nuclear facilities occur. The key components of the RadBall technol. include a tungsten outer shell that houses a radiosensitive PRESAGE polymer. The 1.0-cm-thick tungsten shell has a no. of holes that allow photons to reach the polymer, thus generating radiation tracks that are analyzed. Submerged RadBall Deployments in Hanford Site Hot Cells Containing 137CsCl Capsules Farfan, Eduardo B.; Coleman, J. Rusty; Stanley, Steven; Adamovics, John; Oldham, Mark; Thomas, Andrew Health Physics 103:100-106 (2012) The overall objective of this study was to demonstrate that a new technol., known as RadBall, could locate submerged radiol. hazards. RadBall is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technol. has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall deployments in hot cells contg.
    [Show full text]
  • International Conference on Nuclear Criticality Safety
    OFFICIAL PROGRAMPREVIEW International Conference on Nuclear Criticality Safety International Cooperation Hosted by the Nuclear Criticality Safety Division of the American Nuclear Society Co-Sponsored by NEA Photo by Randy Montoya/SandiaPhoto Randy by Laboratories National September 13-17, 2015 Omni Charlotte Hotel Charlotte, NC 2015 International Conference on Nuclear Criticality Safety Our most sincere thanks to the following contributors for their support Gold Level Silver Level Bronze Level Other Table of Contents General Meeting Information Conference Officials 4 Schedule at a Glance 5 Daily Schedule 6-7 General Information 8 Plenary and Special Sessions Welcome Reception 9 Opening Plenary 9 Reception at the Mint Museum 9 ICNC Poster Session and Reception 10 Banquet Dinner at Founders Hall 10 ICNC Workshop 10 V.C. Summer Nuclear AP1000® Nuclear Plant 10 International Cooperation Construction Tour Columbia Fuel Fabrication Facility Plant Tour 10 Technical Sessions Technical Sessions by Day: Monday 11-12 Technical Sessions by Day: Tuesday 13-16 Technical Sessions by Day: Wednesday 17-20 Technical Sessions by Day: Thursday 21-22 Additional Hotel Map 23 www.ans.org 2015 International Conference on Nuclear Criticality Safety: Official Program 3 Meeting Officials International Cooperation International Conference on Nuclear Criticality Safety Every 4 years the international nuclear criticality safety community gathers to discuss technical, operational, computational, and regulatory issues in the practice of nuclear criticality safety. ICNC 2015 (International Conference on Nuclear Criticality) allows specialists from around the globe to come together to discuss, analyze and study the latest developments in the area of nuclear criticality safety. This is a unique opportunity to exchange ideas with industry experts, leaders, colleagues and peers.
    [Show full text]
  • Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
    Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • VII. Nuclear Fission and Fusion Lorant Csige
    VII.VII. NuclearNuclear FissionFission andand FusionFusion LorantLorant CsigeCsige LaboratoryLaboratory forfor NuclearNuclear PhysicsPhysics HungarianHungarian AcademyAcademy ofof SciencesSciences NuclearNuclear bindingbinding energy:energy: possibilitypossibility ofof energyenergy productionproduction NuclearNuclear FusionFusion ● Some basic principles: ─ two light nuclei should be very close to defeat the Coulomb repulsion → nuclear attraction: kinetic energy!! ─ not spontenious, difficult to achieve in reality ─ advantage: large amount of hydrogen and helium + solutions without producing any readioactive product NuclearNuclear fusionfusion inin starsstars ● proton-proton cycle: ~ mass of Sun, many branches ─ 2 + ν first step in all branches (Q=1.442 MeV): p+p → H+e +νe ● diproton formation (and immediate decay back to two protons) is the ruling process ● stable diproton is not existing → proton – proton fusion with instant beta decay! ● very slow process since weak interaction plays role → cross section has not yet been measrued experimentally (one proton „waits” 9 billion years to fuse) ─ second step: 2H+1H → 3He + γ + 5.49 MeV ● very fast process: only 4 seconds on the avarage ● 3He than fuse to produce 4He with three (four) differenct reactions (branches) ─ ppI branch: 3He + 3He → 4He + 1H + 1H + 12.86 MeV ─ ppII branch: ● 3He + 4He → 7Be + γ 7 7 ● 7 7 ν Be + e- → Li + νe ● 7Li + 1H → 4He + 4He ─ ppIII branch: only 0.11% energy of Sun, but source of neutrino problem ● 3He + 4He → 7Be + γ 7 1 8 8 + 4 4 ● 7 1 8 γ 8 + ν 4 4 Be + H →
    [Show full text]
  • The Nuclear Decommissioning Authority Progress with Reducing Risk at Sellafield
    A picture of the National Audit Office logo Report by the Comptroller and Auditor General The Nuclear Decommissioning Authority The Nuclear Decommissioning Authority: progress with reducing risk at Sellafield HC 1126 SESSION 2017–2019 20 JUNE 2018 Our vision is to help the nation spend wisely. Our public audit perspective helps Parliament hold government to account and improve public services. The National Audit Office scrutinises public spending for Parliament and is independent of government. The Comptroller and Auditor General (C&AG), Sir Amyas Morse KCB, is an Officer of the House of Commons and leads the NAO. The C&AG certifies the accounts of all government departments and many other public sector bodies. He has statutory authority to examine and report to Parliament on whether departments and the bodies they fund, nationally and locally, have used their resources efficiently, effectively, and with economy. The C&AG does this through a range of outputs including value-for-money reports on matters of public interest; investigations to establish the underlying facts in circumstances where concerns have been raised by others or observed through our wider work; landscape reviews to aid transparency; and good-practice guides. Our work ensures that those responsible for the use of public money are held to account and helps government to improve public services, leading to audited savings of £734 million in 2016. The Nuclear Decommissioning Authority The Nuclear Decommissioning Authority: progress with reducing risk at Sellafield Report by the Comptroller and Auditor General Ordered by the House of Commons to be printed on 18 June 2018 This report has been prepared under Section 6 of the National Audit Act 1983 for presentation to the House of Commons in accordance with Section 9 of the Act Sir Amyas Morse KCB Comptroller and Auditor General National Audit Office 15 June 2018 HC 1126 | £10.00 This report examines the Nuclear Decommissioning Authority’s progress with reducing risk and hazard at its largest and most hazardous site, Sellafield.
    [Show full text]
  • Hot Particles at Dounreay
    SEPTEMBER 20, 2007 | No. 660 HOT PARTICLES AT DOUNREAY The Dounreay nuclear complex, situated on a remote part of the north coast of Scotland, was once home to a variety of experimental nuclear facilities including two prototype fast breeder reactors, a reprocessing plant and a materials test reactor. Nearly all of these are now closed, but the legacy of their waste, pollution and accidents HOT PARTICLES AT DOUNREAY 1 lives on. One of the main areas of concern is the radioactive particles ILLEGAL TRAFFICKING: INCREASE found near the complex. The latest radioactive fragment found on INCIDENTS INVOLVING THEFT OR LOSS 2 Sandside beach is one of the hottest yet detected. SLEBOS CASE REVEALS FAILURE OF DUTCH AND EU NUCLEAR NON- (660.5826) WISE Amsterdam - The They entered the drains, which should PROLIFERATION POLICIES 4 particle of cesium-137 picked up during have carried only low-active waste a sweep of the beach on September 7 waster, either from the reprocessing RECORD URANIUM PRICE - WHAT was the third recovered since monitoring plant or from a controversial waste shaft. IS BEHIND AND WHAT ARE THE resumed on August 5 after a lengthy The highly radioactive particles were CONSEQUENCES 5 gap. This brings the legacy of pollution known as 'swarf' -the outside cladding from the nearby Dounreay plant to 97 from spent fuel assemblies which are cut HEAVY SUBSIDIES IN HEAVY used reactor fuel particles and an off at the very start of the reprocessing WATER: ECONOMICS OF NUCLEAR unidentified radioactive object. procedure to expose the fuel rods. These POWER IN INDIA 6 are some of the most highly radioactive After being taken back to a lab at the wastes from spent fuel reprocessing.
    [Show full text]