Memorandum Forwarding Memorandum from the Director Of

Total Page:16

File Type:pdf, Size:1020Kb

Memorandum Forwarding Memorandum from the Director Of 1 0-I AEc 755/36 Februar 27, 1661 COPY,-NO.A.L ATOMIC ENERGY COMMISSION REPORT BY DR. LOUIS B. WERNER, ABC SCIENTIFIC REP•ESENTATIV, LONDON Note by the Secretary The General Manager has requested that the attached memorandum and enclosures from the Director of International Affairs be circulated for the information of the Commission. W, B. McCool Secretary DISTRIBUTION COPY NO. DISTRIBUTION COPY NO. Secretary 1 International Affairs 29 - 39 Commissioners 2 - 6,81 Licensing & Regulation 40 - 41 General Manager 7 Operations Analysis 42 Deputy Gen. Mgr. 8 Production 43 - 44 Asst. Gen. Mgr. 9- 10 Raw Materials 45 - 46 Asst. Gen. Mgr. IA 11 Reactor Development 5 - 55 Asst. Gen. Mgr. Mfg. 12 Research Asst. Gen. Mgr. R&S 13 Security 56 Asst. Gen. Mgr. R&ID 14 Special Projects Asst. Gen. Mgr. Adm. 15 Albuquerque Oprns. 58 5-7 60 Asst, to the GM 16 Chicago Oprns. 61 - 62 General Counsel 17 - 20 Hanford Oprns. 63 Biology & Medicine 21 Idaho Oprns. 64 - 65 Classification 22 New York Oprns. 66 Congr. Relations 23 Oak Ridge Oprns. 67-69 Health & Safety 24 San Francisco Oprns. 70 Isotope Development 25 Savannah River Oprns. 71 - 72 Public Information 26 - 27 D. C. Office 73 - 75 Intelligence 28 Secretariat 76 - 80 When sen enclosures3 ha . LASSIFIED fit, CMEN qITH CONTAINS CLA FENSE INFORMATION RRNTOREBILII'TRAL FILES ROOM 016 UNITED STATES GOVERNMENT Memorandum TO : A. R. Luedecke, General Hianaj2pr DATE: FEB 13 16 THRU: John A. Hall, AGMIIA fl.' FROM. : A. A. Wells, i o Division of I~ e a SUBJECT: REPORT PREPARED BY DR. LOUIS B. WERNER AT CONCLUSION OF HIS TOUR OF DUTY AS AEC SCIENTIFIC REPRESENTATIVE, LONDON Attached is a report prepared by Dr. Louis B. Werner at the con clusion of his tour of duty as AEC Scientific Representative in London. Dr. Werner served in the London post from August 1958 until January 1961. Also included is a copy of a Foreign Service Despatch from the Charge d'Affaires, American Embassy, London, the Department of State. to The despatch commends Dr. Werner warmly for his effective performance in London and expresses the views of Sir Roger Makins, Chairman, UKAEA, that relations between the U.S. and U.K. in the atomic energy field are closer than at any time since the war, The despatch states that Dr. Werner made a significant contribution to the smooth working of the U.S./U.K. relationship and thereby to the overall effectiveness of the Embassy. Dr. Werner's report is in two parts. Part one summarizes the British nuclear energy program. Highlights of this part are: 1. In June 1960, the U.K. Minister of Power announced that national nuclear the power program goals had been reduced to a possible 5000 megawatts of installed nuclear capacity by 1968. 2. The objectives of the U.K. reactor development program are first, to insure successful construction and operation of the power stations now under construction develop and second, to advanced zeactors that will provide progressively cheaper power. 3. The Central Electricity Generating Board has been reluctant to order the best developed advanced concepts, the advanced gas-cooled reactor (AGR), on the basis that even more economicall1 promising concepts are expected years.. within a few Thus, too short a time exists for full exploitation of AGR, which itself is not yet advanced prototype to the operating stage. The AEA has vigorously pushed the most promising the AGR as candidate for the next generation of This material contains information national affecting the defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., See. 793 and 794., the transmission or of revelation which in anm, manner to an unauthorized person is prohibited by law. by Authouity Of (Declassifiratiot Autority/Numbeq Date of Declassification a• 72/Tl reactors, and there is no doubt that the CEGB will order a number of AGR stations. For later generations power of civil stations, development of the fast reactor, temperature the high gas-cooled reactor, and to a lesser extent steam generating the heavy water reactor, has been undertaken. 4. The construction of a nuclear propelled merchant ship has received a great deal of attention and study but as of January 1961, no decision by the government had been reached. 5. Faced with the prospect of lean year3 in the power business, four of the five consortia, which were originally formed explore commercial to applications of power reactors, rierged to conserve resources. In part two of his report Dr. Werner comments operation on U.S./U.K. co in the civil uses of atomic energy and cooperative describes the& programs between the AEC and AEA in .cooled advanced gas reactors, high temperature gas-cooled reactors, Libby/Cockcroft the exchange, nuclear physics chemistry, biological sciences, chemical processing, and feed materials. He also comments on the recently proposed areas of exchange on production plants, diffusion plants and gas centrifuge processes. Attachments: 1. Dr. Werner's Report 2. Foreign Service Despatch 1354 -2 - / J BRITISH NUCLEAR PROGRESS AND US/UK COOPERATION ON THE CIVIL USES OF ATOMIC ENERGY Terminal report prepared by: Louis B. Werner AEC Scientific Representative London, England January 18, 1961 "-3- INTRODUCTION Possibly none of the international cooperative activities of the Commission has produced a more extensive exchange of scientific information, ideas and technical reports, or has stimulated closer personal working relationships between scientists of two countries than that arising out of collaboration with the UK. An opportunity to observe and participate in this collaboration program for a period of over two years is both a challenging and rewarding experience. The occasion of the (nearly) biannual replacement of the AAC Scientific Representative in London offers a suitable opportunity to review significant events of the past two years and to record some impressions of the status of the UK nuclear energy program, and US/UK cooperation which may be of interest to the Headquarters staff. British nuclear energy activities are already widely reported upon and followed with great interest. This is true for several reasons: first, because of the relatively large size and high state of development of the national atomic energy research and development program; second, because Great Britain has had the most advanced construction program in the world for civil nuclear power; and third, because of the high technical capabilities and aggressiveness of British scientists and engineers. One should also refer to British developments in military uses of nuclear energy by virtue of which the UK is our only strong nuclear ally. A consequence of the mutual regard which the US and the UK have for each others programs, and the interdependence of the two countries in this field, is that a considerable number of visits are made to each other's facilitiesfor exchange of information, for. discussions, and for purposes of consultation, starting at the top level with the periodic meetings between the Chairmen of the Atomic Energy Authority and the Atomic Energy Commission. Matters of major importance to the Commission are subjects for staff studies, reporting, and distributions within AEC. However, a large amount of information is also available in special reports on conferences, symposia, technical exchanges, and individual scientists visits, as well as the routine and special reports prepared by the ABC overseas office, and the extensive coverage given by the commercial and technical press. Some thought has, therefore, been given to the preparation of this report as to what choice of content might be of greatest interest. It has been decided to present a brief recapitulation of the principal activities over the approximate two year period since similar previous reports were issued(l,2) in order that the extensive scope of British activities in civil uses of nuclear energy as well as the scope of US/UK collaboration during this period will be made evident, and some of the principal'problems in these areas identified. (1) US-UK Cooperationlin the Development of Peaceful Uses of .Atomic Energy" by Edward L. Brady, ABC Scientific Representative. October 29, 1958. (2) "Major Developments in Atomic Energy in the UK in the Last Year and Their Bearing on Relations with the US" by Howard Meyers and Edward L. Brady. Foreign Service Despatch 1008, October 24, 1958 (CONF) 4 S j The British program for development of military uses of atomic energy is, of course, a very important one, particularly in the areas of nuclear weapons, and an effective exchange is taking place under the US/UK Agreement for Cooperation on the uses of atomic energy for mutual defense purposes. However, no reference will be made in this report to military developments and collaboration since this is outside the terms of reference of the AEC overseas office. -5- I PART I British Nuclear Energy Program I. GENERAL The British research and development program in atomic energy covers a broad range of interests from basic physical and bio However, logical science to practical applications in many fields. the British effort has been its nuclear power program. the core of of. At its most optimistic point, the UK established national goals by 5000-6000 MW (electrical) generating capacity to be completed 1965. In addition it was fully expected that a sizeable export market might be developed. With this outlook the technical objective was to provide the means whereby this goal could be reached. Progressing from the experience of the ill-fated Windscale reactors, the Calder Hall (and Chapelcross) design was developed and the stations completed to produce in 1956 the first commercial nuclear power generation in the world. With an attitude of justifiable confidence, efforts were next turned to improvement of the basic Calder design and the indoctrination of the industrial consortia which were to reduce the improved design, with contributions of their own, to economic practice.
Recommended publications
  • Download a Copy
    Cover image: Courtesey of EDF Energy — www.edfenergy.com/energy CONTENTS... 1 AT A GLANCE... 2 A BRIEF HISTORY OF NUCLEAR ENERGY... 4 BENEFITS OF NUCLEAR ENERGY... 5 WHAT THE PUBLIC THINK... 6 HOW NUCLEAR CREATES ENERGY... 7 HOW A REACTOR WORKS... 8 THE NUCLEAR FUEL CYCLE... 9 MANAGING WASTE... 10 RADIATION EXPLAINED... 12 NUCLEAR AROUND THE WORLD... 14 UK NUCLEAR SITES... 16 NUCLEAR NEW BUILD... 17 NEW BUILD IN NUMBERS... 18 LOOKING TO THE FUTURE... 19 DECOMMISSIONING... 20 CAREERS IN NUCLEAR... 21 FUTHER INFORMATION... AT A GLANCE... Nuclear is a major part of our energy mix. Today it accounts for 21% of electricity generated in the UK and has been providing secure low carbon electricity for over 60 years. Low carbon energy, including There are 15 nuclear power and renewables, nuclear power account for almost 51% of the reactors operating UK’s generation electricity mix across eight sites in the UK In 2016 nuclear energy avoided 22.7 million metric tonnes of CO2 emissions in the UK BEIS,Digest of UK Energy Statistics 2018 That’s equivalent to taking around a third of all cars in the UK off the road Civil nuclear contributes over £6 billion to the jobs in the UK civil nuclear sector UK economy as much as aerospace manufacturing 12,159 Women in civil nuclear 1,981 People on apprenticeships Three quarters of the public 914 believe nuclear should be part People on graduate schemes of the clean energy mix Jobs Map figures generated from participating NIA members 1 This simple timeline charts some of the key people, events and legislation A BRIEF HISTORY OF NUCLEAR ENERGY..
    [Show full text]
  • 小型飛翔体/海外 [Format 2] Technical Catalog Category
    小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history.
    [Show full text]
  • Onr Corporate Plan 2017/18 En Route to 2020
    ONR CORPORATE PLAN 2017/18 EN ROUTE TO 2020 Office for Nuclear Regulation Corporate Plan 2017/18 Financial year 1 April 2017 to 31 March 2018 Presented to Parliament pursuant to Paragraphs 23 and 25(3) of Schedule 7 to the Energy Act 2013 July 2017 © ONR copyright 2017 The text of this document (this excludes, where present, the Royal Arms and all departmental or agency logos) may be reproduced free of charge in any format or medium provided that it is reproduced accurately and not in a misleading context. The material must be acknowledged as ONR copyright and the document title specified. Where third party material has been identified, permission from the respective copyright holder must be sought. Any enquiries related to this publication should be sent to us at [email protected] This publication is available at https://www.gov.uk/government/publications Print ISBN 9781474145695 Web ISBN 9781474145701 ID P002881793 06/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK for Williams Lea Group on behalf of the Controller of Her Majesty’s Stationery Office CONTENTS 1. Foreword .........................................................................................................1 2. About this plan ..............................................................................................3 3. Our Operating Environment .........................................................................9 4. Our Strategic Themes and Key Activities ....................................................15 Influencing improvements
    [Show full text]
  • Magnox Achievements 2017/18 Magnox Achievements 2017/18 3
    Achievements 2 017/18 2 Magnox Achievements 2017/18 Magnox Achievements 2017/18 3 Introduction We can all be extremely proud of the achievements that the Magnox and Cavendish Bradwell Site takes another critical step towards care and maintenance, as the end of Fluor Partnership team have made in the safe and secure decommissioning of intermediate level waste (ILW) operations is set to complete. Magnox sites. This includes the successful and safe management Of the packages placed for interim storage to date, more than During the past 12 months we have made further significant acknowledge and this booklet cannot do it justice but at of sludges, which accumulated during the 40 years 40 contain dried resin and more than 60 contain dried sludge. progress and there is much to celebrate, not least: forging least it will give you a flavour of the work that is being done of Bradwell’s operation. This achievement follows a significant 12 months for the ahead with the closure of Bradwell Site in 2018; continued across Magnox that might not be visible to all. In a programme spanning more than seven years, several site, which also saw the completion of fuel element debris defuelling at Wylfa; nuclear material transfers from Harwell separate projects covering waste retrieval, packaging dissolution in June 2017 and the reclassification of some Site to Sellafield and making significant advances in hazard We recognise and appreciate all the good work that and conditioning have contributed to the site’s ILW being of this ILW as low level waste, enabling it to be sent to reduction across all our sites as follows: is being done by our staff, suppliers and contractors; working together as one team to make things happen transferred into the interim storage facility.
    [Show full text]
  • United Kingdom
    UNITED KINGDOM (Updated 2013) 1. GENERAL INFORMATION 1.1 Country Overview 1.1.1 Governmental System Not provided. 1.1.2 Geography and Climate United Kingdom (UK) is an abbreviated form of United Kingdom of Great Britain and Northern Ireland. The UK consists of England, Northern Ireland, Scotland and Wales, and lies in north-western Europe, occupying the major portion of the British Isles. The country’s only land boundary is with the Republic of Ireland. The UK is separated from the coast of Western Europe by the English Channel to the south and by the North Sea to the east. The northern and western shores are washed by the Atlantic Ocean. Generally, the United Kingdom has cool to mild winters and warm summers, with moderate variation in temperature throughout the year. In England, the average annual temperature varies from 8.5 °C in the north to 11 °C in the south, but over the higher ground this can be several degrees lower. This small variation in temperature is to a large extent due to the moderating effect the Atlantic Ocean has—water has a much greater specific heat capacity than air, and tends to heat and cool slowly throughout the year. This has a warming influence on coastal areas in winter and a cooling influence in summer. On average, the warmest winter temperatures occur on the south and west coasts, although warm temperatures occasionally occur due to a foehn wind warming up the downwind after crossing the mountains. Temperatures in these areas can rise to 15 °C in winter, on rare occasions.
    [Show full text]
  • Glossary of Nuclear Terms
    BURGES SALMON LLP Glossary of Nuclear Terms June 2015 Edited by Gareth Davies Editor: Gareth Davies, Davies Nuclear Associates Ltd Co-Editors: Thomas Carpenter, Burges Salmon LLP Sarah Raby, Burges Salmon LLP Sponsor: Ian Salter, Head of Nuclear Practice, Burges Salmon LLP Glossary of Nuclear Terms Peer Reviewers for 2015: Ian Bonnett, Davies Nuclear Associates Ltd Adrian Bull, National Nuclear Laboratory Samantha Dancy, Nuclear Decommissioning Authority Tristram Denton, Hitachi Europe Ltd Anna Ellis, Frazer-Nash Consultancy Neil Foreman, Centronic Ltd Dr Justin Goldberg, Jacobs Engineering (UK) Limited Colin Goodrum, LDA Design Peter Haslam, Nuclear Industry Association Allison Hunt, National Skills Academy for Nuclear Stuart Hunt, EDF Energy Terry Kelly, Cavendish Nuclear David Lawson, GD Energy Services Mark Liddiard, HR Wallingford Jean Llewellyn, National Skills Academy for Nuclear Amanda MacMillan, Horizon Nuclear Power John McNamara, NuGeneration Ltd Melanie Sachar, EDF Energy Terry Selby, NuGeneration Ltd Dr Tim Stone, former Expert Chair, Office for Nuclear Development Chris Williams, Nuvia Version Date: June 2015 © 2015 Burges Salmon LLP www.burges-salmon.com All rights reserved. Any use or reproduction of this Glossary, whether in whole or part, must clearly attribute authorship and acknowledge that © remains with Burges Salmon LLP. The moral rights of Burges Salmon LLP have been asserted in accordance with the Copyright, Designs and Patents Act 1988. Disclaimer: This Glossary is intended as a general guide only. The information and opinions which it contains are not intended to be a comprehensive study, nor to provide legal advice, and should not be treated as a substitute for legal advice containing particular situations.
    [Show full text]
  • IAEA Nuclear Energy Series Managing the Unexpected in Decommissioning No
    IAEA Nuclear Energy Series IAEA Nuclear No. NW-T-2.8 No. IAEA Nuclear Energy Series Managing the Unexpected in Decommissioning Managing the Unexpected No. NW-T-2.8 Basic Managing the Principles Unexpected in Decommissioning Objectives Guides Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–103615–5 ISSN 1995–7807 @ 15-40561_PUB1702_cover.indd 1,3 2016-03-30 10:56:45 IAEA Nuclear Energy Series IAEA Nuclear IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES No. NW-T-2.8 No. Under the terms of Articles III.A and VIII.C of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, in Decommissioning Managing the Unexpected radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Technical Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series.
    [Show full text]
  • Signature Research on Legacy Management at the National Nuclear Laboratory, United Kingdom - 10362
    Signature Research on Legacy Management at the National Nuclear Laboratory, United Kingdom - 10362 A. W. Banford National Nuclear Laboratory, Risley, Warrington, Cheshire, WA3 6AS, United Kingdom ABSTRACT The United Kingdom (UK) National Nuclear Laboratory (NNL) is establishing four Signature Research Areas, which will underpin the future requirements of the UK nuclear Industry. The management of radioactive waste, nuclear plant and sites at the end of operations is a significant challenge in the UK and internationally. Therefore the NNL Signature Research Area on Legacy Management aims to address this challenge. The key theme of the research area is to inform and underpin the development of strategies for legacy management through an understanding of the nature of the waste inventory, the potential endpoints and the identification of possible processing options. This strategic approach aims to identify the key challenges, identify required evolutionary changes to existing technologies and identify areas in which revolutionary change could make most impact. This paper provides a technical overview of the UK’s National Nuclear Laboratory Signature Research Area on Legacy Management; which will focus on the range of technical areas notably; • strategy development • waste, facility and land characterisation • waste behaviour • decontamination • retrieval and remote deployment • decommissioning techniques • contaminated land and site end points. INTRODUCTION A series of four Signature Research Areas have been identified as being central to the United Kingdom National Nuclear Laboratory mission, to provide independent, authoritative advice on nuclear issues. These areas encompass activities which are of strategic significance to the NNL and both the UK and international nuclear industry. The four areas are defined as follows, • Fuel and Reactors • Spent Fuel and Nuclear Materials [1] • Legacy Waste and Decommissioning • Waste Processing, Storage and Disposal Collectively these areas cover most of the nuclear fuel cycle.
    [Show full text]
  • NDA Magnox Statement
    Hearing Statement In Response to Matter 4 – Recycling, Recovery, Disposal and Other waste facilities Nuclear Decommissioning Authority and Magnox Limited 1. Background 1.1 GVA submitted representations on behalf of the Nuclear Decommissioning Authority (NDA) and Magnox Limited (Magnox) to the Pre-submission Draft Waste Plan Consultation on 31st January 2018, which the Inspector should refer to. 1.2 Magnox operate the Winfrith site on behalf of the NDA in order to carry out the decommissioning process. 1.3 Magnox maintains a working relationship with Dorset County Council (DCC), as well as Purbeck District Council (PDC), through regular tri-party meetings where updates are provided in respect of forthcoming developments at the Winfrith site, key activities and DCC/PDC development plan progress. 1.4 For the Inspector’s reference, Environmental Impact Assessments (EIAs) are being prepared to accompany planning applications for Winfrith’s end-state and the decommissioning of the sea discharge pipeline. These are at a very early stage in preparation, but a brief overview of the project is provided at Appendix 1 of this Statement. 2. Response to Questions 59-62 2.1 A response to each question posed by the Inspector in respect of Policy 10 (Decommissioning and restoration of Winfrith Nuclear Licensed Site) is provided below. 59 Would highway improvements be needed to facilitate access via Dorset Innovation Park? 2.2 It is our understanding that Monterey Avenue was constructed to a standard capable of sufficiently serving the Dorset Innovation Park (DIP) and can therefore accommodate HGVs. Hearing Statement on behalf of Nuclear Decommissioning Authority and Magnox Limited 60 What are the advantages of using this route as opposed to Gatemore Road? 2.3 Access via DIP would require the consent of the landowner and the establishment of an appropriate route through the site.
    [Show full text]
  • History of the International Atomic Energy Agency: First Forty Years, by David Fischer
    IAEA_History.qxd 10.01.2003 11:01 Uhr Seite 1 HISTORY OF THE INTERNATIONAL ATOMIC Also available: ENERGY International Atomic Energy Agency: Personal Reflections (18 ✕ 24 cm; 311 pp.) AGENCY The reflections are written by a group of distinguished scientists and diplomats who were involved in the establishment or The First Forty Years subsequent work of the IAEA. It represents a collection of by ‘essays’ which offer a complementary and personal view on some of the topics considered in the full history. David Fischer A fortieth anniversary publication ISBN 92–0–102397–9 IAEA_History.qxd 10.01.2003 11:01 Uhr Seite 2 The ‘temporary’ In 1979, the Austrian headquarters of Government and the IAEA in the City of Vienna the Grand Hotel, on completed construction the Ringstrasse in of the Vienna central Vienna. International Centre The Agency remained (VIC), next to the there for some Donaupark, which twenty years, until 1979. became the permanent home of the IAEA and other UN organizations. Austria generously made the buildings and facilities at the VIC available at the ‘peppercorn’ rent of one Austrian Schilling a year. IAEA_History.qxd 10.01.2003 11:01 Uhr Seite 2 The ‘temporary’ In 1979, the Austrian headquarters of Government and the IAEA in the City of Vienna the Grand Hotel, on completed construction the Ringstrasse in of the Vienna central Vienna. International Centre The Agency remained (VIC), next to the there for some Donaupark, which twenty years, until 1979. became the permanent home of the IAEA and other UN organizations. Austria generously made the buildings and facilities at the VIC available at the ‘peppercorn’ rent of one Austrian Schilling a year.
    [Show full text]
  • What We Heard Within Wpdd on Stakeholder Involvement in Decommissioning, 2001-2004
    Unclassified NEA/RWM/WPDD(2006)6 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 12-Dec-2006 ___________________________________________________________________________________________ English - Or. English NUCLEAR ENERGY AGENCY RADIOACTIVE WASTE MANAGEMENT COMMITTEE Unclassified NEA/RWM/WPDD(2006)6 Working Party on Decommissioning and Dismantling (WPDD) WHAT WE HEARD WITHIN WPDD ON STAKEHOLDER INVOLVEMENT IN DECOMMISSIONING, 2001-2004 A Compilation of Papers English - Or. English JT03219599 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format NEA/RWM/WPDD(2006)6 2 NEA/RWM/WPDD(2006)6 FOREWORD At its sixth meeting, in Paris, 14-16 November 2005, the WPDD held a topical session on Stakeholder Involvement in Decommissioning Projects. The topical session was jointly planned and run with members of the NEA Forum on Stakeholder Confidence (FSC). The Topical Session is documented and publicly available [NEA/RWM/WPDD(2006)5, see also NEA webpage: http://www.nea.fr/html/rwm/docs/2006/rwm-wpdd2006-5.pdf]. The Topical Session provided a stimulus to review the contributions in the area of stakeholder involvement that the WPDD have received since its inception. This report contains a compilation of all papers regarding stakeholder involvement in decommissioning given at WPDD meetings and workshops between 2001 and the end of 2004. The compilation, together with other relevant material collected by FSC, will serve as background material for a review, focussing on lessons to be learnt and including examples of key statements by representatives from different NEA member states involved in or affected by decommissioning projects.
    [Show full text]
  • Nuclear Research and Development Capabilities
    HOUSE OF LORDS Select Committee on Science and Technology 3rd Report of Session 2010–12 Nuclear Research and Development Capabilities Ordered to be printed 15 November 2011 and published 22 November 2011 Published by the Authority of the House of Lords London : The Stationery Office Limited £price HL Paper 221 CONTENTS Paragraph Page Summary 6 Chapter 1: Introduction 1 9 Scope 2 9 Up to 2050 and beyond 5 10 Structure of the report 6 10 Acknowledgements 7 10 Chapter 2: The nuclear R&D sector—past and present 10 12 Historical context 10 12 Box 1: Nuclear Reactor Technologies 12 Figure 1: UK public sector fission R&D funding (£ millions) 13 Figure 2: UK Nuclear R&D Workforce: showing the reduction in workforce following the closure of Government nuclear laboratories 14 Recent developments 13 14 The nuclear sector in the UK 15 15 Spending on research 17 15 Table 1: Comparisons of government-funded research on energy and nuclear fission (figures for the latest available year) 16 The UK’s strengths in nuclear R&D and associated expertise 20 17 Figure 3: The Civil Nuclear Fission Research Landscape 19 Figure 4: The Nuclear Fission Research Landscape: Overview of Technology Readiness Levels 20 Organisations that fund or carry out nuclear R&D 23 20 Private industry 24 22 Research councils 25 20 Table 2: Annual Research Council spend on nuclear fission (£) 21 Universities 29 22 Other public bodies 30 22 International research collaborations 34 23 Chapter 3: The role of nuclear in the energy portfolio up to 2050 and beyond 36 24 A “portfolio approach”
    [Show full text]