Materials and Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lamyropsis Microcephala (Asteraceae) in Sardinia G Iuseppe F Enu,Efisio M Attana and G Ianluigi B Acchetta
Distribution, status and conservation of a Critically Endangered, extremely narrow endemic: Lamyropsis microcephala (Asteraceae) in Sardinia G iuseppe F enu,Efisio M attana and G ianluigi B acchetta Abstract The aims of this work were to verify the distri- In situ conservation measures such as the protection and bution and population size of Lamyropsis microcephala restoration of natural habitats are the best methods of (Asteraceae), characterize its habitat, assess its conserva- preserving biological diversity (Lande, 1988; Francisco- tion status and initiate conservation measures for this Ortega et al., 2000). However, in urgent situations ex situ Critically Endangered species. Distribution was determined conservation becomes an alternative way to prevent imme- by field surveys and mapping. To estimate population size diate extinction. One of the most effective ways to conserve and density 81 permanent monitoring plots were randomly ex situ plant diversity is storage in a seed bank, which is the established. Ex situ conservation measures were activated most practical method for preserving large amounts of by harvesting and appropriate storage of seed. We con- genetic material in a small space and with minimum risk of firmed the presence of L. microcephala at two previously genetic damage (Iriondo & Pe´rez, 1999). known sites and found it in two previously unknown locali- Within the Mediterranean biodiversity hotspot (Myers ties. The areas in which the species occur vary from 200 to et al., 2000), central northern Sardinia, including the 2 240,000 m , at altitudes of 1,450–1,820 m, on slopes of Gennargentu massif, has been identified as one of 52 15–45° with aspects from north to west. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Compositae Newsletter 2, 1975) Have at Last Been Published As Heywood, V.H., Harborne, J.B
ft Ml ' fft'-A Lb!V CCMPCSIT4E # NEWSLETTER Number Six June 1978 Charles Jeffrey, Editor, Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, U.K. Financial support of the NEWSLETTER is generously provided by Otto Koeltz Antiquariat, P.O. Box I36O, 624 Koenigstein-Taunus, B.R.D. EDITORIAL The proceedings of the Reading Symposium (Compositae Newsletter 2, 1975) have at last been published as Heywood, V.H., Harborne, J.B. & Turner, B.L. (eds.), The Biology and Chemistry of the Compositae , Academic Press, London, New York and San Francisco , 1978, price £55 (#107.50)* In conjunction with the papers by Carlquist, S., Tribal Interrelationships and Phylogeny of the Asteraceae (Aliso 8: 446-492, 1976), Cronquist, A., The " Compositae Revisited (Brittonia 29: 137-153, 1977) and Wagenits, G. t Systematics and Phylogeny of the Compositae (PI. Syst. Evol. 125: 29-46, 1976), it gives the first overall review of the family since Bentham's time. On the evidence provided, the infrafamilial classification proposed by Wagenitz is most strongly supported, to which that proposed by Carlquist is very similar, except for his placing of the Eupatorieae in the Cichorioideae instead of the Asteroideae . In the previous Newsletter, a list of workers on Compositae and their research projects was published. New and revised entries to this list are welcomed by the editor; please provide your name, institution, institutional address, new or current research projects, recent publications, intended expeditions and study visits, and any requests for material or information. Articles, book reviews, notices of meetings, and any news from individuals or institutions that may be useful to synantherologists anywhere are also invited. -
An Inventory of Vascular Plants Endemic to Italy
Phytotaxa 168 (1): 001–075 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Monograph ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.168.1.1 PHYTOTAXA 168 An inventory of vascular plants endemic to Italy LORENZO PERUZZI1*, FABIO CONTI2 & FABRIZIO BARTOLUCCI2 1Dipartimento di Biologia, Unità di Botanica, Università di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy; e-mail [email protected] 2Scuola di Scienze Ambientali, Università di Camerino – Centro Ricerche Floristiche dell’Appennino, Parco Nazionale del Gran Sasso e Monti della Laga, San Colombo, 67021 Barisciano (L'Aquila); e-mail [email protected]; [email protected] *author for correspondence Magnolia Press Auckland, New Zealand Accepted by Alex Monro: 12 Apr. 2014; published: 16 May 2014 1 Peruzzi et al. An inventory of vascular plants endemic to Italy (Phytotaxa 168) 75 pp.; 30 cm. 16 May 2014 ISBN 978-1-77557-378-4 (paperback) ISBN 978-1-77557-379-1 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/phytotaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. -
A Critically Endangered Endemic Species to Turkey
19/1 • 2020, 307–315 DOI: 10.2478/hacq-2020-0003 Conservation assessment and action on Lotus sanguineus (Fabaceae), a critically endangered endemic species to Turkey Ümit Subaşı1,*, Fatoş Şekerciler2 & Mecit Vural3 Key words: Conservation action, Abstract IUCN assessment, Lotus sanguineus Lotus sanguineus is one of the endemic taxa from Mediterranean Region of Turkey. (Vural) D. D. Sokoloff, Endemic, It has hitherto been known from type locality and was assessed under VU and Turkey. EN categories despite the lack of information on the population size, number of location and habitat quality. This study aims to determine the global conservation Ključne besede: varstvene akcije, status and conservation strategies of the narrow endemic species. We collected IUCN ocena, Lotus sanguineus all available data and evaluated them with the field studies. We reported the sizes (Vural) D. D. Sokoloff, endemit, of populations, altitude, coordinates, habitat types and the threats it faces for Turčija. each locality. GeoCAT analyses at global levels indicate the extent of occurrence 19.965 km2 and area of occupancy 9 km2 and there could be an inferred decline due to habitat loss and fragmentation of the original population, suggesting this species might be classified as Critically Endangered, based on criterium B1ab (i, ii, iii) + 2ab (i, ii, iii) in the Red List categorization. Conservation priorities include life history and ecology studies, in-situ conservation, population monitoring and ex-situ conservation to prevent the destruction of the existing gene pool. Izvleček Lotus sanguineus je ena izmed endemitskih vrst mediteranske regije v Turčiji. Dosedaj je poznana samo s tipske lokalitete in je uvrščena v kategoriji VU in EN, kljub pomanjkanju informacij o velikosti populacije, številu lokalitet in kakovosti habitata. -
The Species-Specific Monitoring Protocols for Plant Species of Community Interest in Italy
Plant Sociology, Vol. 54, No. 2, Suppl. 1, December 2017, pp. 77-83 DOI 10.7338/pls2017542S1/07 The species-specific monitoring protocols for plant species of Community interest in Italy S. Ercole1, G. Fenu2, V. Giacanelli1, M.S. Pinna2, T. Abeli3, M. Aleffi4, F. Bartolucci5, D. Cogoni2, F. Conti5, A. Croce6, G. Domina7, B. Foggi8, T. Forte9, D. Gargano10, M. Gennai8, C. Montagnani11, G. Oriolo12, S. Orsenigo13, S. Ravera14, G. Rossi3, A. Santangelo15, C. Siniscalco9, A. Stinca16, E. Sulis2, A. Troia17, M. Vena10, P. Genovesi1, G. Bacchetta2 1Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Na- tional Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 60, I-00144 Roma, Italy. 2Centre for the Conservation of Biodiversity (CCB), Department of Environment and Life Science (DISVA), Univer- sity of Cagliari, v.le Sant'Ignazio da Laconi 11-13, I-09123 Cagliari, Italy. 3Department of Earth and Environmental Sciences, University of Pavia, via S. Epifanio 14, I-27100 Pavia, Italy. 4School of Biosciences and Veterinary Medicine, Plant Diversity & Ecosystems Management Unit, Bryology Labo- ratory & Herbarium, Camerino University, via Pontoni 5, I-62032 Camerino (MC), Italy. 5Floristic Research Center of the Apennines, University of Camerino - Gran Sasso-Laga National Park, San Colom- bo, I-67021 Barisciano (AQ), Italy. 6via Chiesa, 44, frazione Tuoro, I-81057 Teano (CE), Italy. 7Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, viale delle Scienze, bldg. 5, I-90128 Palermo, Italy. 8Department of Biology, University of Firenze, via La Pira 4, I-50121 Firenze, Italy. 9Department of Life Sciences and Systems Biology, University of Torino, viale P.A. -
Lamyropsis Microcephala (Asteraceae) in Sardinia G Iuseppe F Enu,Efisio M Attana and G Ianluigi B Acchetta
Distribution, status and conservation of a Critically Endangered, extremely narrow endemic: Lamyropsis microcephala (Asteraceae) in Sardinia G iuseppe F enu,Efisio M attana and G ianluigi B acchetta Abstract The aims of this work were to verify the distri- In situ conservation measures such as the protection and bution and population size of Lamyropsis microcephala restoration of natural habitats are the best methods of (Asteraceae), characterize its habitat, assess its conserva- preserving biological diversity (Lande, 1988; Francisco- tion status and initiate conservation measures for this Ortega et al., 2000). However, in urgent situations ex situ Critically Endangered species. Distribution was determined conservation becomes an alternative way to prevent imme- by field surveys and mapping. To estimate population size diate extinction. One of the most effective ways to conserve and density 81 permanent monitoring plots were randomly ex situ plant diversity is storage in a seed bank, which is the established. Ex situ conservation measures were activated most practical method for preserving large amounts of by harvesting and appropriate storage of seed. We con- genetic material in a small space and with minimum risk of firmed the presence of L. microcephala at two previously genetic damage (Iriondo & Pe´rez, 1999). known sites and found it in two previously unknown locali- Within the Mediterranean biodiversity hotspot (Myers ties. The areas in which the species occur vary from 200 to et al., 2000), central northern Sardinia, including the 2 240,000 m , at altitudes of 1,450–1,820 m, on slopes of Gennargentu massif, has been identified as one of 52 15–45° with aspects from north to west. -
Moderate Genetic Diversity but Narrow Climatic
Perspectives in Plant Ecology, Evolution and Systematics 16 (2014) 190–202 Contents lists available at ScienceDirect Perspectives in Plant Ecology, Evolution and Systematics jou rnal homepage: www.elsevier.com/locate/ppees Research article Narrow endemics to Mediterranean islands: Moderate genetic diversity but narrow climatic niche of the ancient, critically endangered Naufraga (Apiaceae) a,∗ a,1 Mario Fernández-Mazuecos , Pedro Jiménez-Mejías , b a Xavier Rotllan-Puig , Pablo Vargas a Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain b Institut Mediterrani d‘Estudis Avanc¸ ats (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain a r t i c l e i n f o a b s t r a c t Article history: Narrow endemics constitute the cornerstone of Mediterranean plant diversity. Naufraga balearica (Api- Received 18 November 2013 aceae) is a critically endangered, extremely narrow endemic plant from the western Mediterranean island Received in revised form 18 March 2014 of Majorca. Because the species belongs to a monotypic genus, N. balearica was hypothesized to be a Accepted 4 May 2014 palaeoendemism. Here we conducted phylogenetic dating, population genetic and climatic niche analy- Available online 16 May 2014 ses in order to understand the evolutionary history and conservation perspectives of this flagship species. Phylogenetic dating analysis of nuclear and plastid DNA sequences revealed a late Miocene to early Keywords: Pliocene divergence between Naufraga and its sister genus Apium, supporting the palaeoendemic sta- Palaeoendemism tus of the former. Amplified fragment length polymorphism (AFLP) markers and plastid DNA sequences Amplified fragment length polymorphism of the five Naufraga populations revealed moderate genetic diversity. -
Tıbbi Ve Aromatik Bitki Olarak Kullanılan Tanacetum Sp. (Pire Otu) Türlerinin Genetik Benzerliğinin Moleküler Yöntemler Ile Belirlenmesi
MJAVL Manas Journal of Agriculture Veterinary and Life Sciences ISSN 1694-7932 | e-ISSN 1694-7932 Volume 9 (Issue 1) (2019) Pages 22-29 Tıbbi ve Aromatik Bitki Olarak Kullanılan Tanacetum sp. (Pire otu) Türlerinin Genetik Benzerliğinin Moleküler Yöntemler ile Belirlenmesi Nalan YILDIRIM DOĞAN1, Mustafa KORKMAZ1, Hüseyin BULUT2* 1Erzincan Binali Yıldırım Üniversitesi Fen Edebiyat Fakültesi Biyoloji Bölümü, Erzincan, Türkiye 2Erzincan Binali Yıldırım Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Eczane Hizmetleri Bölümü, Erzincan, Türkiye *e-mail: [email protected] ÖZET MAKALE BİLGİSİ Bu çalıĢmada Türkiye'nin farklı bölgelerinden toplanan on beĢ Tanacetum türünün genetik Araştırma Makalesi benzerliklerinin tespiti için RAPD ve ISSR markerleri kullanıldı. RAPD analizinde türler Geliş: 18.05.2019 arasında ortalama % 88.8 polimorfizm tespit edilmiĢtir. Benzerlik matriksi en düĢük genetik Kabul:27.09.2019 benzerliğin T. vulgare ve T. Heteroatom (0.198) arasında, en yüksek genetik benzerliğin ise T. nitens ve T. heteroatom (0.938) arasında olduğunu ortaya koymuĢtur. Anahtar kelimeler: ISSR primerlerinden elde edilen polimorfik bant yüzdesi % 76.9 ile % 100 arasındadır. Türler Genetik Benzerlik, ISSR, arasındaki benzerlik matriksi en düĢük genetik benzerliğin T. nitens ve T. angyrophyllum RAPD, Tanacetum, arasında (0.238), en yüksek genetik benzerliğin ise T. argenteum ve T. nitens (0,891) Tıbbi ve Aromatik Bitki. arasında olduğunu ortaya koymuĢtur. RAPD ve ISSR analizlerinin veri kombinasyonu, türlerin iki ana gruba ayrıldığı ana bileĢenlerin analizine tabi tutulmuĢtur. Grup I' de 13 tür, grup 2'de 2 tür yer aldı. Benzerlik matris değerleri 0.186 ile 0.813 arasındadır. ÇalıĢmadan elde edilen sonuçlar ISSR ve RAPD tekniklerinin, Asteraceae familyasındaki genetik çeĢitlilik ve benzerlik gibi türlerin genetik iliĢkilerinin çözümünde güçlü bir araç olduğunu göstermiĢtir. -
European Red List of Vascular Plants Melanie Bilz, Shelagh P
European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission This publication has been prepared by IUCN (International Union for Conservation of Nature). The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the European Commission or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the European Commission or IUCN. Citation: Bilz, M., Kell, S.P., Maxted, N. and Lansdown, R.V. 2011. European Red List of Vascular Plants. Luxembourg: Publications Office of the European Union. Design and layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: Narcissus nevadensis is endemic to Spain where it has a very restricted distribution. The species is listed as Endangered and is threatened by modifications to watercourses and overgrazing. © Juan Enrique Gómez. All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Available from: Luxembourg: Publications Office of the European Union, http://bookshop.europa.eu IUCN Publications Services, www.iucn.org/publications A catalogue of IUCN publications is also available. -
Plants and Climate Change in Europe
Strasbourg, 2 September 2009 T-PVS/Inf (2009) 9 [Inf09e_2009.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 29th meeting Bern, 23-26 November 2009 __________ THE IMPACTS OF CLIMATE CHANGE ON PLANT SPECIES IN EUROPE FINAL VERSION Report prepared by Professor Vernon Heywood School of Biological Sciences, University of Reading With contributions by Dr Alastair Culham This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2009) 9 - 2 – EXECUTIVE SUMMARY A summary is given of the current state of conservation of plant diversity in Europe and gaps in our baseline knowlege are identified. Published data on the recent effects on climate change on European plants are reviewed, including changes in phenology and altitudinal shifts. All the available evidence points to the high probability that plant diversity, both at the landscape and ecosystem level and at the species and population level will be severely impacted by climate change over the course of this century, interacting with other forms of global change such as population growth and movement and changes in disturbance regimes. The impacts will not be uniform, with some regions such as northern Europe experiencing moderate changes and turnover of species, while others, especially in the Mediterranean region and high mountain ranges may expect serious disruption of existing ecosystems and their replacement with novel assemblages of species and the loss of considerable numbers of currently rare and endangered species in specialized habitats. -
Climate Change and the Biodiversity of European Islands
Strasbourg, 15 September 2010 T-PVS/Inf (2010) 9 [Inf09e_2010] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 30 th meeting Strasbourg, 6-9 December 2010 __________ CLIMATE CHANGE AND THE BIODIVERSITY OF EUROPEAN ISLANDS September 2010 Document prepared by Ms Cordula Epple, UNEP-WCMC & Mr Yves de Soye (Consultant, France) This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2010) 9 - 2 – TABLE OF CONTENTS Executive summary ............................................................................................................................. 3 1. Introduction ................................................................................................................................. 3 2. Island biodiversity in Europe ...................................................................................................... 4 a. General features of island biodiversity.................................................................................... 4 b. Geographic overview of European islands and their main characteristics ................................ 5 c; Importance of islands for biodiversity in Europe .................................................................... 9 d. State of conservation efforts on European islands ................................................................... 10 3. Impacts of climate change on the biodiversity of European islands