Imece2008-66518

Total Page:16

File Type:pdf, Size:1020Kb

Imece2008-66518 Proceedings of IMECE2008 2008 ASME International Mechanical Engineering Congress and Exposition October 31-November 6, 2008, Boston, Massachusetts, USA IMECE2008-66518 APPLICATION OF THE RAPID UPDATE CYCLE (RUC) TO AIRCRAFT FLIGHT SIMULATION Yan Zhang Seamus McGovern EG&G Technical Services U.S. DOT National Transportation Systems Center Cambridge, Massachusetts, USA Cambridge, Massachusetts, USA ABSTRACT ters for Environmental Prediction (NCEP), the National Oceanic An aircraft flight simulation model under development aims and Atmospheric Administration (NOAA), and produces numer- to provide a computer simulation tool to investigate aircraft flight ical weather prediction data hourly with horizontal spatial reso- performance during en route flight and landing under various lution of 20 km or 13 km, and vertical pressure resolution of 25 atmospherical conditions [1]. Within this model, the air pres- mb [4]. The RUC provides a broad range of environmental pa- sure and temperature serve as important parameters for deriv- rameters including, as a function of 37 constant pressure levels, ing the true airspeed (TAS). Also important are the wind speed the geopotential height, temperature, relative humidity, horizon- and direction, which will be direct inputs for the flight simulation tal wind velocity, and pressure vertical velocity. However, the model. air pressure is not provided in RUC data in terms of the geodetic In this paper, the Rapid Update Cycle (RUC) data, pro- location, rather it is used as the reference to specify other param- vided hourly by the National Centers for Environmental Predic- eters such as the geopotential height, temperature, wind veloc- tion (NCEP) and the National Oceanic and Atmospheric Admin- ity, etc., preventing the RUC data to be directly used for a given istration (NOAA) are used to derive the atmospherical param- geodetic location of an aircraft. eters. We relate the pressure to the geodetic altitude by using In the paper, the pressure is retrieved for a given geodetic the geopotential height from the RUC data and the theoretical location by using the geopotential height from the RUC data and model. Then the resultant pressure as a function of the geodetic a theoretical gravity model [5]. Then the resultant pressure is altitude is used to retrieve other parameters such as the temper- used to extract other RUC data, hence they can be represented as ature and wind velocity by multi-dimensional interpolation. Air- a function of a geodetic location. In addition, formulations and plane flights simulated by the X-Plane°R simulator with the input procedures of retrieving/processing the RUC data for the need of of the RUC data are demonstrated. aircraft flight simulation are presented, including the coordinate transformation, geopotential height modeling, data interpolation, and time averaging. We will also demonstrate airplane’s flight performance by using the existing aircraft flight simulator, the INTRODUCTION X-Plane°R V8.40 with the input of the RUC data. An aircraft flight simulation model takes atmospherical data as part of the input for its flight dynamics and cockpit display modeling. Among these data, the air pressure serves as an im- portant parameter for deriving the true airspeed (TAS) [and ulti- DESCRIPTION OF THE SIMULATION ALGORITHMS mately the ground speed (GS)] from the indicated airspeed (IAS). The functionality of the aircraft simulation with the input The wind speed and direction are also important factors that di- of environmental data from RUC is illustrated by the informa- rectly affect the airplane’s flight dynamics. tion flowchart shown in Fig. 1. The outputs from the aircraft The Rapid Update Cycle (RUC) data is adopted in this flight model are the flight time t and the aircraft’s “true” location paper to obtain the most accurate and realistic atmospherical (geodetic latitude f, longitude l, and altitude h). The RUC data data [2, 3]. The RUC runs operationally at the National Cen- are available hourly, therefore we need to read the RUC data at 1 Copyright °c 2008 by ASME The geopotential height, temperature, and easterly and northerly wind velocities have, respectively, 37 records at dif- ferent pressure levels from 1;000 mb to 100 mb with decreasing step of 25 mb. These data for a particular location in the airspace are projected to the Lambert conformal surface, the cone tangent to the spherical Earth with the apex over the North Pole. The pa- rameters for the Lambert conformal projection, such as the grid 0 length dx and dy, longitude of the reference meridian l0, latitude 0 0 0 of the tangent point f0, location of the first grid point (f1 and l1), the radius of the spherical Earth, as listed in Tab. 1, are defined in the RUC data and are useful for coordinate transformations as shown later in the paper. Lambert Coordinate Transformation. The RUC pro- vides the data in the Lambert conformal projection with a uni- form grid (I;J). In order to achieve fast data interpolation by adopting the integers I and J as the indices of the memory ad- dresses that contain the data, we convert airplane’s geodetic po- sition (latitude, longitude, and altitude), output from the aircraft simulation model, to the Lambert coordinates. First, we convert the aircraft’s geodetic location to the geo- centric location. Given the geodetic latitude (f), longitude (l) and geodetic height (h), the geocentric latitude (f0), longitude (l0) and radius (R) can be solved in closed form. By considering the Earth as an ellipsoid with semi-major axis a and flattening f [thus the semi-minor axis can be computed by b = a(1 ¡ f )], and defining the first eccentricity squared as e2 = 2 f ¡ f 2, the Cartesian coordinates of a point (X;Y;Z) in the Earth-Centered Figure 1. THE INFORMATION FLOWCHART OF THE AIRCRAFT Earth-Fixed (ECEF) frame can be expressed both geocentrically FLIGHT SIMULATION WITH THE INPUT OF THE RUC DATA. THE and geodetically as DESCRIPTION OF THE SYMBOLS AND THE FUNCTIONS CAN BE FOUND IN THE NOMENCLATURE AND IN THE TEXT. 8 µ ¶ > 0 0 a > X = Rcosf cosl = + h cosfcosl > µ c ¶ two adjacent hours tn and tn+1, where tn < t < tn+1, then process <> 0 0 a the RUC data for the time t by data interpolation/averaging. The Y = Rcosf sinl = + h cosfsinl (1) > à ¡ c ¢ ! details of the algorithms are described in the following. > 2 > a 1 ¡ e > Z = Rsinf0 = + h sinf : c RUC Data Retrieval The RUC data, archived in the GRIB format [6] in q the NOAA National Operational Model Archive and Dis- where c = 1 ¡ e2 sin2 f. Eliminating R and l0 (which is equal tribution System (NOMADS) [7], can be downloaded for 0 a particular RUC Time specified by the year, month, day, to l), we get the equation that can be used to solve f by provid- and UTC hour, and decoded by using the modified C/C++ ing f and h: code originally developed by Ebisuzaki [8]. For exam- ·µ ¶ ¸ ple, for the UTC time 16:00, May 1st, 2007, the RUC a f0 = tan¡1 1 ¡ e2 tanf (2) data with the file name ruc2_252_20070501_1600_000.grb a + hc (where the number ‘252’ specifies the particular grid with 20 km resolution [7]) can be found and downloaded from the directory 200705/20070501/ in the web site Next, we convert the geocentric latitude and longitude to the http://nomads.ncdc.noaa.gov/data/ruc/. In the RUC coordinates in the Lambert conformal projection. Consider n¤ = 0 data which contains 315 data records, the geopotential height H sinf0 to be the constant of the cone for the Lambert conformal (record # 1–37), temperature (record # 38–74), and wind (record projection where H = 1 or ¡1 when the apex is over the North #112–185) will be used in this paper. or South Pole, respectively. In terms of the pixel index number 2 Copyright °c 2008 by ASME (i; j) of the image, the local coordinates (x;y) is expressed by Table 1. PARAMETERS IN RUC FOR LAMBERT CONFORMAL PRO- JECTION ½ Parameter Notation Value x = (i ¡ 1)dx + x1 (3) 6 y = ¡( j ¡ 1)dy + y1 Radius of the R0 6:36747 £ 10 m Spherical Earth where dx and dy are grid lengths in x and y-direction, respec- 0 ± Latitude of First f1 16:281000 tively, and the indices (i; j) do not have to be integers. The local Grid Point coordinates of the left lower pixel (x ;y ) are calculated from 1 1 0 ± Longitude of First l1 233:862000 8 0 Grid Point > s1R0 cosf £ ¡ ¢¤ < x = 1 sin n¤ l0 ¡ l0 1 n¤ 1 0 Latitude of the Point 0 (4) 0 ± > s1R0 cosf £ ¡ ¢¤ at Which the Secant f 25 : y = 1 cos n¤ l0 ¡ l0 0 1 n¤ 1 0 Cone Tangent to the Spherical Earth In addition, the image scale of the Lambert conformal projection, Longitude of the l0 265± s , is defined by, 0 1 Reference Meridian µ ¶ ¤ µ ¶ ¤ X-direction Grid Length dx 20,318.000 m cosf0 1¡n 1 + n n s = 0 (5) 1 0 0 Y-direction Grid Length dy 20,318.000 m cosf1 1 + H sinf1 0 0 where (f1;l1) depicts the geocentric coordinates of the left lower and J < j < J + 1, are used for the 2-D data interpolation. We pixel. The detail derivation for Eqns. (4) and (5) can be found first determine whether the point (i; j) is in the triangle ‘A’ with 0 0 in [9]. Given the geocentric coordinates (f ;l ), we define the vertices (I;J), (I + 1;J), and (I + 1;J + 1) or in the triangle ‘B’ polar angle, with vertices (I + 1;J + 1), (I;J + 1), and (I;J) by checking the ratio r = ( j ¡ J)=(i ¡ I).
Recommended publications
  • B3 : Variation of Gravity with Latitude and Elevation
    Geophysics 210 September 2008 B3 Variation of gravity with latitude and elevation By measuring the subtle changes in the acceleration of gravity from one place to another, it is possible to learn about changes in subsurface density. However, other factors can cause gravity to vary with position on the Earth. These effects must be removed from measurements in order to use gravity data to study the interior of the Earth. B3.1 Variation of gravity with latitude It is observed that at the Equator, g E = 978,033 mgal while at the poles g P = 983,219 mgal This difference is 5186 mgal, which is a lot larger than changes in gravity because of subsurface density. Can this observation be explained by the fact that the Earth is a rotating ellipsoid? (A)The Earth is distorted by rotation The Earth is an oblate spheroid. R E = 6378 km R P = 6357 km. Qualitative answer Since a point on the Equator is further from the centre of the Earth than the poles, gravity will be weaker at the Equator and g E < g P Quantitative answer GM E 24 For a sphere g (r) = where the mass of the Earth, ME = 5.957 10 kg. r 2 At the North Pole, RP = 6357 km and g P = 983,219 mgal. If we move up 21 km to the equator, the decrease in gravity will be 6467 mgal Thus g E = g P - 6467 mgal, which is too much to explain the observed difference between the Equator and the Poles. 1 Geophysics 210 September 2008 (B) - Centrifugal forces vary with latitude The rotation of the Earth also causes gravity to vary with latitude.
    [Show full text]
  • Instruments and Gravity Processing Drift and Tides
    Gravity 5 Objectives Instruments Gravity Gravity 5 Corrections Instruments and gravity processing Drift and Tides Latitude Free Air Chuck Connor, Laura Connor Atmosphere Simple Bouguer Summary Potential Fields Geophysics: Week 5 Further Reading EOMA Gravity 5 Objectives for Week 5 Gravity 5 Objectives Instruments • Gravity Learn about gravity Corrections instruments Drift and Tides • Learn about Latitude processing of gravity Free Air data Atmosphere • Make the Simple Bouguer corrections to Summary calculate a simple Further Bouguer anomaly Reading EOMA Gravity 5 The pendulum The first gravity data collected in the US were Gravity 5 obtained by G. Putman working for the Coast and Geodetic survey, around 1890. These gravity data comprised a set of 26 measurements made along a roughly E-W transect across the entire continental Objectives US. The survey took about 6 months to complete and was designed primarily to investigate isostatic Instruments compensation across the continent. Gravity Putnam used a pendulum gravity meter, based on the Corrections relation between gravity and the period of a pendulum: Drift and Tides 4π2l g = Latitude T 2 Free Air where: l is the length of the pendulum Atmosphere T is the pendulum period Simple Example Seems easy enough to obtain an absolute gravity Bouguer reading, but in practice pendulum gravity meters are Assuming the period of a pendulum is known to be 1 s Summary problematic. The length of the pendulum can change exactly, how well must the length of the pendulum be with temperature, the pendulum stand tends to sway, known to measure gravity to 10 mGal precision? Further air density effects the measurements, etc.
    [Show full text]
  • Preparation of Papers for AIAA Technical Conferences
    Gravity Modeling for Variable Fidelity Environments Michael M. Madden* NASA, Hampton, VA, 23681 Aerospace simulations can model worlds, such as the Earth, with differing levels of fidel- ity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high- order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall accelera- tion. However, free-fall acceleration is not equal to all observers. To observers on the sur- face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world’s rotation. On the other hand, free-fall accelera- tion equals gravitational attraction to an observer in inertial space. Surface-observed simu- lations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the “gravity” term; such a model actually combines gravitational at- traction with centrifugal acceleration due to the Earth’s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall.
    [Show full text]
  • Gravity Anomalies - D
    GEOPHYSICS AND GEOCHEMISTRY – Vol.III - Gravity Anomalies - D. C. Mishra GRAVITY ANOMALIES D. C. Mishra National Geophysical Research Institute, Hyderabad, India Keywords: gravity anomalies, isostasy, Free Air and Bouguer gravity anomalies Contents 1. Introduction 2. Free Air and Bouguer Gravity Anomalies 3. Separation of Gravity Anomalies 3.1 Regional and Residual Gravity Fields 3.2 Separation Based on Surrounding Values 3.3 Polynomial Approximation 3.4 Digital Filtering 4. Analytical Operations 4.1 Continuation of the Gravity Field 4.2 Derivatives of the Gravity Field 5. Isostasy 5.1 Isostatic Regional and Residual Fields 5.2 Admittance Analysis and Effective Elastic Thickness 6. Interpretation and Modeling 6.1 Qualitative Interpretation and Some Approximate Estimates 6.2 Quantitative Modeling Due to Some Simple shapes 6.2.1 Sphere 6.2.2 Horizontal Cylinder 6.2.3 Vertical Cylinder 6.2.4 Prism 6.2.5 Contact 6.3 Gravity Anomaly Due to an Arbitrary Shaped Two-dimensional Body 6.4 Basement Relief Model 7. Applications 7.1 Bouguer Anomaly of Godavari Basin, India 7.2 Spectrum and Basement Relief 7.3 Modeling of Bouguer Anomaly of Godavari Basin Along a Profile 7.4 SomeUNESCO Special Applications – EOLSS Glossary Bibliography SAMPLE CHAPTERS Biographical Sketch Summary Gravity anomalies are defined in the form of free air and Bouguer anomalies. Various methods to separate them in the regional and the residual fields are described, and their limitations are discussed. Polynomial approximation and digital filtering for this purpose suffer from the arbitrary selection of the order of polynomial and cut off frequency, respectively. However, some constraints on the order of these anomalies can ©Encyclopedia of Life Support Systems (EOLSS) GEOPHYSICS AND GEOCHEMISTRY – Vol.III - Gravity Anomalies - D.
    [Show full text]
  • Tutorial Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics
    GEOPHYSICS, VOL. 66, NO. 6 (NOVEMBER-DECEMBER 2001); P. 1660–1668, 4 FIGS., 3 TABLES. Tutorial Ellipsoid, geoid, gravity, geodesy, and geophysics Xiong Li∗ and Hans-Ju¨rgen Go¨tze‡ ABSTRACT surement we could make accurately (i.e., by leveling). Geophysics uses gravity to learn about the den- The GPS delivers a measurement of height above the sity variations of the Earth’s interior, whereas classical ellipsoid. In principle, in the geophysical use of gravity, geodesy uses gravity to define the geoid. This difference the ellipsoid height rather than the elevation should be in purpose has led to some confusion among geophysi- used throughout because a combination of the latitude cists, and this tutorial attempts to clarify two points of correction estimated by the International Gravity For- the confusion. First, it is well known now that gravity mula and the height correction is designed to remove anomalies after the “free-air” correction are still located the gravity effects due to an ellipsoid of revolution. In at their original positions. However, the “free-air” re- practice, for minerals and petroleum exploration, use of duction was thought historically to relocate gravity from the elevation rather than the ellipsoid height hardly in- its observation position to the geoid (mean sea level). troduces significant errors across the region of investi- Such an understanding is a geodetic fiction, invalid and gation because the geoid is very smooth. Furthermore, unacceptable in geophysics. Second, in gravity correc- the gravity effects due to an ellipsoid actually can be tions and gravity anomalies, the elevation has been used calculated by a closed-form expression.
    [Show full text]
  • Tutorial Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics
    GEOPHYSICS, VOL. 66, NO. 6 (NOVEMBER-DECEMBER 2001); P. 1660Ð1668, 4 FIGS., 3 TABLES. Tutorial Ellipsoid,geoid,gravity,geodesy,andgeophysics XiongLi¤andHans-Ju¨ rgenGo¨ tzez ABSTRACT surement we could make accurately (i.e., by leveling). Geophysics uses gravity to learn about the den- The GPS delivers a measurement of height above the sity variations of the Earth’s interior, whereas classical ellipsoid. In principle, in the geophysical use of gravity, geodesy uses gravity to define the geoid. This difference the ellipsoid height rather than the elevation should be in purpose has led to some confusion among geophysi- used throughout because a combination of the latitude cists, and this tutorial attempts to clarify two points of correction estimated by the International Gravity For- the confusion. First, it is well known now that gravity mula and the height correction is designed to remove anomalies after the “free-air” correction are still located the gravity effects due to an ellipsoid of revolution. In at their original positions. However, the “free-air” re- practice, for minerals and petroleum exploration, use of duction was thought historically to relocate gravity from the elevation rather than the ellipsoid height hardly in- its observation position to the geoid (mean sea level). troduces significant errors across the region of investi- Such an understanding is a geodetic fiction, invalid and gation because the geoid is very smooth. Furthermore, unacceptable in geophysics. Second, in gravity correc- the gravity effects due to an ellipsoid actually can be tions and gravity anomalies, the elevation has been used calculated by a closed-form expression.
    [Show full text]
  • Evaluation of Accuracy of the Geodetic Reference Systems for the Modelling of Normal Gravity Fields of Nigeria
    www.ccsenet.org/apr Applied Physics Research Vol. 2, No. 2; November 2010 Evaluation of Accuracy of the Geodetic Reference Systems for the Modelling of Normal Gravity Fields of Nigeria A. A. Okiwelu (Corresponding author) Geophysics unit, Department of physics University of Calabar, Nigeria Tel: 234-803-400-3637 E-mail: [email protected] E. E. Okwueze Geophysics Unit, Department of Physics University of Calabar, Nigeria Tel: 234-803-543-2338 E-mail: [email protected] C. E. Onwukwe Department of Maths/Statistics and Computer Science University of Calabar, Nigeria Tel: 234-803-713-4718 E-mail: [email protected] Abstract The normal gravity fields of Nigeria have been modeled exploiting the Geodetic Reference System 1930 (GRS-30), Geodetic reference system 1967 (GRS-1967) and the world geodetic reference system 1984 (WGS-84). The determination of the normal gravity fields from the three Geodetic Reference Systems were carried out to evaluate the accuracy of one reference datum with respect to another. Descriptive statistics of the normal gravity field values modeled on regional and local scales showed a large difference (16.11mGal ) between the 1930 reference earth model (GRS-30) and 1967 reference earth model (GRS-67). A large difference was also established between the 1930 and 1984 reference earth models. The large difference in the mean of normal gravity field is attributed to error inherent in the Potsdam value (16mGal ). However, the small difference in normal gravity field values between the 1967 and 1984 reference systems is a pointer that the choice of either application in geophysical exploration or geodetic applications is of minor importance.
    [Show full text]
  • DOİ:10.5578/Fmbd.67502 the Comparison of Gravity Anomalies
    Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 18 (2018) 015504 (981-990) AKU J. Sci. Eng. 18 (2018) 015504 (981-990) DOİ: 10.5578/fmbd.67502 Araştırma Makalesi / Research Article The Comparison of Gravity Anomalies based on Recent High-Degree Global Models Mustafa Yılmaz1,*, Bürhan Kozlu2 1 Afyon Kocatepe Üniversitesi, Mühendislik Fakültesi, Harita Mühendisliği Bölümü, Merkez-Afyonkarahisar, Türkiye 2 Şenoğlu Harita Ticaret Limited Şirketi, Soma-Manisa, Türkiye *Corresponding author, e-mail: [email protected] Geliş Tarihi:03.07.2018 ; Kabul Tarihi:03.12.2018 Abstract The Earth system generates different phenomena that are observable at the surface of the Earth such as: Mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: Shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observable, and techniques in geodesy are related to the gravity field. Keywords Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the Free-air gravity anomaly; geodetic observations made on the physical surface of the Earth into the geometrical surface in which Bouguer gravity anomaly; positions are mathematically defined. In this paper, the main components of the gravity field modelling, Global model; (Free-air and Bouguer) gravity anomalies are calculated via recent high-degree global models Land gravity.
    [Show full text]
  • By Urho Antti Kalevl Uotila I960
    Copyright "by Urho Antti Kalevl Uotila i960 INVESTIGATIONS ON THE GRAVITY FIELD AND SHAPE OF THE EARTH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of The Ohio State University By URHO ANTTI KALEVI UOTILA, M.Sc. ****** The Ohio State University 1959 Approved hy: W , R Adviser Department of Geology (Geodetic Sciences) ii PREFACE Geodetic science, as Dr. Welkko A. Heiskanen has long maintained, has had a great need for a world-wide geodetic system which would connect the different regional geodetic systems of the world. In recent years, the need of such a globe-spanning system has also been increasingly recognized by the Armed Services, particularly the United States Air Force, as a basis for obtaining the accurate distances and directions so important to our national defense In this Jet flight era. These needs, the academic and the military, were admirably combined with the establishment In 1950 of the World-Wide Gravity Project by Dr. Heiskanen, under the sponsorship of the United States Air Force, at the Mapping and Charting Research Laboratory of The Ohio State University Research Foundation. Under this significant program, observational gravity data from various agencies all over the world were, and continue to be, channeled into Columbus, adjusted to one reference system (the Potsdam system), translated Into mean free air gravity anomalies, and finally used for computations of the undulations of the geold and the deflection of the vertical. Because of the vast amounts of observational data handled by the Laboratory and the complexity of the computations Involved, the writer Ill had the opportunity to develop a variety of new methods and techniques particularly as pertains to high-speed computational operations.
    [Show full text]
  • Comparison of Theoretical and Measured Acceleration Due to Gravity
    ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 3, March 2016 Comparison of Theoretical and Measured Acceleration Due to Gravity Mujahid Hassan Sani1, Jamilu Tijjani Baraya2, Sunusi Mohammed Mu’awuya3, Auwal Abdulkarim4 P.G. Student, Department of Physics, Jodhpur National University, Jodhpur, Rajasthan, India1 P.G. Student, Department of Physics, Jodhpur National University, Jodhpur, Rajasthan, India2 P.G. Student, Department of Physics, Jodhpur National University, Jodhpur, Rajasthan, India3 P.G. Student, Department of Physics, Jodhpur National University, Jodhpur, Rajasthan, India4 ABSTRACT: The earth gravity pulls everything on or near the planet towards its centre. The force responsible for this pull is called the gravitational force and it varies from place to place. This paper work presents the experimental value of theoretical acceleration due to gravity g which was obtained in five (5) different locations and their average was also obtained as 9.655678 m/s2, also the value of theoretical acceleration due to gravity g was obtained in that five (5) different locations where their average was obtained as 9.7897034 m/s2. By comparing the two it was found that the theoretical value leads the experimental value by 0.1340254 m/s2 which were due to experimental errors. KEYWORDS: Acceleration, pendulum bob, latitude, Altitude. I. INTRODUCTION The acceleration due to gravity is the most fundamental parameter in Physics. The motion of object on the earth’s surface, atmosphere, etc. is governed by the earth’s gravity. Earth’s gravity is the force with which the earth attracts the object towards its centre.
    [Show full text]
  • On Different Techniques for the Calculation of Bouguer Gravity
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2013-01-01 On Different Techniques For The alcC ulation Of Bouguer Gravity Anomalies For Joint Inversion And Model Fusion Of Geophysical Data In The Rio Grande Rift Azucena Zamora University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Applied Mathematics Commons, and the Geophysics and Seismology Commons Recommended Citation Zamora, Azucena, "On Different Techniques For The alcC ulation Of Bouguer Gravity Anomalies For Joint Inversion And Model Fusion Of Geophysical Data In The Rio Grande Rift" (2013). Open Access Theses & Dissertations. 1965. https://digitalcommons.utep.edu/open_etd/1965 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. ON DIFFERENT TECHNIQUES FOR THE CALCULATION OF BOUGUER GRAVITY ANOMALIES FOR JOINT INVERSION AND MODEL FUSION OF GEOPHYSICAL DATA IN THE RIO GRANDE RIFT AZUCENA ZAMORA Program in Computational Science APPROVED: Aaron Velasco, Chair, Ph.D. Rodrigo Romero, Ph.D. Vladik Kreinovich, Ph.D. Benjamin C. Flores, Ph.D. Dean of the Graduate School Para mi familia con amor Sin ustedes nada de esto seria posible ON DIFFERENT TECHNIQUES FOR THE CALCULATION OF BOUGUER GRAVITY ANOMALIES FOR JOINT INVERSION AND MODEL FUSION OF GEOPHYSICAL DATA
    [Show full text]
  • Contributions of Satellite-Determined Gravity Results in Geodesy
    , ", -' - - -' PREPRINT CONTRIBUTIONS OF SATELLITE-DETERMINED GRAVITY RESULTS IN GEODESY-, _- MOHAMMAD ASADULLAH KHAN - - S,(NAS-T-X-70634) CONTRIBUTIONS OF N74-22057 SATELLITE-DETERBINED GRAVITY RESULTS IN GEODESY (NASA) -28& p HC $4.50 CSCL 08E Unclas G3/13 38362 "-- -,"< "-- "--_ .- FEBRUARY 1974 ". _C " -- N S- GODARD SPACE FLIGHT CENTER GREENBELT, MARYLAND ,-' . - I "- - "- ". - N - - N' 2' - - -' ' N" I - - -- ,- - Tnn, N N,--' - ' N Te n 1-98-0 2- 4 K- N- K N- -. -'r N''"ain-oenn JJ '' 'biit f etcnat 'Ni -ou ~ euci '- noainDvioCd 5 'N 'Nd -'ac 'lgh -ete ' at - - -reyN ' - - '----'N77 -'iehne 30 - - 'N <N CONTRIBUTIONS OF SATELLITE-DETERMINED GRAVITY RESULTS IN GEODESY Mohammad Asadullah Khan * On leave from University of Hawaii Goddard Space Flight Center Greenbelt, Maryland 20771 ABSTRACT Different forms of the theoretical gravity formula are summarized and methods of standardization of gravity anomalies obtained from satellite gravity and terrestrial gravity data are discussed in the context of three most commonly used reference figures, e.g., International Reference Ellipsoid, Reference Ellipsoid 1967, and Equilibrium Reference Ellipsoid. These methods are im- portant in the comparison and combination of satellite gravity and gravimetric data as well as the integration of surface gravity data, collected with different objectives, in a single reference system. For ready reference, tables for such reductions are computed. Nature of the satellite gravity anomalies is examined to aid the geophysical and geodetic interpretation of these anomalies in terms of the tectonic features of the earth and the structure of the earth's crust and mantle. Computation of the Potsdam correction from satellite-determined geopotential is reviewed.
    [Show full text]