Journal of Geodesy C2001) 75: 210±215 Geoid, topography, and the Bouguer plate or shell P. Vanõ cÆ ek1, P. Nova k1, Z. Martinec2 1 Department of Geodesy and Geomatics Engineering, University of New Brunswick, P.O. Box 4400, E3B 5A3 Fredericton, Canada e-mail:
[email protected]; Tel.: +1-506-4535144; Fax: +1-506-4534943 2 Department of Geophysics, Charles University, V HolesÆ ovicÆ kach 2, Pragues, Czech Republic Received: 24December 1999 / Accepted: 11 December 2000 Abstract. Topography plays an important role in solv- ing many geodetic and geophysical problems. In the evaluation of a topographical eect, a planar model, a 1 Introduction spherical model or an even more sophisticated model can be used. In most applications, the planar model is Periodically, people discover that planar and spherical considered appropriate: recall the evaluation of gravity models of topography give very dierent results for reductions of the free-air, Poincare ±Prey or Bouguer Bouguer anomalies. Similarly, the results for the direct kind. For some applications, such as the evaluation of and indirect topographical eects in the Stokes±Helmert topographical eects in gravimetric geoid computations, technique for geoid computations obtained by means of it is preferable or even necessary to use at least the the planar and spherical models are found to be quite spherical model of topography. In modelling the topo- dierent. Some people claim that the planar model can graphical eect, the bulk of the eect comes from the safely be used for ``local work'' while the spherical Bouguer plate, in the case of the planar model, or from model has to be used for global work.