Duke Lemur Center's Magazine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gastrointestinal Parasites of Captive and Free-Living Lemurs and Domestic Carnivores in Eastern Madagascar
Journal of Zoo and Wildlife Medicine 47(1): 141–149, 2016 Copyright 2016 by American Association of Zoo Veterinarians GASTROINTESTINAL PARASITES OF CAPTIVE AND FREE-LIVING LEMURS AND DOMESTIC CARNIVORES IN EASTERN MADAGASCAR Amy B. Alexander, D.V.M., Cle´mence Poirotte, D.V.M., Ingrid J. Porton, M.S., Karen L.M. Freeman, Ph.D., Fidisoa Rasambainarivo, D.V.M., M.S., Kimberly G. Olson, R.V.T., Bernard Iambana, and Sharon L. Deem, D.V.M., Ph.D., Dipl. A.C.Z.M. Abstract: Fecal samples from captive and free-living lemurs at Ivoloina Zoological Park (IZP) and domestic carnivores from six villages surrounding IZP were evaluated between July and August 2012. Free-living lemurs from Betampona Natural Reserve (BNR), a relatively pristine rainforest fragment 40 km away, were also evaluated in November 2013. All 33 dogs sampled (100%) and 16 of 22 cats sampled (72.7%) were parasitized, predominantly with nematodes (strongyles, ascarids, and spirurids) as well as cestodes and protozoans. Similar types of parasites were identified in the lemur populations. Identification of spirurid nematodes and protozoans in the lemur fecal samples were of concern due to previously documented morbidity and mortality in lemurs from these parasitic agents. Twelve of 13 free-living (93%) and 31 of 49 captive (63%) lemurs sampled at IZP had a higher parasite prevalence than lemurs at BNR, with 13 of 24 (54%) being parasitized. The lemurs in BNR are likely at risk of increased exposure to these parasites and, therefore, increased morbidity and mortality, as humans and their domestic animals are encroaching on this natural area. -
But Why: a Podcast for Curious Kids the Kratts Take on Wild Animal
But Why: A Podcast for Curious Kids The Kratts Take On Wild Animal Adventures April 21, 2017 [00:00:20] [Jane Lindholm] This is But Why, a podcast for curious kids, from Vermont Public Radio. I'm Jane Lindholm. Today we're going to bring you a special episode in-between our regularly scheduled shows. When I'm not working on But Why, I have a regular job making a radio show for VPR. [00:00:39] [Jane Lindholm]. It's called Vermont Edition, and on that show I interview all kinds of people who have connections to Vermont and New England. We talk about politics, breaking news, arts, culture, sports and anything else you can think of. The other day, I got to talk with two brothers who I thought you might enjoy hearing from. Chris and Martin Kratt are better known together as the Kratts. They have spent the last 20 years making educational TV shows for kids that introduce you to all kinds of animals around the world. The show you might see these days is called Wild Kratts and it's a PBS kids show. They've also done shows called Zoboomafoo, Kratts’ Creatures and Be the Creature. Martin and Chris spent a lot of their summer time as boys in a place in Vermont called the Northeast Kingdom. It's a very rural and still kind of wild part of the state up near the Canadian border. So we're going to play you my interview with them in this special episode; and they answered a lot of questions from kids who called in. -
Our Legacy of Caring, Scholarship, and Scientific Discovery
Our Legacy of Caring, Scholarship, and Scientific Discovery Duke Lemur Center EST. 1966, DUKE UNIVERSITY The Duke Lemur Center An extraordinary place exists in the heart of Duke Forest: an 80-acre campus of buildings and forested animal enclosures bustling with students, scientists, and visitors from around the world. They are drawn to this place to see, learn about, and explore the animals that call this place home: a colony of more than 200 of the most endangered mammals on Earth—lemurs. A world leader in the study, care, and protection of lemurs, the Duke Lemur Center (DLC) was established in 1966 on the campus of Duke University in Durham, NC. For over 50 years, the DLC has brought together scientists, conservation biologists, and educators to understand and protect these extraordinary primates and make new and exciting discoveries through interdisciplinary non-invasive research. The DLC works tirelessly not just in Durham but also in in Madagascar, the only place on Earth where lemurs exist in the wild. We’re proud to work with the organizations and people of Madagascar to create opportunities for positive change, and to play a leading role in preventing the island’s legendary population of endemic and endangered national treasures from being lost forever. “To look at the Duke Lemur Center today, you would never know it was once an unknown part of the Duke University campus. Today it’s a thriving hub of learning where Duke students and alumni, scientists, and animal lovers of all ages from around the world explore the importance of lemurs, scientific discovery, and conservation. -
Downloaded from Brill.Com09/27/2021 09:14:05PM Via Free Access 218 Rode-Margono & Nekaris – Impact of Climate and Moonlight on Javan Slow Lorises
Contributions to Zoology, 83 (4) 217-225 (2014) Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus javanicus Geoffroy, 1812) Eva Johanna Rode-Margono1, K. Anne-Isola Nekaris1, 2 1 Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK 2 E-mail: [email protected] Keywords: activity, environmental factors, humidity, lunarphobia, moon, predation, temperature Abstract Introduction Predation pressure, food availability, and activity may be af- To secure maintenance, survival and reproduction, fected by level of moonlight and climatic conditions. While many animals adapt their behaviour to various factors, such nocturnal mammals reduce activity at high lunar illumination to avoid predators (lunarphobia), most visually-oriented nocturnal as climate, availability of resources, competition, preda- primates and birds increase activity in bright nights (lunarphilia) tion, luminosity, habitat fragmentation, and anthropo- to improve foraging efficiency. Similarly, weather conditions may genic disturbance (Kappeler and Erkert, 2003; Beier influence activity level and foraging ability. We examined the 2006; Donati and Borgognini-Tarli, 2006). According response of Javan slow lorises (Nycticebus javanicus Geoffroy, to optimal foraging theory, animal behaviour can be seen 1812) to moonlight and temperature. We radio-tracked 12 animals as a trade-off between the risk of being preyed upon in West Java, Indonesia, over 1.5 years, resulting in over 600 hours direct observations. We collected behavioural and environmen- and the fitness gained from foraging (Charnov, 1976). tal data including lunar illumination, number of human observ- Perceived predation risk assessed through indirect cues ers, and climatic factors, and 185 camera trap nights on potential that correlate with the probability of encountering a predators. -
Greater Bamboo Lemur Madagascar
Madagascar Greater Bamboo Lemur Prolemur simus (Gray, 1871) Madagascar (2002, 2004, 2006, 2008) Patricia C. Wright, Eileen Larney, Edward E. Louis Jr., Rainer Dolch & Radoniana R. Rafaliarison The greater bamboo lemur (Prolemur simus) is the largest of Madagascar’s bamboo-eating lemurs (Albrecht et al. 1990) and the most critically endangered lemur in Madagascar (Ganzhorn et al. 1996, 1997; Konstant et al. 2006; Mittermeier et al. 2006; Ganzhorn and Johnson 2007; Wright et al. 2008). Although its placement in Prolemur has been questioned (for example, Tattersall 2007), it now represents a monospecific genus, based on a suite of distinctive dental and chromosomal characteristics (Vuillaume-Randriamanantena et al. 1985; Macedonia and Stanger 1994) that support its separation from the genus Hapalemur (cf. Groves 2001). Genetic studies further suggest that Hapalemur may, in fact, be more months, while it relies on its shoots and leaves at other closely related to the genus Lemur (Rumpler et al. times of the year. Prolemur simus supplements its diet 1989; Macedonia and Stanger 1994; Stanger-Hall 1997; with fruits, flowers, soil and fungi (Meier and Rumpler Fausser et al., 2002). Prolemur simus also differs from 1987; Tan 1999, 2000; Wright et al. 2008; R. Dolch, J. L. other bamboo lemurs in behavioral and ecological Fiely, J. Rafalimandimby, E. E. Louis Jr. unpubl. data). variation. Historical records (Schwarz 1931) and sub- Greater bamboo lemurs are cathemeral and fossil remains confirm that it was once widespread gregarious, with observed group sizes ranging up to throughout the island (Godfrey and Vuillaume- 28 individuals (Santini-Palka 1994; Tan 1999, 2000). -
Sexual Dimorphism in Crowned Lemur Scent-Marking
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 doi:10.20944/preprints202105.0761.v1 Article Sexual dimorphism in crowned lemur scent-marking. Emily Elwell 1, David Walker 1 and Stefano Vaglio 1,2* 1 Department of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY, United Kingdom 2 Department of Anthropology & Behaviour, Ecology and Evolution Research (BEER) Centre, Durham University, Durham DH1 3LE, United Kingdom * Correspondence: [email protected]; Tel.: +44-0190-232-3328 Simple Summary: Primates are typically thought to use hearing and vision more than the sense of smell. However, lemurs show a complex olfactory repertoire which includes conspicuous scent-marking behaviours. We studied two family groups of crowned lemurs at Colchester and Twycross zoos (UK) by combining behavioural observations and chemical analyses of odour secretions released via scent-marking. Male lemurs scent-marked most frequently, showing three types of behaviours: ano-genital marking for applying their scent on to females; head marking for placing their secretions on or near the mark left by another individual; and wrist marking to deposit their mark in specific meaningful areas of the enclosure. Female lemurs displayed only ano-genital marking primarily on feeding devices. We detected a total of 38 volatile compounds in male ano-genital scent-marks and 26 in female ano-genital odour secretions, including many compounds that have been identified in odour profiles of other primates. In conclusion, we found sexual dimorphism in crowned lemurs. In males head and wrist marking behaviours would play defensive territorial functions, while ano-genital marking may be related to socio-sexual communication; female ano-genital marking could be involved in resource defense. -
In Situ Conservation
NEWSN°17/DECEMBER 2020 Editorial IN SITU CONSERVATION One effect from 2020 is for sure: Uncertainty. Forward planning is largely News from the Little Fireface First, our annual SLOW event was impossible. We are acting and reacting Project, Java, Indonesia celebrated world-wide, including along the current situation caused by the By Prof K.A.I. Nekaris, MA, PhD by project partners Kukang Rescue Covid-19 pandemic. All zoos are struggling Director of the Little Fireface Project Program Sumatra, EAST Vietnam, Love economically after (and still ongoing) Wildlife Thailand, NE India Primate temporary closures and restricted business. The Little Fireface Project team has Investments in development are postponed Centre India, and the Bangladesh Slow at least. Each budget must be reviewed. been busy! Despite COVID we have Loris Project, to name a few. The end In the last newsletter we mentioned not been able to keep up with our wild of the week resulted in a loris virtual to forget about the support of the in situ radio collared slow lorises, including conference, featuring speakers from conservation efforts. Some of these under welcoming many new babies into the the helm of the Prosimian TAG are crucial 11 loris range countries. Over 200 for the survival of species – and for a more family. The ‘cover photo’ you see here people registered, and via Facebook sustainable life for the people involved in is Smol – the daughter of Lupak – and Live, more than 6000 people watched rd some of the poorest countries in the world. is our first 3 generation birth! Having the event. -
“Subfossil” Koala Lemur Megaladapis Edwardsi
Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, “subfossil” koala lemur Megaladapis edwardsi Stephanie Marciniaka, Mehreen R. Mughalb, Laurie R. Godfreyc, Richard J. Bankoffa, Heritiana Randrianatoandroa,d, Brooke E. Crowleye,f, Christina M. Bergeya,g,h, Kathleen M. Muldooni, Jeannot Randrianasyd, Brigitte M. Raharivololonad, Stephan C. Schusterj, Ripan S. Malhik,l, Anne D. Yoderm,n, Edward E. Louis Jro,1, Logan Kistlerp,1, and George H. Perrya,b,g,q,1 aDepartment of Anthropology, Pennsylvania State University, University Park, PA 16802; bBioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082; cDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; dMention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d’Antananarivo, Antananarivo 101, Madagascar; eDepartment of Geology, University of Cincinnati, Cincinnati, OH 45220; fDepartment of Anthropology, University of Cincinnati, Cincinnati, OH 45220; gDepartment of Biology, Pennsylvania State University, University Park, PA 16802; hDepartment of Genetics, Rutgers University, New Brunswick, NJ 08854; iDepartment of Anatomy, Midwestern University, Glendale, AZ 85308; jSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798; kDepartment of Anthropology, University of Illinois Urbana–Champaign, Urbana, IL 61801; lDepartment of Ecology, Evolution and Behavior, Carl R. Woese Institute for -
Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists -
Effects of Human Disturbance on the Mongoose Lemur Eulemur Mongoz in Comoros: Implications and Potential for the Conservation of a Critically Endangered Species
Effects of human disturbance on the mongoose lemur Eulemur mongoz in Comoros: implications and potential for the conservation of a Critically Endangered species B AKRI N ADHUROU,ROBERTA R IGHINI,MARCO G AMBA,PAOLA L AIOLO A HMED O ULEDI and C RISTINA G IACOMA Abstract The decline of the mongoose lemur Eulemur mon- conversion of forests into farmland, habitat loss and frag- goz has resulted in a change of its conservation status from mentation, hunting for meat, and direct persecution as agri- Vulnerable to Critically Endangered. Assessing the current cultural pests (Schwitzer et al., ). Shortage of essential threats to the species and the attitudes of the people coexist- resources, poverty and food insecurity often accentuate an- ing with it is fundamental to understanding whether and thropogenic pressures. Human well-being is dependent on how human impacts may affect populations. A question- biodiversity (Naeem et al., ) but many activities deemed naire-based analysis was used to study the impact of agricul- indispensable for human subsistence lead to biodiversity ture and other subsistence activities, and local educational losses (Díaz et al., ; Reuter et al., ). Damage to initiatives, on lemur abundance, group size and compos- crops, livestock or human life by wildlife provides sufficient ition in the Comoros. On the islands of Mohéli and motivation for people to eradicate potential animal compe- Anjouan we recorded lemurs in groups, the size titors (Ogada et al., ) and to reduce the quantity and and composition of which depended both on environmental quality of natural habitats on private and communal lands parameters and the magnitude and type of anthropogenic (Albers & Ferraro, ). -
Inspection Report
United States Department of Agriculture Customer: 2562 Animal and Plant Health Inspection Service Inspection Date: 08-SEP-14 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 2562 33-C-0001 001 PEORIA PARK DISTRICT 08-SEP-14 Count Species 000001 Cattle/cow/ox/watusi 000003 Red-necked wallaby 000002 Slender-tailed meerkat 000004 Cotton-top tamarin 000003 Mandrill *Male 000002 Grevys zebra 000001 Gerenuk 000002 Reeve's muntjac 000001 European polecat 000001 Kinkajou 000002 Black-and-rufous elephant shrew 000001 Maned wolf 000003 Black-handed spider monkey 000003 Thomsons gazelle 000001 Prehensile-tailed porcupine 000021 Common mole-rat 000003 Cape Porcupine 000002 Takin 000004 Southern three-banded armadillo 000002 Lion 000001 California sealion 000004 Eastern black and white colobus 000002 African wild ass 000005 Tiger 000004 Goat 000002 Mongoose lemur 000003 Red River Hog 000002 White rhinoceros 000002 Hoffmanns two-toed sloth 000001 Sugar glider 000002 Giraffe 000003 Parma wallaby 000022 Greater spear-nosed bat 000001 Llama 000002 Chinchilla 000002 Ring-tailed lemur 000005 European rabbit 000125 Total United States Department of Agriculture Customer: 2562 Animal and Plant Health Inspection Service Inspection Date: 12-NOV-15 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 2562 33-C-0001 001 PEORIA PARK DISTRICT 12-NOV-15 Count Species 000001 Northern tree shrew 000001 Cattle/cow/ox/watusi 000003 Red-necked wallaby 000005 Slender-tailed meerkat 000004 Cotton-top tamarin 000002 Mandrill -
Hunting Behavior of Wild Chimpanzees in the Taï National Park
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 78547-573 (1989) Hunting Behavior of Wild Chimpanzees in the Tai’ National Park CHRISTOPHE BOESCH AND HEDWIGE BOESCH Department of Ethology and Wildlife Research, University of Zurich, CH-8057 Zurich, Switzerland KEY WORDS Cooperation, Sharing, Traditions ABSTRACT Hunting is often considered one of the major behaviors that shaped early hominids’ evolution, along with the shift toward a drier and more open habitat. We suggest that a precise comparison of the hunting behavior of a species closely related to man might help us understand which aspects of hunting could be affected by environmental conditions. The hunting behavior of wild chimpanzees is discussed, and new observations on a population living in the tropical rain forest of the TaY National Park, Ivory Coast, are presented. Some of the forest chimpanzees’ hunting performances are similar to those of savanna-woodlands populations; others are different. Forest chimpanzees have a more specialized prey image, intentionally search for more adult prey, and hunt in larger groups and with a more elaborate cooperative level than sa- vanna-woodlands chimpanzees. In addition, forest chimpanzees tend to share meat more actively and more frequently. These findings are related to some theories on aspects of hunting behavior in early hominids and discussed in order to understand some factors influencing the hunting behavior of wild chimpanzees. Finally, the hunting behavior of primates is compared with that of social carnivores. Hunting is generally