“Subfossil” Koala Lemur Megaladapis Edwardsi

Total Page:16

File Type:pdf, Size:1020Kb

“Subfossil” Koala Lemur Megaladapis Edwardsi Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, “subfossil” koala lemur Megaladapis edwardsi Stephanie Marciniaka, Mehreen R. Mughalb, Laurie R. Godfreyc, Richard J. Bankoffa, Heritiana Randrianatoandroa,d, Brooke E. Crowleye,f, Christina M. Bergeya,g,h, Kathleen M. Muldooni, Jeannot Randrianasyd, Brigitte M. Raharivololonad, Stephan C. Schusterj, Ripan S. Malhik,l, Anne D. Yoderm,n, Edward E. Louis Jro,1, Logan Kistlerp,1, and George H. Perrya,b,g,q,1 aDepartment of Anthropology, Pennsylvania State University, University Park, PA 16802; bBioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082; cDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; dMention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d’Antananarivo, Antananarivo 101, Madagascar; eDepartment of Geology, University of Cincinnati, Cincinnati, OH 45220; fDepartment of Anthropology, University of Cincinnati, Cincinnati, OH 45220; gDepartment of Biology, Pennsylvania State University, University Park, PA 16802; hDepartment of Genetics, Rutgers University, New Brunswick, NJ 08854; iDepartment of Anatomy, Midwestern University, Glendale, AZ 85308; jSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798; kDepartment of Anthropology, University of Illinois Urbana–Champaign, Urbana, IL 61801; lDepartment of Ecology, Evolution and Behavior, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801; mDepartment of Biology, Duke University, Durham, NC 27708; nDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708; oDepartment of Conservation Genetics, Omaha’s Henry Doorly Zoo and Aquarium, Omaha, NE 68107; pDepartment of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; and qHuck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802 Edited by Nicolas J. Rawlence, University of Otago, New Zealand, and accepted by Editorial Board Member Richard G. Klein May 13, 2021 (received for review November 2, 2020) No endemic Madagascar animal with body mass >10 kg survived a (primates) species is 6.8 kg (2), well below that of the 17 described relatively recent wave of extinction on the island. From morpho- extinct subfossil lemur taxa, for which estimated adult body masses logical and isotopic analyses of skeletal “subfossil” remains we can ranged from ∼11 kg to an incredible ∼160 kg (3). reconstruct some of the biology and behavioral ecology of giant Despite a tropical and subtropical environment in which nucleotide ANTHROPOLOGY lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy (nt) strands rapidly degrade, in a select subset of Malagasy subfossil megafauna that survived into the past millennium. Yet, much about samples, ancient DNA (aDNA) is sufficiently preserved for pale- the evolutionary biology of these now-extinct species remains un- ogenomic analysis (4–10). In our group’s previous study (6), we known, along with persistent phylogenetic uncertainty in some reconstructed complete or near-complete mitochondrial genomes cases. Thankfully, despite the challenges of DNA preservation in trop- from five subfossil lemur species, with population-level data in two ical and subtropical environments, technical advances have enabled cases. As part of that work, we identified one Megaladapis edwardsi the recovery of ancient DNA from some Malagasy subfossil speci- (body mass ∼85 kg) (3, 11) sample with an especially high proportion ∼ × mens. Here, we present a nuclear genome sequence ( 2 coverage) of endogenous aDNA. We have subsequently performed additional for one of the largest extinct lemurs, the koala lemur Megaladapis ∼ edwardsi ( 85 kg). To support the testing of key phylogenetic and Significance evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur Based on “subfossil” skeletal remains it is known that multiple mustelinus, and we aligned these sequences with previously pub- now-extinct giant lemur (primate) species with estimated body lished genomes for three other extant lemurs and 47 nonlemur ver- masses of up to ∼160 kg survived on Madagascar into the past tebrates. Our phylogenetic results confirm that Megaladapis is most millennium. In this study, we used ancient DNA methods to closely related to the extant Lemuridae (typified in our analysis by sequence the nuclear genome of one of these megafaunal le- E. rufifrons) to the exclusion of L. mustelinus, which contradicts murs, Megaladapis edwardsi (∼85 kg). With the power of the morphology-based phylogenies. Our evolutionary analyses identi- nuclear genome, we robustly resolved the phylogenetic rela- fied significant convergent evolution between M. edwardsi and an tionship between Megaladapis and other lemurs, which had extant folivore (a colobine monkey) and an herbivore (horse) in genes been a lingering uncertainty. We also identified multiple sig- encoding proteins that function in plant toxin biodegradation and natures of past positive natural selection across the M. edwardsi nutrient absorption. These results suggest that koala lemurs were genome that support reconstructions of this taxon as a large- highly adapted to a leaf-based diet, which may also explain their bodied, specialized folivore. convergent craniodental morphology with the small-bodied folivore Lepilemur. Author contributions: S.M., E.E.L., L.K., and G.H.P. designed research; S.M., S.C.S., R.S.M., and L.K. performed research; L.R.G., H.R., B.E.C., K.M.M., J.R., B.M.R., A.D.Y., E.E.L., and paleogenomics | megafaunal extinction | phylogenomics | convergent G.H.P. contributed new reagents/analytic tools; S.M., M.R.M., R.J.B., B.E.C., C.M.B., L.K., and G.H.P. analyzed data; and S.M., L.R.G., L.K., and G.H.P. wrote the paper. evolution | dietary reconstruction The authors declare no competing interest. ’ This article is a PNAS Direct Submission. N.J.R. is a guest editor invited by the adagascar is exceptionally biodiverse today. Yet, the island s Editorial Board. endemic diversity was even greater in the relatively recent past. M This open access article is distributed under Creative Commons Attribution-NonCommercial- Specifically, there is an extensive “subfossil” record of now-extinct NoDerivatives License 4.0 (CC BY-NC-ND). Malagasy fauna, with some of these species persisting until at least See online for related content such as Commentaries. ∼ 500 y B.P. (1). The Late Holocene extinction pattern in Madagascar 1To whom correspondence may be addressed. Email: [email protected], [email protected], or resembles other “megafaunal extinction” patternsinthatitisstrik- [email protected]. ingly body-mass structured, with the majority of extinct subfossil taxa This article contains supporting information online at https://www.pnas.org/lookup/suppl/ substantially larger than their surviving counterparts. For example, doi:10.1073/pnas.2022117118/-/DCSupplemental. theaverageadultbodymassofthelargestofthe∼100 extant lemur Published June 23, 2021. PNAS 2021 Vol. 118 No. 26 e2022117118 https://doi.org/10.1073/pnas.2022117118 | 1of12 Downloaded by guest on September 24, 2021 rounds of extraction and sequencing of this sample to amass other paleogenomic studies (23, 24) and overall contributing sufficient data for studying the M. edwardsi nuclear genome. negligibly to the nuclear gene sequence reconstructions we report In this study, we analyzed the M. edwardsi nuclear genome to in this paper. help reconstruct subfossil lemur behavioral ecology and evolution- The set of quality-filtered and damage-masked M. edwardsi se- ary biology. Our approach included an unbiased search across the quence reads were aligned to a version of the human reference genome for Megaladapis-specific signatures of positive selection at genome (hg19) masked to contain only Reference Sequence (RefSeq) the individual gene level. We also searched for striking patterns gene exons ±100 bp. We used a conservative approach to re- of genomic convergence with a set of biologically diverse extant construct orthologous, single-copy M. edwardsi gene coding region mammals across sets of functionally annotated genes. The results sequences with 2× minimum sequence coverage per position (me- from these analyses may serve to extend current hypotheses or to dian proportion of sites reconstructed per gene = 0.29; SI Appendix, offer potentially unexpected insights into the evolutionary biology Fig. S5 and Table S3). Exon sequences reconstructed from shotgun of Megaladapis. sequence reads from the five modern lemur species (including two Additionally, we aimed to resolve lingering uncertainty over Meg- with data newly generated for this study) and a golden snub-nosed aladapis phylogenetic relationships with other lemurs. At one point, a colobine monkey (Rhinopithecus roxellana) were also included in sister taxon relationship between Megaladapis and extant sport- our analysis (25). All of these reconstructed sequences were in- ive lemurs (genus Lepilemur) was inferred based on craniodental tegrated with a canonical gene exon alignment of 46 vertebrate similarities (3, 12). A different phylogeny was estimated, however, species for an overall total alignment with 53 species. following the successful recovery of several hundred base pairs (bp) of the Megaladapis mitochondrial genome
Recommended publications
  • A Chloroplast Gene Is Converted Into a Nucleargene
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 391-395, January 1988 Biochemistry Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene (QB protein/atrazine tolerance/transit peptide) ALICE Y. CHEUNG*, LAWRENCE BOGORAD*, MARC VAN MONTAGUt, AND JEFF SCHELLt: *Department of Cellular and Developmental Biology, 16 Divinity Avenue, The Biological Laboratories, Harvard University, Cambridge, MA 02138; tLaboratorium voor Genetica, Rijksuniversiteit Ghent, B-9000 Ghent, Belgium; and TMax-Planck-Institut fur Zuchtungsforschung, D-500 Cologne 30, Federal Republic of Germany Contributed by Lawrence Bogorad, September 30, 1987 ABSTRACT The chloroplast gene psbA codes for the the gene for ribulose bisphosphate carboxylase/oxygenase photosynthetic quinone-binding membrane protein Q which can transport the protein product into chloroplasts (5). We is the target of the herbicide atrazine. This gene has been have spliced the coding region of the psbA gene isolated converted into a nuclear gene. The psbA gene from an from the chloroplast DNA of the atrazine-resistant biotype atrazine-resistant biotype of Amaranthus hybridus has been of Amaranthus to the transcriptional-control and transit- modified by fusing its coding region to transcription- peptide-encoding regions of a nuclear gene, ss3.6, for the regulation and transit-peptide-encoding sequences of a bona SSU of ribulose bisphosphate carboxylase/oxygenase of pea fide nuclear gene. The constructs were introduced into the (6). The fusion-gene constructions (designated SSU-ATR) nuclear genome of tobacco by using the Agrobacteium tumor- were introduced into tobacco plants via the Agrobacterium inducing (Ti) plasmid system, and the protein product of tumor-inducing (Ti) plasmid transformation system using the nuclear psbA has been identified in the photosynthetic mem- disarmed Ti plasmid vector pGV3850 (7).
    [Show full text]
  • Epithelial Protein Lost in Neoplasm a (Eplin-A) Is Transcriptionally Regulated by G-Actin and MAL/MRTF Coactivators
    Leitner et al. Molecular Cancer 2010, 9:60 http://www.molecular-cancer.com/content/9/1/60 SHORT COMMUNICATION Open Access Epithelial Protein Lost in Neoplasm a (Eplin-a)is transcriptionally regulated by G-actin and MAL/MRTF coactivators Laura Leitner1, Dmitry Shaposhnikov1, Arnaud Descot1, Reinhard Hoffmann2, Guido Posern1* Abstract Epithelial Protein Lost in Neoplasm a is a novel cytoskeleton-associated tumor suppressor whose expression inver- sely correlates with cell growth, motility, invasion and cancer mortality. Here we show that Eplin-a transcription is regulated by actin-MAL-SRF signalling. Upon signal induction, the coactivator MAL/MRTF is released from a repres- sive complex with monomeric actin, binds the transcription factor SRF and activates target gene expression. In a transcriptome analysis with a combination of actin binding drugs which specifically and differentially interfere with the actin-MAL complex (Descot et al., 2009), we identified Eplin to be primarily controlled by monomeric actin. Further analysis revealed that induction of the Eplin-a mRNA and its promoter was sensitive to drugs and mutant actins which stabilise the repressive actin-MAL complex. In contrast, the Eplin-b isoform remained unaffected. Knockdown of MRTFs or dominant negative MAL which inhibits SRF-mediated transcription impaired Eplin-a expression. Conversely, constitutively active mutant actins and MAL induced Eplin-a. MAL and SRF were bound to a consensus SRF binding site of the Eplin-a promoter; the recruitment of MAL to this region was enhanced sever- alfold upon induction. The tumor suppressor Eplin-a is thus a novel cytoskeletal target gene transcriptionally regu- lated by the actin-MAL-SRF pathway, which supports a role in cancer biology.
    [Show full text]
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • LIMA1 Antibody (N-Term) Blocking Peptide Synthetic Peptide Catalog # Bp16362a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 LIMA1 Antibody (N-term) Blocking Peptide Synthetic peptide Catalog # BP16362a Specification LIMA1 Antibody (N-term) Blocking Peptide LIMA1 Antibody (N-term) Blocking Peptide - - Background Product Information EPLIN is a cytoskeleton-associated protein that Primary Accession Q9UHB6 inhibitsactin filament depolymerization and cross-links filaments inbundles (Maul et al., 2003 [PubMed 12566430]). LIMA1 Antibody (N-term) Blocking Peptide - Additional Information LIMA1 Antibody (N-term) Blocking Peptide - References Gene ID 51474 Chircop, M., et al. Cell Cycle Other Names 8(5):757-764(2009)Abe, K., et al. Proc. Natl. LIM domain and actin-binding protein 1, Acad. Sci. U.S.A. 105(1):13-19(2008)Jiang, Epithelial protein lost in neoplasm, LIMA1, W.G., et al. Mol. Cancer 7, 71 (2008) EPLIN, SREBP3 :Sugiyama, N., et al. Mol. Cell Proteomics 6(6):1103-1109(2007)Olsen, J.V., et al. Cell Format Peptides are lyophilized in a solid powder 127(3):635-648(2006) format. Peptides can be reconstituted in solution using the appropriate buffer as needed. Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. Precautions This product is for research use only. Not for use in diagnostic or therapeutic procedures. LIMA1 Antibody (N-term) Blocking Peptide - Protein Information Name LIMA1 (HGNC:24636) Function Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization.
    [Show full text]
  • The Molecular Basis of Cytoplasmic Male Sterility and Fertility Restoration Patrick S
    trends in plant science reviews 24 Grandmougin, A. et al. (1989) Cyclopropyl sterols and phospholipid 34 Gachotte, D., Meens, R. and Benveniste, P. (1995) An Arabodopsis mutant composition of membrane fractions from maize roots treated with deficient in sterol biosynthesis: heterologous complementation by ERG3 fenpropimorph, Plant Physiol. 90, 591–597 encoding a ⌬7-sterol-C5-desaturase from yeast, Plant J. 8, 407–416 25 Schuler, I. et al. (1990) Soybean phosphatidylcholine vesicles containing 35 Schaller, H. et al. (1995) Expression of the Hevea brasiliensis (H.B.K.) Müll. plant sterols: a fluorescence anisotropy study, Biochim. Biophys. Acta 1028, Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in 82–88 sterol overproduction, Plant Physiol. 109, 761–770 26 Schuler, I. et al. (1991) Differential effects of plant sterols on water 36 Marsan, M.P., Muller, I. and Milon, A. (1996) Ability of clionasterol and permeability and on acyl chain ordering of soybean phosphatidylcholine poriferasterol (24-epimers of sitosterol and stigmasterol) to regulate membrane bilayers, Proc. Natl. Acad. Sci. U. S. A. 88, 6926–6930 lipid dynamics, Chem. Phys. Lipids 84, 117–121 27 Krajewsky-Bertrand, M-A., Milon, A. and Hartmann, M-A. (1992) 37 Goad, L.J. (1990) Application of sterol synthesis inhibitors to investigate the Deuterium-NMR investigation of plant sterol effects on soybean sterol requirements of protozoa and plants, Biochem. Soc. Trans. 18, 63–65 phosphatidylcholine acyl chain ordering, Chem. Phys. Lipids 63, 235–241 38 Cerana, R. et al. (1984) Regulating effects of brassinosteroids and of sterols 28 Grandmougin-Ferjani, A., Schuler-Muller, I.
    [Show full text]
  • Diagnosis and Differentiation of the Order Primates
    YEARBOOK OF PHYSICAL ANTHROPOLOGY 30:75-105 (1987) Diagnosis and Differentiation of the Order Primates FREDERICK S. SZALAY, ALFRED L. ROSENBERGER, AND MARIAN DAGOSTO Department of Anthropolog* Hunter College, City University of New York, New York, New York 10021 (F.S.S.); University of Illinois, Urbanq Illinois 61801 (A.L. R.1; School of Medicine, Johns Hopkins University/ Baltimore, h4D 21218 (M.B.) KEY WORDS Semiorders Paromomyiformes and Euprimates, Suborders Strepsirhini and Haplorhini, Semisuborder Anthropoidea, Cranioskeletal morphology, Adapidae, Omomyidae, Grades vs. monophyletic (paraphyletic or holophyletic) taxa ABSTRACT We contrast our approach to a phylogenetic diagnosis of the order Primates, and its various supraspecific taxa, with definitional proce- dures. The order, which we divide into the semiorders Paromomyiformes and Euprimates, is clearly diagnosable on the basis of well-corroborated informa- tion from the fossil record. Lists of derived features which we hypothesize to have been fixed in the first representative species of the Primates, Eupri- mates, Strepsirhini, Haplorhini, and Anthropoidea, are presented. Our clas- sification of the order includes both holophyletic and paraphyletic groups, depending on the nature of the available evidence. We discuss in detail the problematic evidence of the basicranium in Paleo- gene primates and present new evidence for the resolution of previously controversial interpretations. We renew and expand our emphasis on postcra- nial analysis of fossil and living primates to show the importance of under- standing their evolutionary morphology and subsequent to this their use for understanding taxon phylogeny. We reject the much advocated %ladograms first, phylogeny next, and scenario third” approach which maintains that biologically founded character analysis, i.e., functional-adaptive analysis and paleontology, is irrelevant to genealogy hypotheses.
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Generation of a Conditional Lima1a Allele in Zebrafish Using the Flex Switch Technology
    Generation of a conditional lima1a allele in zebrafish using the FLEx switch technology Peggy Jungke§, Stefan Hans§*, Mansi Gupta, Anja Machate, Daniela Zöller, Michael Brand* Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany § Contributed equally. * Corresponding authors: [email protected] [email protected] Running Title: FLEx technology in zebrafish Key words: conditional alleles; FLEx switch; Lima1a; zebrafish 1 Abstract Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx-based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene-trap mutagenesis. The SAGFLEx gene trap cassette comprises the rabbit β-globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site-specific recombinases Cre and Flp. Insertion of the gene-trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene-trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial- and temporal-controlled manner.
    [Show full text]
  • Lemur Bounce!
    Assets – Reections Icon Style CoverAssets Style – Reections 1 Icon Style Y E F O N Cover StyleR O M M R A A Y E F D O N C A S R O GA M M R A D A AGASC LemurVISUAL Bounce! BRAND LearningGuidelines and Sponsorship Pack VISUAL BRAND Guidelines 2 Lemur Bounce nni My name is Lennie Le e Bounce with me B .. ou and raise money to n c protect my Rainforest e L ! home! L MfM L 3 What is a Lemur Bounce? A Lemur Bounce is a sponsored event for kids to raise money by playing bouncing games. In this pack: * Learning fun for kids including facts and quizzes Indoor crafts and outside bouncing games for * the Lemur Bounce Day * Links to teaching resources for schools * Lesson planning ideas for teachers * Everything you need for a packed day of learning and fun! Contents Fun Bounce activities Page No. Let’s BounceBounce – YourLemur valuable support 5 n n Lemur Bouncee i e L – Basics 7 B u o Planningn for a Lemur Bounce Day 8 c L e Lemur! Bounce Day Assembly 8 Make L a Lemur Mask 9 Make a Lemur Tail & Costume 10 Games 11-12 Sponsorship Forms 13-14 Assets – Reections M f Certificates 15-20 Icon Style M Cover Style L Y E F O N R Fun Indoor activities O M M R A Planning your lessons for a Lemur Bounce Day 22 D A A SC GA Fun Facts about Madagascar 23 Fun Facts about Lemurs 24 Colouring Template 25 VISUAL BRAND Guidelines Word Search 26 Know your Lemurs 27 Lemur Quiz 28 Madagascar Quiz 29-31 Resources 32 Song and Dance 33 Contact us 34 LEMUR BOUNCE BOUNCE fM FOR MfM LEMUR BASICS Y NE FO O R WHAT ‘LEM OUNC“ ‘ DO YOU KNOW YOUR LEMUR M Have you ever seen a lemur bounce? Maaasar is ome to over 0 seies o endemi lemurs inluding some M very ouncy ones lie the Siaa lemur ut tese oreous rimates are highl endangere e need to at R Let’s Bounce - Your valuable support A no to sae teir aitat and rotect tem rom etin tion arity Mone or Maaasar is alling out to A D C Wherechildren does everywhere the money to organizego? a fun charity ‘lemur bounce’.
    [Show full text]
  • DNA Interstrand Cross-Links Induced by Psoralen Are Not Repaired in Mammalian Mitochondria
    [CANCER RESEARCH 58. 1400-1404, April 1. 1998) Advances in Brief DNA Interstrand Cross-Links Induced by Psoralen Are Not Repaired in Mammalian Mitochondria Carleen Cullinane and Vilhelm A. Bohr1 Department of Biochemistry, Lit Trohe University, Bundoora, Victoria, 3083, Australia 1C. C./; and Laboratory of Molecular Genetics, National Institutes on Aging. Baltimore. Maryland 21224 ¡C.C., V.A. B.] Abstract evidence suggests that mitochondria are capable of repairing some types of DNA lesions. DNA damage induced by A'-methyl purines, Although it is generally known that mitochondria are defective in DNA including streptozotocin and /V-methyl-yV-nitrosourea, which, in nu damage processing, little is known about the DNA repair pathways and clear DNA, are substrates for the base excision repair pathway, are mechanisms that exist in these vital organdíes. Certain lesions that are repaired in mitochondria (3). The efficient in vivo removal of O6- removed by base excision repair are efficiently removed in mitochondria, ethyl-guanine lesions induced by ethyl nitrosourea in rat mitochondria whereas some bulky lesions that are removed by nucleotide excision repair are not repaired in these organelles. There has been much interest in has also been clearly demonstrated (4). Oxidative DNA lesions in whether mitochondria possess activities for recombination repair, and duced by alloxan (5) and bleomycin (6) are also efficiently repaired in some previous studies have reported such activities, whereas others have mitochondria. In contrast, bulky lesions induced by UVC, nitrogen not. We have taken the approach of studying the formation and removal mustard, and cisplatin are apparently not repaired by mitochondria of ¡nterstrand cross-links (ICLs) in DNA.
    [Show full text]
  • Verreaux's Sifaka (Propithecus Verreauxi) and Ring- Tailed Lemur
    MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 8 | ISSUE 1 — JULY 2013 PAGE 21 ARTICLE http://dx.doi.org/10.4314/mcd.v8i1.4 Verreaux’s sifaka (Propithecus verreauxi) and ring- tailed lemur (Lemur catta) endoparasitism at the Bezà Mahafaly Special Reserve James E. LoudonI,II, Michelle L. SautherII Correspondence: James E. Loudon Department of Anthropology, University of Colorado-Boulder Boulder, CO 80309-0233, U.S.A. E - mail: [email protected] ABSTRACT facteurs comportementaux lors de l’acquisition et l’évitement As hosts, primate behavior is responsible for parasite avoid- des parasites transmis par voie orale en comparant le compor- ance and elimination as well as parasite acquisition and trans- tement des Propithèques de Verreaux (Propithecus verreauxi) et mission among conspecifics. Thus, host behavior is largely des Makis (Lemur catta) se trouvant dans la Réserve Spéciale du responsible for the distribution of parasites in free - ranging Bezà Mahafaly (RSBM) à Madagascar. Deux groupes de chacune populations. We examined the importance of host behavior in de ces espèces étaient distribués dans une parcelle protégée et acquiring and avoiding parasites that use oral routes by compar- deux autres dans des forêts dégradées par l’activité humaine. ing the behavior of sympatric Verreaux’s sifaka (Propithecus L’analyse de 585 échantillons fécaux a révélé que les Makis verreauxi) and ring - tailed lemurs (Lemur catta) inhabiting the de la RSBM étaient infestés par six espèces de nématodes et Bezà Mahafaly Special Reserve (BMSR) in Madagascar. For trois espèces de parasites protistes tandis que les Propithèques each species, two groups lived in a protected parcel and two de Verreaux ne l’étaient que par deux espèces de nématodes.
    [Show full text]