Thyristor Product Catalog

Total Page:16

File Type:pdf, Size:1020Kb

Thyristor Product Catalog 查询8T64SH供应商 捷多邦,专业PCB打样工厂,24小时加急出货 Thyristor Product Catalog Teccor Electronics 1800 Hurd Drive Irving, Texas 75038 United States of America Phone: +1 972-580-7777 Fax: +1 972-550-1309 Website: http://www.teccor.com E-mail: [email protected] ©2002 Teccor Electronics i http://www.teccor.com Thyristor Product Catalog +1 972-580-7777 Teccor Electronics reserves the right to make changes at any time in order to improve designs and to supply the best products possible. The information in this catalog has been carefully checked and is believed to be accurate and reliable; however, no liability of any type shall be incurred by Teccor for the use of the circuits or devices described in this publication. Furthermore, no license of any patent rights is implied or given to any purchaser. Teccor Electronics is the proprietor of the QUADRAC® trademark. is a registered trademark of Underwriters Laborato- ries, Inc. All other brand names may be trademarks of their respective companies. To conserve space in this catalog, the trademark sign (®) is omitted. http://www.teccor.com ii ©2002 Teccor Electronics +1 972-580-7777 Thyristor Product Catalog Contents Product Selection Guide Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vi Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - viii Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x Quality and Reliability Assurance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - xii Standard Terms and Conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - xiv Data Sheets V-I Characteristics of Thyristor Devices - - - - - - - - - - - - - - - - - - - - - - - - E0-2 Electrical Parameter Terminology - - - - - - - - - - - - - - - - - - - - - - - - - - - - E0-3 Electrical Specifications Sensitive Triacs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E1 Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E2 QUADRACs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E3 Alternistor Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E4 Sensitive SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E5 SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E6 Rectifiers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E7 Diacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E8 SIDAC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E9 Mechanical Specifications Package Dimensions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M1 Lead Form Dimensions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M2 Packing Options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M3 Application Notes Fundamental Characteristics of Thyristors - - - - - - - - - - - - - - - - - - - AN1001 Gating, Latching, and Holding of SCRs and Triacs - - - - - - - - - - - - - AN1002 Phase Control Using Thyristors- - - - - - - - - - - - - - - - - - - - - - - - - - - AN1003 Mounting and Handling of Semiconductor Devices - - - - - - - - - - - - - AN1004 Surface Mount Soldering Recommendations - - - - - - - - - - - - - - - - - AN1005 Testing Teccor Semiconductor Devices Using Curve Tracers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AN1006 Thyristors Used As AC Static Switches and Relays - - - - - - - - - - - - AN1007 Explanation of Maximum Ratings and Characteristics for Thyristors - AN1008 Miscellaneous Design Tips and Facts - - - - - - - - - - - - - - - - - - - - - - AN1009 Thyristors for Ignition of Fluorescent Lamps- - - - - - - - - - - - - - - - - - AN1010 Appendix Cross Reference Guide - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A1 Part Numbers Index- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A27 ©2002 Teccor Electronics iii http://www.teccor.com Thyristor Product Catalog +1 972-580-7777 http://www.teccor.com iv ©2002 Teccor Electronics +1 972-580-7777 Thyristor Product Catalog Product Selection Guide Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 2 Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 3 Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 4 Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 6 Quality and Reliability Assurance - - - - - - - - - - - - - - - - - - - - - - - - - P 8 Standard Terms and Conditions - - - - - - - - - - - - - - - - - - - - - - - - - P 10 ©2002 Teccor Electronics P - 1 http://www.teccor.com Thyristor Product Catalog +1 972-580-7777 Product Descriptions Thyristors Sensitive SCRs A thyristor is any semiconductor switch with a bi-stable action Teccor's sensitive gate SCRs are silicon-controlled rectifiers repre- depending on p-n-p-n regenerative feedback. Thyristors are nor- senting the best in design, performance, and packaging techniques mally two- or three-terminal devices for either unidirectional or bi- for low- and medium-current applications. directional circuit configurations. Thyristors can have many forms, Anode currents of 0.8 A to 10 A rms can be controlled by sensitive but they have certain commonalities. All thyristors are solid state gate SCRs with gate drive currents ranging from 12 µA to 500 µA. switches that are normally open circuits (very high impedance), Sensitive gate SCRs are ideally suited for interfacing to integrated capable of withstanding rated blocking/off-state voltage until trig- circuits or in applications where high current load requirements and gered to on state. When triggered to on state, thyristors become a limited gate drive current capabilities exist. Examples include igni- low-impedance current path until principle current either stops or tion circuits, motor controls, and DC latching for alarms in smoke drops below a minimum holding level. After a thyristor is triggered detectors. Sensitive gate SCRs are available in voltage ratings to to on-state condition, the trigger current can be removed without 600 V ac. turning off the device. Thyristors are used to control the flow of electrical currents in applications including: • Home appliances (lighting, heating, temperature control, alarm SCRs activation, fan speed) Teccor's SCR products are half-wave, silicon-controlled rectifiers • Electrical tools (for controlled actions such as motor speed, sta- that represent the state of the art in design and performance. pling event, battery charging) Load current capabilities range from 1 A to 70 A rms, and voltages • Outdoor equipment (water sprinklers, gas engine ignition, elec- from 200 V to 1000 V may be specified to meet a variety of appli- tronic displays, area lighting, sports equipment, physical fitness) cation needs. Because of its unidirectional switching capability, the SCR is used in circuits where high surge currents or latching action is required. Sensitive Triacs It may also be used for half-wave-type circuits where gate-con- Teccor's sensitive gate triacs are AC bidirectional silicon trolled rectification action is required. Applications include crow- switches that provide guaranteed gate trigger current levels in bars in power supplies, camera flash units, smoke alarms, motor Quadrants I, II, III, and IV. Interfacing to microprocessors or other controls, battery chargers, and engine ignition. equipment with single polarity gate triggering is made possible with Surge current ratings are available from 30 A in the TO-92 packag- sensitive gate triacs. Gate triggering currents of 3 mA, 5 mA, ing to 950 A in the TO-218X package. 10 mA, or 20 mA may be specified. Sensitive gate triacs are capable of controlling AC load currents Rectifiers from 0.8 A to 8 A rms and can withstand operating voltages from 200 V to 600 V. Teccor manufactures 15 A to 25 A rms rectifiers with voltages rated from 200 V to 1000 V. Due to the electrically isolated TO-220 package, these rectifiers may be used in common anode or com- Triacs mon cathode circuits using only one part type, thereby simplifying Teccor's triac products are bidirectional AC switches, capable of stock requirements. controlling loads from 0.8 A to 35 A rms with 10 mA, 25 mA, and 50 mA IGT in operating Quadrants I, II and III. Diacs Triacs are useful in full-wave AC applications to control AC power either through full-cycle switching or phase control of current to the Diacs are trigger devices used in phase control circuits to provide load element. These triacs are rated to block voltage in the “OFF” gate pulses to a triac or SCR. They are voltage-triggered bidirec- condition from 200 V minimum with selected products capable of tional silicon devices housed in DO-35 glass axial lead packages 1000 V operation. Typical applications include motor speed con- and DO-214 surface mount packages. trols, heater controls, and incandescent light controls. Diac voltage selections from 27 V to 45 V provide trigger pulses closely matched in symmetry at the positive and negative break- Quadrac over points to minimize DC component in the load circuit.
Recommended publications
  • Questions for Electronics
    www.YoYoBrain.com - Accelerators for Memory and Learning Questions for electronics Category: Default - (192 questions) What electronic device is a breakover diode diac made to trigger triacs in phase-controlled circuits 3 basic options for converting single phase to static, rotary, and electronic 3 phase power Define: static phase converter simplest/lowest cost option for converting single to 3 phase electricity Nothing more than a capacitor and a potential relay comprising a starter circuit Define: rotary phase converter consists of a 3-phase motor and some way of starting it, be it a rope and pulley or a well-designed static converter automatic start circuit converts single phase to 3 phase electricity Define: variable frequency drive a box of solid-state electronics that convert 3-phase 60 Hz AC to variable frequency 3-phase. Allows motors to be driven at different speeds Define: polarized plug a plug that must be plugged in correctly to reference line on ac plug or it will harm the equipment Define: Shockley diode special purpose diode with more 2 PN junctions (four-layer diode) uses a trigger voltage to switch the diode on What is the purpose of SSIFET transistors used in microwave frequency circuits Define: latching relay a relay where one control pulse closes the switch contacts and it remains closed until another signal tells it to release Define: component placement diagram used to show where components are layed out on circuit board Define: cold solder joints a rough and grainy solder joint; source of many problems on circuits
    [Show full text]
  • Teccor® Brand Thyristors Qxxxxltx Series
    Teccor® brand Thyristors 4 / 6 / 8 / 10 / 15 Amp Quadracs QxxxxLTx Series RoHS ® Description The Quadrac is an internally triggered Triac designed for AC switching and phase control applications. It is a Triac and DIAC in a single package, which saves user expense by eliminating the need for separate Triac and DIAC components. Standard type devices normally operate in Quadrants I & III triggered from AC line. Alternistor type Quadracs are used in circuits requiring high dv/dt capability. Features & Benefits Agency Approval • RoHS Compliant • Surge capability up to 200 A • Glass – passivated Agency Agency File Number junctions ® L Package : E71639 • Voltage capability up to 600 V Schematic Symbol Applications Excellent for AC switching and phase control applications such as lighting and heating. Typical applications are AC MT2 MT1 solid-state switches, light dimmers, power tools, home/ brown goods and white goods appliances. T Alternistor Quadracs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance. Main Features Internally constructed isolated package is offered for ease Symbol Value Unit of heat sinking with highest isolation voltage. IT(RMS) 4 to 15 A VDRM / VRRM 400 to 600 V Additional Information DIAC VBO 33 to 43 V Datasheet Resources Samples © 2014 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 12/14/14 Teccor® brand Thyristors 4 / 6 / 8 / 10 / 15 Amp Quadracs Absolute Maximum Ratings Value Symbol Parameter Unit Qxx04LT Qxx10LT /
    [Show full text]
  • Catalogo Tiristor
    Thyristor Product Catalog Teccor Electronics 1800 Hurd Drive Irving, Texas 75038 United States of America Phone: +1 972-580-7777 Fax: +1 972-550-1309 Website: http://www.teccor.com E-mail: [email protected] ©2002 Teccor Electronics i http://www.teccor.com Thyristor Product Catalog +1 972-580-7777 Teccor Electronics reserves the right to make changes at any time in order to improve designs and to supply the best products possible. The information in this catalog has been carefully checked and is believed to be accurate and reliable; however, no liability of any type shall be incurred by Teccor for the use of the circuits or devices described in this publication. Furthermore, no license of any patent rights is implied or given to any purchaser. Teccor Electronics is the proprietor of the QUADRAC® trademark. is a registered trademark of Underwriters Laborato- ries, Inc. All other brand names may be trademarks of their respective companies. To conserve space in this catalog, the trademark sign (®) is omitted. http://www.teccor.com ii ©2002 Teccor Electronics +1 972-580-7777 Thyristor Product Catalog Contents Product Selection Guide Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vi Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - viii Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x Quality
    [Show full text]
  • Thyristors This Worksheet and All Related Files Are Licensed Under The
    Thyristors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1 Questions Question 1 All thyristor devices exhibit the property of hysteresis. From an electrical perspective, what is ”hysteresis”? How does this behavior differ from that of ”normal” active semiconductor components such as bipolar or field-effect transistors? file 01089 Question 2 What is required to make a Shockley diode or DIAC begin conducting current? What condition(s) have to be met in order for electrical conduction to occur through one of these devices? Also, explain what must be done to stop the flow of electric current through a Shockley diode or a DIAC. file 01090 Question 3 Silicon-controlled rectifiers (SCRs) may be modeled by the following transistor circuit. Explain how this circuit functions, in the presence of and absence of a ”triggering” voltage pulse at the gate terminal: Load Anode Gate Cathode file 01088 2 Question 4 Shown here is an illustration of a large ”stud mount” type of SCR, where the body is threaded so as to be fastened to a metal base like a bolt threads into a nut: With no test instrument other than a simple continuity tester (battery and light bulb connected in series, with two test leads), how could you determine the identities of the three terminals on this SCR? Hint: The threaded metal base of the SCR constitutes one of the three terminals.
    [Show full text]
  • Qxxxxltx Series Rohs ®
    Teccor® brand Thyristors 4 / 6 / 8 / 10 / 15 Amp Quadracs QxxxxLTx Series RoHS ® Description The Quadrac is an internally triggered Triac designed for AC switching and phase control applications. It is a Triac and DIAC in a single package, which saves user expense by eliminating the need for separate Triac and DIAC components. Standard type devices normally operate in Quadrants I & III triggered from AC line. Alternistor type Quadracs are used in circuits requiring high dv/dt capability. Features & Benefits Agency Approval • RoHS Compliant • Surge capability up to 200 A • Glass – passivated Agency Agency File Number junctions ® L Package : E71639 • Voltage capability up to 600 V Schematic Symbol Applications Excellent for AC switching and phase control applications such as lighting and heating. Typical applications are AC MT2 MT1 solid-state switches, light dimmers, power tools, home/ brown goods and white goods appliances. T Alternistor Quadracs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance. Main Features Internally constructed isolated package is offered for ease Symbol Value Unit of heat sinking with highest isolation voltage. IT(RMS) 4 to 15 A VDRM / VRRM 400 to 600 V DIAC VBO 33 to 43 V QxxxxLTx Series 1 ©2014 Littelfuse, Inc Specifications are subject to change without notice. Revised: 06/05/14 Teccor® brand Thyristors 4 / 6 / 8 / 10 / 15 Amp Quadracs Absolute Maximum Ratings Value Symbol Parameter Unit Qxx04LT Qxx10LT / Qxx10LT Qxx15LT / Qxx15LT Qxx06LT / Qxx06LT / Qxx08LT Qxx10LTH Qxx15LTH Qxx06LTH Qxx08LTH Qxx04LT: TC = 95°C IT(RMS) RMS forward current Qxx06LT/Qxx08LT/Qxx10LT: TC = 90°C 4 6 8 10 15 A Qxx15LT: TC = 80°C single half cycle; f = 50Hz; 46 65 83 100 167 T (initial) = 25°C I Peak non-repetitive surge current J A TSM single half cycle; f = 60Hz; 55 80 100 120 200 TJ (initial) = 25°C 2 2 2 I t I t value for fusing tp = 8.3ms 12.5 26.5 41 60 166 A s di/dt Critical rate-of-rise of on-state current f = 60Hz; TJ =125°C 50 70 100 A/µs IGM Peak gate current TJ = 125°C 1.
    [Show full text]
  • Thyristors Product Selection Guide
    Teccor® brand Thyristors PRODUCT SELECTION GUIDE Switching Thyristors Switching Thyristors are solid state switches that are normally open circuits (very high impedance), capable of withstanding rated blocking/off-state voltage until triggered to on state. Used for circuit control applications, Littelfuse offers TRIAC, QUADRAC, SCRs, SIDAC, Rectifiers plus Alternistor Triacs for best commutating and noise immunity. Offered in various and other configurations for a wide range of currents blocking/off-state voltages, packages, and triggering. Through-Hole Packages: Others: DO-15 TO-92-2L TO-92-3L TO-251 TO-220 TO-218 TO-218X TO3 Fastpak Surface Mount Packages: SOT-89 SOT-223 Compak DO-214AA TO-252 TO-263 IT(RMS) VDRM/VRRM IGT (Q1) Series Through-Hole Surface Mount TO-92 TO-251 Isl TO-220 Non-Isl TO-220 Isl TO-218 Isl TO-218X TO-3 Compak SOT-223 TO-252 TO-263 Sensitive Standard Alternistor Triac 0.8A 400-600V 3-25mA LxX8Ex QxX8Ex • • LxXx QxXx 0.8A 400-600V 3-5mA LX8 • • 1.0A 400-600V 3-25mA Lx01Ex,LxNx Qx01Ex,QxNx • • 1.0A 400-800V 3-10mA L01 • • 4A 400-1000V 3-25mA Lxx04xx Qxx04xx • • • • 6A 400-1000V 5-50mA Lxx06xx Qxx06xx Qxx06xHx • • • • • 8A 400-1000V 5-50mA Lxx08xx Qxx08xx Qxx08xHx • • • • • 600V 10mA Q6008LH1LED • 10A 400-1000V 25-50mA Qxx10xx Qxx10xHx • • • 12A 400-1000V 10-50mA Qxx12xHx • • • 600V 10mA Q6012LH1LED • 15A & 16A 400-1000V 10-80mA Qxx15xx Qxx16xHx • • • 25A 400-1000V 50-80mA Qxx25xx Qxx25xHx • • • • • • 25A 600V 50mA HQ6025xH5 • • • • 30A & 35A 400-800V 50mA Qxx35xx Qxx35xHx • • • • 40A 400-1000V 50-100mA Qxx40xx • • 3 ©2013 Littelfuse, Inc Specifications are subject to change without notice.
    [Show full text]
  • ON Thyristor Application Note
    Teccor® brand Thyristors AN1001 Fundamental Characteristics of Thyristors The connections between the two transistors trigger Introduction the occurrence of regenerative action when a proper AN1001 The Thyristor family of semiconductors consists of several gate signal is applied to the base of the NPN transistor. very useful devices. The most widely used of this family Normal leakage current is so low that the combined hFE are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and of the specially coupled two-transistor feedback amplifier DIACs. In many applications these devices perform key is less than unity, thus keeping the circuit in an off-state functions and are real assets in meeting environmental, condition. A momentary positive pulse applied to the gate speed, and reliability specifications which their electro- biases the NPN transistor into conduction which, in turn, mechanical counterparts cannot fulfill. biases the PNP transistor into conduction. The effective hFE momentarily becomes greater than unity so that the This application note presents the basic fundamentals specially coupled transistors saturate. Once saturated, of SCR, Triac, SIDAC, and DIAC Thyristors so the user current through the transistors is enough to keep the understands how they differ in characteristics and combined hFE greater than unity. The circuit remains “on” parameters from their electro-mechanical counterparts. until it is “turned off” by reducing the anode-to-cathode Also, Thyristor terminology is defined. current (IT) so that the combined hFE is less than unity and regeneration ceases. This threshold anode current is the holding current of the SCR. SCR Geometric Construction Basic Operation Figure AN1001.3 shows cross-sectional views of an SCR Figure AN1001.1 shows the simple block construction of an chip and illustrations of current flow and junction biasing in SCR.
    [Show full text]
  • Load Ac Source Quadrac
    USOO5854519A Ulllted States Patent [19] [11] Patent Number: 5,854,519 Gershen et al. [45] Date of Patent: Dec. 29, 1998 [54] ASYMMETRICAL AC TRIGGER [56] References Cited SIMULATION U.S. PATENT DOCUMENTS [75] Inventors: Bernard J. Gershen, Centerport; 4,006,368 2/1977 Ichikawa ............................... .. 327/457 Alfred J. Lombardi, La Grangeville; 4,914,327 4/1990 Dekker ...... .. .. 327/457 EdwardYevgeny JISha?r, Krajci, Jamaica Franklin Estates, Square; an of 5,668,496 9/1997 GershenRebordosa Ct 8.1............................. ... 327/452 NY Primary Examiner—Richard T. Elms [73] AS _ L M f C I Attorney, Agent, or Firm—Paul J. Sutton s1gnee: eviton anu acturing 0., nc., Little Neck, NY. [57] ABSTRACT The present invention teaches a dimmer Which incorporates [21] Appl- NO-I 821,748 an alternating current (AC) trigger Which exhibits asym [22] F1led. _ Mar 20 1997 metrlcai 1 e 1 ectr1cai 1 c h aracter1st1cs.i ' Th‘1s e 1.1m1natest i h e un d e ' ' ’ sirable snap on hysteresis effect associated With conven R l t d U.S. A l - t - D t tional dimmers utilizing symmetrical AC triggers such as e a e pp lea Ion a a diacs and silicon bilateral sWitches (SBS). One embodiment [63] Continuation of Ser_ No_ 1837459’ Jam 18’ 1994’ Pat NO_ of the present invention utilizes a Zener diode to create the 5,619,081' asymmetry. Dunng one polarity of the AC source, the 6 breakover voltage of the trigger is increased 9 forcing the [51] Int. Cl. ................................................... .. H01H 47/00 trigger to breakover at a time later in the AC Cycle than it [52] _ 307/125; 327/457 Would otherWise have With a symmetric trigger.
    [Show full text]
  • Chapter 1 TRIAC
    Triac Contents 1 TRIAC 1 1.1 Physical operation ........................................... 1 1.1.1 Triggering in Quadrant I ................................... 2 1.1.2 Triggering in Quadrant II ................................... 2 1.1.3 Triggering in Quadrant III .................................. 2 1.1.4 Triggering in Quadrant IV .................................. 2 1.2 Typical issues ............................................. 2 1.2.1 Gate threshold current, latching current and holding current ................. 3 1.2.2 Static dv/dt .......................................... 3 1.2.3 Critical di/dt ......................................... 3 1.2.4 Commutating dv/dt and di/dt ................................. 4 1.3 Snubber circuits ............................................ 4 1.4 Application .............................................. 4 1.5 Example data ............................................. 4 1.6 Three-quadrant TRIAC ........................................ 4 1.7 See also ................................................ 5 1.8 References .............................................. 5 1.9 Further reading ............................................ 5 1.10 External links ............................................. 5 2 Thyristor 6 2.1 Introduction .............................................. 6 2.1.1 Function of the gate terminal ................................. 7 2.1.2 Switching characteristics ................................... 7 2.2 History ................................................. 8 2.2.1 Etymology .........................................
    [Show full text]
  • Phase Control Using Thyristors
    Teccor® brand Thyristors AN1003 Phase Control Using Thyristors It is important to note that the circuit current is determined Introduction by the load and power source. For simplification, assume Due to high-volume production techniques, Thyristors the load is resistive; that is, both the voltage and current are now priced so that almost any electrical product can waveforms are identical. benefit from electronic control. A look at the fundamentals of SCR and Triac phase controls shows how this is possible. Full-wave Rectified Operation Voltage Applied to Load Output Power Characteristics Phase control is the most common form of Thyristor power control. The Thyristor is held in the off condition -- that is, all current flow in the circuit is blocked by the Thyristor except a minute leakage current. Then the Thyristor is triggered Delay (Triggering) Angle into an “on” condition by the control circuitry. Conduction Angle For full-wave AC control, a single Triac or two SCRs connected in inverse parallel may be used. One of two Figure AN1003.2 Sine Wave Showing Principles of Phase methods may be used for full-wave DC control -- a bridge Control rectifier formed by two SCRs or an SCR placed in series with a diode bridge as shown in Figure AN1003.1. Different loads respond to different characteristics of the AC waveform. For example, some are sensitive to average voltage, some to RMS voltage, and others to peak voltage. Various voltage characteristics are plotted against conduction angle for half- and full-wave phase control circuits in Figure AN1003.3 and Figure AN1003.4.
    [Show full text]
  • Rangkaian Dimmer Pengatur Iluminasi Lampu Pijar Berbasis Internally Triggered TRIAC
    Rangkaian Dimmer Pengatur Iluminasi Lampu Pijar Berbasis Internally Triggered TRIAC Herlan Briliant Adhi Prabowo Bidang Komputer Bidang Komputer Pusat Penelitian Informatika LIPI Pusat Penelitian Informatika LIPI [email protected] [email protected] Abstrak Salah satu implementasi piranti semikonduktor adalah untuk rangkaian dimmer yang dapat digunakan pada pengaturan iluminasi lampu pijar. Pengaturan iluminasi pada lampu AC memiliki kompleksitas yang berbeda dengan lampu dc. Metode yang digunakan adalah dengan pengaturan sudut phasa penyalaan gelombang AC dengan piranti semikonduktor sejenis TRIAC dan DIAC. Pada percobaan ini digunakan piranti Internally Triggered TRIAC sebagai inti rangkaian dimmer. Penelitian ini dilakukan untuk memperoleh sistem yang responsif terhadap iluminasi sebuah lampu pijar, melalui pengaturan Tegangan Root Mean Square. Dengan menggunakan Integrally Triggered Triac rangkaian dimmer memiliki respon yang signifikan terhadap pengaturan iluminasi lampu pijar. Kata kunci: TRIAC, dimmer, iluminasi, Lampu Pijar ruangan mendapat pencahayaan yang cukup, 1. Pendahuluan tidak berlebihan ataupun kekurangan yang dapat menimbulkan ketidaknyamanan. Pengaturan iluminasi cahaya lampu pijar Pengaturan iluminasi pada sebuah lampu pada sumber tegangan searah (DC/Direct dengan tegangan AC dipengaruhi oleh Current) cukup sederhana untuk impedansi lampu tersebut, dimana diimplementasikan hanya dengan pengaturan impedansi akan mempengaruhi, pengaturan tegangan menggunakan variabel arus, tegangan dan frekuensi
    [Show full text]
  • Internally Triggered Triacs (4 a to 15 A)
    WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW 9 U.L. RECOGNIZED WWW.100Y.COM.TW WWW.100Y.COM.TW FileWW #E7163 W.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW TO-220 Isolated WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW MT2 WWW.100E3Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW General Description WWW.100Y.COM.TW WWW.100Y.COM.TW WWWTeccor.100Y ’s .COM.TW Internally Triggered Triacs (4 A to 15 A) MT1 WWmountedW.100Y insideQuadrac.COM.TW the same package.
    [Show full text]