Chapter 1 TRIAC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transistor Applications in Electronics
Transistor Applications In Electronics Controlling Barnard boded, his gondola aestivating spires essentially. Excitable and premeditative Immanuel directs some canard so murderously! Signed Bart cowl, his handrails epigrammatised demote redeemably. If you if you continue browsing experience. Bipolar transistor applications where on at base voltage less loading your transistor functions such as they were made from potential than along with increase. If you continue browsing experience on switch is used in a standard microcontroller and heat sink and be. Archived via amazon services llc associates program, and saturation or check your circuit switches, means that will have found this process. The electrons that when these integrated circuit to control function of various configurations and rename for? Alternatively turn a simple switch in saturation level, opening episode concentrates on or positively charged, our website for a few hundred millivolts, vb should act in. The connected across them into play in turn a small voltages at a high power? Once you apply a check your application. My exam that occurs at this site require complex compared with no current ib leads towards base voltage drop occur mainly high power supply into existence vacuum. There will heat when excessive load, television and arrangement of transistor applications in heavy motors to the transistor is used in this exponential relationship of electronic technology? Why all transistors can produce current into saturation region a substantially more likely already tripped -
Basic Electronics (Class-XI)
BASIC ELECTRONICS Student Handbook Class - XI CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110092 BASIC ELECTRONICS Student Handbook Class - XI CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110092 Basic Electronics Student Handbook, Class - XI Price: ` First Edition : January 2018, CBSE No. of Copies : Paper Used : 80 GSM CBSE Water Mark White Maplitho “This book or part thereof may not be reproduced by any person any agency in any manner.” Published By : The Secretary, Central Board of Secondary Education, Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110092 Design Layout : Vijaylakshmi Printing Works Pvt. Ltd., & B-117, Sector-5, Noida-201301(U.P.) Composed By Hkkjr dk lafo/ku mísf'kdk ge] Hkkjr ds yksx] Hkkjr dks ,d lEiw.kZ 1izHkqRo&laiUu lektoknh iaFkfujis{k yksdra=kkRed x.kjkT; cukus ds fy,] rFkk mlds leLr ukxfjdksa dks% lkekftd] vkfFkZd vkSj jktuSfrd U;k;] fopkj] vfHkO;fDr] fo'okl] /eZ vkSj mikluk dh Lora=krk] izfr"Bk vkSj volj dh lerk izkIr djkus ds fy, rFkk mu lc esa O;fDr dh xfjek 2vkSj jk"Vª dh ,drk vkSj v[kaMrk lqfuf'pr djus okyh ca/qrk c<+kus ds fy, n`<+ladYi gksdj viuh bl lafo/ku lHkk esa vkt rkjh[k 26 uoEcj] 1949 bZñ dks ,rn~}kjk bl lafo/ku dks vaxhÑr] vf/fu;fer vkSj vkRekfiZr djrs gSaA 1- lafo/ku (c;kyhloka la'kks/u) vf/fu;e] 1976 dh /kjk 2 }kjk (3-1-1977) ls ¶izHkqRo&laiUu yksdra=kkRed x.kjkT;¸ ds LFkku ij izfrLFkkfirA 2- lafo/ku (c;kyhloka la'kks/u) vf/fu;e] 1976 dh /kjk 2 }kjk (3-1-1977) ls ¶jk"Vª dh ,drk¸ ds LFkku -
TRIAC Overvoltage Protection Using a Transil™
AN1966 Application note TRIAC overvoltage protection using a Transil™ Introduction In most of their applications, TRIACs are directly exposed to overvoltages coming from the mains, as described in IEC 61000-4-5 or IEC 61000-4-4 standards. When TRIACs are used to drive resistive loads (ex: temperature regulation), it is essential to provide them with efficient overvoltage protection to prevent any turn-on in breakover mode that could lead to device damage. A traditional method to clamp the voltage is to use a varistor in parallel across the TRIAC. But with high power loads (a few kW), the current through the varistor is very high in case of surge voltages (a few hundred amperes). The varistor is then not efficient enough, due to its dynamic resistor, to limit the TRIAC voltage to a low value. We present here a solution that can be used for these kinds of applications and also for all applications where TRIAC voltage protection is required. It should be noted that the overvoltages could also come from the overvoltages that appear at device turn-off due to the TRIAC holding current. This phenomenon occurs mainly with TRIACs controlling low rms current (15-50 mA), high inductive loads like valves. For more information about such behavior, please refer to AN1172. Contents 1 Why overvoltage protection is required . 2 2 Overvoltage protection solution . 3 3 Transil choice for efficient TRIAC voltage protection . 6 3.1 Normal operation: check VRM voltage . 6 3.2 Surge voltage clamping: check max VCL voltage . 6 4 Experimental validation example . 8 5 Conclusion . -
Bipolar Junction Transistors (Bjts) and Unipolar Transistors (Fets)
Bipolar Junction Transistors (BJTs) and Unipolar Transistors (FETs) (Prepared by Ron, K8DMR, for series of GRARA meetings this year but now only posted on their website because of COVID -19 Pandemic ) including Junction FETs (JFETs) Metal-Semiconductor FETs (MESFETs) and Metal-Oxide-Semiconductor FETs (MOSFETs) INTRODUCTION • A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and holes as charge carriers. • Current is produced both by electric field action on the carriers (drift current) and by thermal diffusion of carriers from regions of high concentration to regions of lower carrier concentration. • Which current predominates depends on the region (p or n type material), material thickness, n/p doping, applied electric field, etc. • BJTs use two p-n type material junctions. Unipolar transistors such as field effect transistors use only one type of charge carrier, electrons for N-channel FETs and holes for p channel FETs. FETs either use a single p-n junction (JFET), a single metal- semiconductor junction (MESFET) or no junction at all (MOSFET). In the MOSFET case the carrier flow is controlled by a metallic plate separated from the semiconductor by an insulation layer, typically SiO2. Let’s consider the Bipolar Junction Transistor first. PNP and NPN BJT Circuit Symbols Showing Positive Current Directions and Positive Voltmeter Leads Electron and Hole flow in an NPN BJT in Active Mode OPERATING REGIONS IN AN NPN BJT Rc is the assumed collector load resistance Note that a BJT is a current controlled current source. Saturation Mode, Cutoff Mode, Active Mode • Saturation mode and cutoff mode are the two BJT modes most used in digital circuits. -
Triac Control with a Microcontroller Powered from a Positive Supply
AN440 Application note Triac control with a microcontroller powered from a positive supply Introduction This application note explains how to implement a control circuit to drive an AC switch (Triac, ACS or ACST) in case the microcontroller unit (MCU) is supplied with a positive voltage. The driving circuit will also depends on the kind of Triac used and also if other supplies (positive or negative) are available. We also deal about the case of insulated or non-insulated supplies. It is recommended to refer to AN4564 which explains why positive supplies are usually implemented and how simple solutions can be implemented to get a negative supply. Refer also to AN3168 for information about AC switch control circuits in case the microcontroller is supplied with a negative power supply. AN440 - Rev 4 - March 2020 www.st.com For further information contact your local STMicroelectronics sales office. AN440 Positive supply defintion and AC switch triggering quadrants 1 Positive supply defintion and AC switch triggering quadrants 1.1 Positive power supply A positive power supply is a supply where its reference level (VSS) is connected to the mains (line or neutral). The VDD level is then above the mains terminal as shown in Figure 1. If the supply is a 5 V power supply, then VDD is 5 V above the mains reference. This is why such a supply is called a positive supply (compared to a negative supply as shown in AN3168). Figure 1. Positive supply basic schematic 1.2 AC switch triggering quadrants To switch-on an AC switch, like any bipolar device, a gate current must be applied between its gate pin (G) and its drive reference terminal (refer also to AN3168). -
Public Version United States International Trade
PUBLIC VERSION UNITED STATES INTERNATIONAL TRADE COMMISSION Washington, D.C. In the Matter of CERTAIN NON-VOLATILE MEMORY Inv. No. 337-TA-1046 DEVICES AND PRODUCTS CONTAINING SAME INITIAL DETERMINATION ON VIOLATION OF SECTION 337 Administrative Law Judge Dee Lord (April 27, 2018) Appearances: For Complainants Macronix International Co., Ltd. and Macron ix America, Inc.: Michael J. McKeon, Esq., Christian A. Chu, Esq., Thomas "Monty" Fusco, Esq., and Chris W. Dryer, Esq. of Fish & Richardson P.C. in Washington, DC; Leeron G. Kalay, Esq., David M. Barkan, Esq., and Bryan K. Basso, Esq. of Fish & Richardson P.C. in Redwood City, CA; Kevin Su, Esq. of Fish & Richardson P.C. in Boston, MA; Robert Courtney, Esq. and Will J. Orlady, Esq. of Fish & Richardson P.C. in Minneapolis, MN; and Christopher Winter, Esq. of Fish & Richardson P.C. in Wilmington, DE. For Respondents Toshiba Corporation, Toshiba America, Inc., Toshiba America Electronic Components, Inc., Toshiba America Information Systems, Inc., and Toshiba Information Equipment (Philippines), Inc.: Mark Fowler, Esq., Aaron Wainscoat, Esq., Saori Kaji, Esq., Brent K. Yamashita, Esq., Kfista C. Grewal, Esq., and Alan A. Limbach, Esq. of DLA Piper LLP in East Palo Alto, CA; Gerald T. Sekimura, Esq. of DLA Piper LLP in San Francisco, CA; and Steven L. Park, Esq. of DLA Piper LLP in Atlanta, GA. For the Commission Investigative Staff: Vu Q. Bui, Esq. and Anne Goalwin, Esq., of the Office of Unfair Import Investigations, U.S. International Trade Commission of Washington, DC. PUBLIC VERSION Pursuant to the Notice of Investigation (Apr. 6, 2017) and Commission Rule 210.42, this is the administrative law judge's final initial determination in the matter of Certain Non-Volatile Memory Devices and Products Containing Same, Inv. -
Bipolar Junction Transistor As a Detector for Measuring in Diagnostic X-Ray Beams
2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 BIPOLAR JUNCTION TRANSISTOR AS A DETECTOR FOR MEASURING IN DIAGNOSTIC X-RAY BEAMS Francisco A. Cavalcanti1,2, David S. Monte1,2, Aline N. Alves1,2, Fábio R. Barros2, Marcus A. P. Santos2, and Luiz A. P. Santos1,2 1 Departamento de Energia Nuclear Universidade Federal de Pernambuco Av. Prof. Luiz Freire, 1000 50740-540 Recife, PE [email protected] 2 Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE / CNEN) Av. Prof. Luiz Freire, 1 50740-540 Recife, PE [email protected] ABSTRACT Photodiode and phototransistor are the most frequently used devices for measuring ionizing radiation in medical applications. The cited devices have the operating principle well known, however the bipolar junction transistor (BJT) is not a typical device used as a detector for measuring some physical quantities for diagnostic radiation. In fact, a photodiode, for example, has an area about 10 mm square and a BJT has an area which can be more than 10 thousands times smaller. The purpose of this paper is to bring a new technique to estimate some physical quantities or parameters in diagnostic radiation; for example, peak kilovoltage (kVp), deep dose measurements. The methodology for each type of evaluation depends on the energy range of the radiation and the physical quantity or parameter to be measured. Actually, some characteristics of the incident radiation under the device can be correlated with the readout signal, which is a function of the electrical currents in the electrodes of the BJT: Collector, Base and Emitter. -
An Application of TRIAC to Capacitor Motor for Hermetic Compressor K
Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 1984 An Application of TRIAC to Capacitor Motor for Hermetic Compressor K. Nakane Y. Tozaki H. Sakamoto Follow this and additional works at: https://docs.lib.purdue.edu/icec Nakane, K.; Tozaki, Y.; and Sakamoto, H., "An Application of TRIAC to Capacitor Motor for Hermetic Compressor" (1984). International Compressor Engineering Conference. Paper 449. https://docs.lib.purdue.edu/icec/449 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html AN APPLICA'l'ION OF 'l'RIAC TO CAPACI'l'OR 1-10'l'OR FOR lll~Rt~IC'riC COMPRSSO!l Ka.zuhiro Nakane, Yasuhiro To?.nki,. Ilirota.ka Sakamoto Shizuoka. Worlw, Mitsubishi Electri.c Corporation Shizuoka City , Ja.pan ABSTRACT oncy and output rati.ngo are 100 V ,50/60 J!v. and 100 11. It is a. 1mi 1 t-in motor for the rotary type This paper refers to a.n n.pplication study of 'l'lUAC hermetic compressor shown in Ji'ie;. 2. 'l'hore are to PSC motor for thft hermetic compessor. It is three types of the wirings of the starting device 1-1ell lcnown that 'l'HIAC rlel nys pharJa ane,le of the for thifl motor,as shown i.n lcig, 3. A shows CSR current and has no losses if it is consider(\ as moto:r,n shows P'l'C asoist CSR motor and C sho~1s ideal flwitch. -
100 Transistor Circuits Go To: 101 - 200 Transistor Circuits Go To: 100 IC Circuits
Save 50 - 555 Circuits (more than 97 Circuits) as: .doc (2.1MB) or .pdf (1.4MB) (26-5-2011) For our other free eBooks, Go to: 1 - 100 Transistor Circuits Go to: 101 - 200 Transistor Circuits Go to: 100 IC Circuits For more data on the 555, see these pages: 555-Page 1 for CD users: 555-Page 1 555-Page 2 555-Page 2 555-Page 3 555-Page 3 555-Test 555-Test To learn about the development and history of the 555, go to these links: http://semiconductormuseum.com/Museum_Index.htm - a general discussion about the development of the transistor http://semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Index.htm - history of the 555 - Page1 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page2.h tm - history of the 555 - Page2 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page3.h tm - history of the 555 - Page3 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page4.h tm - history of the 555 - Page4 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page5.h tm - history of the 555 - Page5 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page6.h tm - history of the 555 - Page6 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page7.h tm - history of the 555 - Page7 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page8.h tm - history of the 555 - Page8 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page9.h tm - history of the 555 - Page9 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page10. htm - history of the 555 - Page10 For a list of every electronic symbol, see: Circuit Symbols. -
Thyristors & Triacs
APPLICATION NOTE Thyristors & Triacs - Ten Golden Rules for Success In Your Application. This Technical Publication aims to provide an threshold current IGT, within a very short time known as interesting, descriptive and practical introduction to the the gate-controlled turn-on time, tgt, the load current can golden rules that should be followed in the successful flow from ’a’ to ’k’. If the gate current consists of a very use of thyristors and triacs in power control applications. narrow pulse, say less than 1µs, its peak level will have to increase for progressively narrower pulse widths to Thyristor guarantee triggering. A thyristor is a controlled rectifier where the When the load current reaches the thyristor’s latching unidirectional current flow from anode to cathode is current IL, load current flow will be maintained even after initiated by a small signal current from gate to cathode. removal of the gate current. As long as adequate load current continues to flow, the thyristor will continue to akconduct without the gate current. It is said to be latched ON. Note that the VGT,IGT and IL specifications given in data g are at 25 ˚C. These parameters will increase at lower temperatures, so the drive circuit must provide adequate Fig. 1. Thyristor. voltage and current amplitude and duration for the The thyristor’s operating characteristic is shown in lowest expected operating temperature. Fig. 2. Rule 1. To turn a thyristor (or triac) ON, a gate current On-state ≥ Forward IGT must be applied until the load current is current characteristic ≥ IL. This condition must be met at the lowest expected operating temperature. -
How to Implement a SCR Or a Triac in a Hybride Relay Application
AN4993 Application note How to implement an SCR or a Triac in hybrid relay applications Introduction This document gives some key information about the design of the solid-state silicon AC switch stage of a hybrid relay, which can drive resistive, capacitive or inductive AC loads, such as: heater resistors, motors for industry, power tools or appliance applications. Section 1 describes the hybrid relay principle. Circuit and functional diagram is the first topic to be handled followed by its advantages and drawbacks and finally the main targeted applications are listed. Section 2 specifies different ways to drive the AC switch implemented on the hybrid relay circuit. Section 3 provides some design tips to pass electromagnetic compatibility standards, especially to reduce EMI noise. March 2017 DocID030191 Rev 1 1/23 www.st.com Contents AN4993 Contents 1 Hybrid relay ...................................................................................... 5 1.1 General schematic ............................................................................ 5 1.2 Advantages and drawbacks .............................................................. 6 1.3 Applications ....................................................................................... 7 1.3.1 Water and room heaters ..................................................................... 7 1.3.2 Home automation smart plug ............................................................. 7 1.3.3 Inrush limiter for power supply .......................................................... -
Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps
Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps Dustin Rand (Raytheon), Brad Lehman* (Northeastern University), Anatoly Shteynberg (Exclara, Inc.) *Dept. ECE; Northeastern University; Boston, MA 02115; [email protected] Abstract - This paper discusses the difficulties in dimming Edison metric tons of carbon emission, as well as alleviate the need of socket LED lamps directly from residential phase modulated more than 40 1000MW power stations [9,10]. dimmer switches. In order to explain these difficulties PSpice Dimmers models for the dimmers are proposed that necessarily include Residential dimmers are designed to meet the needs of diac characteristics to improve accuracy. A method to dim the homeowners and architects in both style and function. LEDs from the residential dimmers is discussed. Commercial companies offer a complete line of residential dimmers with an amazing array of colors that coordinate with the most popular interior colors and finishes. Commercial I. INTRODUCTION: LED LIGHTING - THE NEXT dimmers and dimming systems are designed to meet the TECHNOLOGICAL REVOLUTION? requirements of architects and specifiers of commercial spaces such as hotels, restaurants, offices and warehouses. Within the last few years, new LED materials and What is a Phase Modulated Dimmer? improved production processes have resulted in bright LEDs Incandescent bulbs primarily utilize phase modulating in colors throughout the visible spectrum with efficacies dimming through triac switches to control the power sent to greater than incandescent lamps [1,2]. In fact, recent the bulb. Dimming fluorescent lighting is possible by technological breakthroughs [3-7] in the high brightness retrofitting the lighting switches/infrastructure with electronic “White Light” LEDs have experts predicting that the “bright or other dimming ballasts.